-
Notifications
You must be signed in to change notification settings - Fork 4
/
mt-latlon.js
434 lines (354 loc) · 17.9 KB
/
mt-latlon.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/* Latitude/longitude spherical geodesy formulae & scripts (c) Chris Veness 2002-2012 */
/* - www.movable-type.co.uk/scripts/latlong.html */
/* */
/* Sample usage: */
/* var p1 = new LatLon(51.5136, -0.0983); */
/* var p2 = new LatLon(51.4778, -0.0015); */
/* var dist = p1.distanceTo(p2); // in km */
/* var brng = p1.bearingTo(p2); // in degrees clockwise from north */
/* ... etc */
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/* Note that minimal error checking is performed in this example code! */
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
(function (root) {
'use strict';
var wrapper = function(Geo) {
/**
* Creates a point on the earth's surface at the supplied latitude / longitude
*
* @constructor
* @param {Number} lat: latitude in numeric degrees
* @param {Number} lon: longitude in numeric degrees
* @param {Number} [rad=6371]: radius of earth if different value is required from standard 6,371km
*/
function LatLon(lat, lon, rad) {
if (typeof(rad) == 'undefined') rad = 6371; // earth's mean radius in km
// only accept numbers or valid numeric strings
this._lat = typeof(lat)=='number' ? lat : typeof(lat)=='string' && lat.trim()!='' ? +lat : NaN;
this._lon = typeof(lon)=='number' ? lon : typeof(lon)=='string' && lon.trim()!='' ? +lon : NaN;
this._radius = typeof(rad)=='number' ? rad : typeof(rad)=='string' && trim(lon)!='' ? +rad : NaN;
}
/**
* Returns the distance from this point to the supplied point, in km
* (using Haversine formula)
*
* from: Haversine formula - R. W. Sinnott, "Virtues of the Haversine",
* Sky and Telescope, vol 68, no 2, 1984
*
* @param {LatLon} point: Latitude/longitude of destination point
* @param {Number} [precision=4]: no of significant digits to use for returned value
* @returns {Number} Distance in km between this point and destination point
*/
LatLon.prototype.distanceTo = function(point, precision) {
// default 4 sig figs reflects typical 0.3% accuracy of spherical model
if (typeof precision == 'undefined') precision = 4;
var R = this._radius;
var lat1 = toRad(this._lat), lon1 = toRad(this._lon);
var lat2 = toRad(point._lat), lon2 = toRad(point._lon);
var dLat = lat2 - lat1;
var dLon = lon2 - lon1;
var a = Math.sin(dLat/2) * Math.sin(dLat/2) +
Math.cos(lat1) * Math.cos(lat2) *
Math.sin(dLon/2) * Math.sin(dLon/2);
var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
var d = R * c;
return toPrecisionFixed(d, precision);
}
/**
* Returns the (initial) bearing from this point to the supplied point, in degrees
* see http://williams.best.vwh.net/avform.htm#Crs
*
* @param {LatLon} point: Latitude/longitude of destination point
* @returns {Number} Initial bearing in degrees from North
*/
LatLon.prototype.bearingTo = function(point) {
var lat1 = toRad(this._lat), lat2 = toRad(point._lat);
var dLon = toRad(point._lon-this._lon);
var y = Math.sin(dLon) * Math.cos(lat2);
var x = Math.cos(lat1)*Math.sin(lat2) -
Math.sin(lat1)*Math.cos(lat2)*Math.cos(dLon);
var brng = Math.atan2(y, x);
return (toDeg(brng)+360) % 360;
}
/**
* Returns final bearing arriving at supplied destination point from this point; the final bearing
* will differ from the initial bearing by varying degrees according to distance and latitude
*
* @param {LatLon} point: Latitude/longitude of destination point
* @returns {Number} Final bearing in degrees from North
*/
LatLon.prototype.finalBearingTo = function(point) {
// get initial bearing from supplied point back to this point...
var lat1 = toRad(point._lat), lat2 = toRad(this._lat);
var dLon = toRad(this._lon-point._lon);
var y = Math.sin(dLon) * Math.cos(lat2);
var x = Math.cos(lat1)*Math.sin(lat2) -
Math.sin(lat1)*Math.cos(lat2)*Math.cos(dLon);
var brng = Math.atan2(y, x);
// ... & reverse it by adding 180°
return (toDeg(brng)+180) % 360;
}
/**
* Returns the midpoint between this point and the supplied point.
* see http://mathforum.org/library/drmath/view/51822.html for derivation
*
* @param {LatLon} point: Latitude/longitude of destination point
* @returns {LatLon} Midpoint between this point and the supplied point
*/
LatLon.prototype.midpointTo = function(point) {
var lat1 = toRad(this._lat), lon1 = toRad(this._lon);
var lat2 = toRad(point._lat);
var dLon = toRad(point._lon-this._lon);
var Bx = Math.cos(lat2) * Math.cos(dLon);
var By = Math.cos(lat2) * Math.sin(dLon);
var lat3 = Math.atan2(Math.sin(lat1)+Math.sin(lat2),
Math.sqrt( (Math.cos(lat1)+Bx)*(Math.cos(lat1)+Bx) + By*By) );
var lon3 = lon1 + Math.atan2(By, Math.cos(lat1) + Bx);
var lon3 = (lon3+3*Math.PI) % (2*Math.PI) - Math.PI; // normalise to -180..+180º
return toLatLonDeg(lat3, lon3, this._radius);
}
/**
* Returns the destination point from this point having travelled the given distance (in km) on the
* given initial bearing (bearing may vary before destination is reached)
*
* see http://williams.best.vwh.net/avform.htm#LL
*
* @param {Number} brng: Initial bearing in degrees
* @param {Number} dist: Distance in km
* @returns {LatLon} Destination point
*/
LatLon.prototype.destinationPoint = function(brng, dist) {
dist = typeof(dist)=='number' ? dist : typeof(dist)=='string' && dist.trim()!='' ? +dist : NaN;
dist = dist/this._radius; // convert dist to angular distance in radians
brng = toRad(brng); //
var lat1 = toRad(this._lat), lon1 = toRad(this._lon);
var lat2 = Math.asin( Math.sin(lat1)*Math.cos(dist) +
Math.cos(lat1)*Math.sin(dist)*Math.cos(brng) );
var lon2 = lon1 + Math.atan2(Math.sin(brng)*Math.sin(dist)*Math.cos(lat1),
Math.cos(dist)-Math.sin(lat1)*Math.sin(lat2));
lon2 = (lon2+3*Math.PI) % (2*Math.PI) - Math.PI; // normalise to -180..+180º
return toLatLonDeg(lat2, lon2, this._radius);
}
/**
* Returns the point of intersection of two paths defined by point and bearing
*
* see http://williams.best.vwh.net/avform.htm#Intersection
*
* @param {LatLon} p1: First point
* @param {Number} brng1: Initial bearing from first point
* @param {LatLon} p2: Second point
* @param {Number} brng2: Initial bearing from second point
* @returns {LatLon} Destination point (null if no unique intersection defined)
*/
LatLon.intersection = function(p1, brng1, p2, brng2) {
brng1 = typeof brng1 == 'number' ? brng1 : typeof brng1 == 'string' && trim(brng1)!='' ? +brng1 : NaN;
brng2 = typeof brng2 == 'number' ? brng2 : typeof brng2 == 'string' && trim(brng2)!='' ? +brng2 : NaN;
var lat1 = toRad(p1._lat), lon1 = toRad(p1._lon);
var lat2 = toRad(p2._lat), lon2 = toRad(p2._lon);
var brng13 = toRad(brng1), brng23 = toRad(brng2);
var dLat = lat2-lat1, dLon = lon2-lon1;
var dist12 = 2*Math.asin( Math.sqrt( Math.sin(dLat/2)*Math.sin(dLat/2) +
Math.cos(lat1)*Math.cos(lat2)*Math.sin(dLon/2)*Math.sin(dLon/2) ) );
if (dist12 == 0) return null;
// initial/final bearings between points
var brngA = Math.acos( ( Math.sin(lat2) - Math.sin(lat1)*Math.cos(dist12) ) /
( Math.sin(dist12)*Math.cos(lat1) ) );
if (isNaN(brngA)) brngA = 0; // protect against rounding
var brngB = Math.acos( ( Math.sin(lat1) - Math.sin(lat2)*Math.cos(dist12) ) /
( Math.sin(dist12)*Math.cos(lat2) ) );
var brng12, brng21;
if (Math.sin(lon2-lon1) > 0) {
brng12 = brngA;
brng21 = 2*Math.PI - brngB;
} else {
brng12 = 2*Math.PI - brngA;
brng21 = brngB;
}
var alpha1 = (brng13 - brng12 + Math.PI) % (2*Math.PI) - Math.PI; // angle 2-1-3
var alpha2 = (brng21 - brng23 + Math.PI) % (2*Math.PI) - Math.PI; // angle 1-2-3
if (Math.sin(alpha1)==0 && Math.sin(alpha2)==0) return null; // infinite intersections
if (Math.sin(alpha1)*Math.sin(alpha2) < 0) return null; // ambiguous intersection
//alpha1 = Math.abs(alpha1);
//alpha2 = Math.abs(alpha2);
// ... Ed Williams takes abs of alpha1/alpha2, but seems to break calculation?
var alpha3 = Math.acos( -Math.cos(alpha1)*Math.cos(alpha2) +
Math.sin(alpha1)*Math.sin(alpha2)*Math.cos(dist12) );
var dist13 = Math.atan2( Math.sin(dist12)*Math.sin(alpha1)*Math.sin(alpha2),
Math.cos(alpha2)+Math.cos(alpha1)*Math.cos(alpha3) )
var lat3 = Math.asin( Math.sin(lat1)*Math.cos(dist13) +
Math.cos(lat1)*Math.sin(dist13)*Math.cos(brng13) );
var dLon13 = Math.atan2( Math.sin(brng13)*Math.sin(dist13)*Math.cos(lat1),
Math.cos(dist13)-Math.sin(lat1)*Math.sin(lat3) );
var lon3 = lon1+dLon13;
lon3 = (lon3+3*Math.PI) % (2*Math.PI) - Math.PI; // normalise to -180..+180º
return toLatLonDeg(lat3, lon3, this._radius);
}
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/**
* Returns the distance from this point to the supplied point, in km, travelling along a rhumb line
*
* see http://williams.best.vwh.net/avform.htm#Rhumb
*
* @param {LatLon} point: Latitude/longitude of destination point
* @returns {Number} Distance in km between this point and destination point
*/
LatLon.prototype.rhumbDistanceTo = function(point) {
var R = this._radius;
var lat1 = toRad(this._lat), lat2 = toRad(point._lat);
var dLat = toRad(point._lat-this._lat);
var dLon = toRad(Math.abs(point._lon-this._lon));
var dPhi = Math.log(Math.tan(lat2/2+Math.PI/4)/Math.tan(lat1/2+Math.PI/4));
var q = (isFinite(dLat/dPhi)) ? dLat/dPhi : Math.cos(lat1); // E-W line gives dPhi=0
// if dLon over 180° take shorter rhumb across anti-meridian:
if (Math.abs(dLon) > Math.PI) {
dLon = dLon>0 ? -(2*Math.PI-dLon) : (2*Math.PI+dLon);
}
var dist = Math.sqrt(dLat*dLat + q*q*dLon*dLon) * R;
return toPrecisionFixed(dist, 4); // 4 sig figs reflects typical 0.3% accuracy of spherical model
}
/**
* Returns the bearing from this point to the supplied point along a rhumb line, in degrees
*
* @param {LatLon} point: Latitude/longitude of destination point
* @returns {Number} Bearing in degrees from North
*/
LatLon.prototype.rhumbBearingTo = function(point) {
var lat1 = toRad(this._lat), lat2 = toRad(point._lat);
var dLon = toRad(point._lon-this._lon);
var dPhi = Math.log(Math.tan(lat2/2+Math.PI/4)/Math.tan(lat1/2+Math.PI/4));
if (Math.abs(dLon) > Math.PI) dLon = dLon>0 ? -(2*Math.PI-dLon) : (2*Math.PI+dLon);
var brng = Math.atan2(dLon, dPhi);
return (toDeg(brng)+360) % 360;
}
/**
* Returns the destination point from this point having travelled the given distance (in km) on the
* given bearing along a rhumb line
*
* @param {Number} brng: Bearing in degrees from North
* @param {Number} dist: Distance in km
* @returns {LatLon} Destination point
*/
LatLon.prototype.rhumbDestinationPoint = function(brng, dist) {
var R = this._radius;
var d = parseFloat(dist)/R; // d = angular distance covered on earth’s surface
var lat1 = toRad(this._lat), lon1 = toRad(this._lon);
brng = toRad(brng);
var dLat = d*Math.cos(brng);
// nasty kludge to overcome ill-conditioned results around parallels of latitude:
if (Math.abs(dLat) < 1e-10) dLat = 0; // dLat < 1 mm
var lat2 = lat1 + dLat;
var dPhi = Math.log(Math.tan(lat2/2+Math.PI/4)/Math.tan(lat1/2+Math.PI/4));
var q = (isFinite(dLat/dPhi)) ? dLat/dPhi : Math.cos(lat1); // E-W line gives dPhi=0
var dLon = d*Math.sin(brng)/q;
// check for some daft bugger going past the pole, normalise latitude if so
if (Math.abs(lat2) > Math.PI/2) lat2 = lat2>0 ? Math.PI-lat2 : -Math.PI-lat2;
var lon2 = (lon1+dLon+3*Math.PI)%(2*Math.PI) - Math.PI;
return toLatLonDeg(lat2, lon2, this._radius);
}
/**
* Returns the loxodromic midpoint (along a rhumb line) between this point and the supplied point.
* see http://mathforum.org/kb/message.jspa?messageID=148837
*
* @param {LatLon} point: Latitude/longitude of destination point
* @returns {LatLon} Midpoint between this point and the supplied point
*/
LatLon.prototype.rhumbMidpointTo = function(point) {
var lat1 = toRad(this._lat), lon1 = toRad(this._lon);
var lat2 = toRad(point._lat), lon2 = toRad(point._lon);
if (Math.abs(lon2-lon1) > Math.PI) lon1 += 2*Math.PI; // crossing anti-meridian
var lat3 = (lat1+lat2)/2;
var f1 = Math.tan(Math.PI/4 + lat1/2);
var f2 = Math.tan(Math.PI/4 + lat2/2);
var f3 = Math.tan(Math.PI/4 + lat3/2);
var lon3 = ( (lon2-lon1)*Math.log(f3) + lon1*Math.log(f2) - lon2*Math.log(f1) ) / Math.log(f2/f1);
if (!isFinite(lon3)) lon3 = (lon1+lon2)/2; // parallel of latitude
var lon3 = (lon3+3*Math.PI) % (2*Math.PI) - Math.PI; // normalise to -180..+180º
return toLatLonDeg(lat3, lon3, this._radius);
}
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/**
* Returns the latitude of this point; signed numeric degrees if no format, otherwise format & dp
* as per Geo.toLat()
*
* @param {String} [format]: Return value as 'd', 'dm', 'dms'
* @param {Number} [dp=0|2|4]: No of decimal places to display
* @returns {Number|String} Numeric degrees if no format specified, otherwise deg/min/sec
*/
LatLon.prototype.lat = function(format, dp) {
if (typeof format == 'undefined') return this._lat;
return Geo.toLat(this._lat, format, dp);
}
/**
* Returns the longitude of this point; signed numeric degrees if no format, otherwise format & dp
* as per Geo.toLon()
*
* @param {String} [format]: Return value as 'd', 'dm', 'dms'
* @param {Number} [dp=0|2|4]: No of decimal places to display
* @returns {Number|String} Numeric degrees if no format specified, otherwise deg/min/sec
*/
LatLon.prototype.lon = function(format, dp) {
if (typeof format == 'undefined') return this._lon;
return Geo.toLon(this._lon, format, dp);
}
/**
* Returns a string representation of this point; format and dp as per lat()/lon()
*
* @param {String} [format]: Return value as 'd', 'dm', 'dms'
* @param {Number} [dp=0|2|4]: No of decimal places to display
* @returns {String} Comma-separated latitude/longitude
*/
LatLon.prototype.toString = function(format, dp) {
if (typeof format == 'undefined') format = 'dms';
return Geo.toLat(this._lat, format, dp) + ', ' + Geo.toLon(this._lon, format, dp);
}
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
// ---- helper functions for converting degrees/radians
/** Converts numeric degrees to radians */
function toRad(value) {
return value * Math.PI / 180;
}
/** Converts radians to numeric (signed) degrees */
function toDeg(value) {
return value * 180 / Math.PI;
}
/**
* Formats the significant digits of a number, using only fixed-point notation (no exponential)
*
* @param {Number} value: The number to convert
* @param {Number} precision: Number of significant digits to appear in the returned string
* @returns {String} A string representation of number which contains precision significant digits
*/
function toPrecisionFixed(value, precision) {
// use standard toPrecision method
var n = value.toPrecision(precision);
// ... but replace +ve exponential format with trailing zeros
n = n.replace(/(.+)e\+(.+)/, function(n, sig, exp) {
sig = sig.replace(/\./, ''); // remove decimal from significand
var l = sig.length - 1;
while (exp-- > l) sig = sig + '0'; // append zeros from exponent
return sig;
});
// ... and replace -ve exponential format with leading zeros
n = n.replace(/(.+)e-(.+)/, function(n, sig, exp) {
sig = sig.replace(/\./, ''); // remove decimal from significand
while (exp-- > 1) sig = '0' + sig; // prepend zeros from exponent
return '0.' + sig;
});
return n;
}
function toLatLonDeg(latRad, lonRad, radius) {
return new LatLon(toDeg(latRad), toDeg(lonRad), radius)
}
return LatLon;
};
// Add support for AMD, Node and plain JS
if (typeof exports === 'object') {
module.exports = wrapper;
} else if (typeof define === 'function' && define.amd) {
define(wrapper);
} else {
root.LatLon = wrapper(Geo);
}
})(this);