-
Notifications
You must be signed in to change notification settings - Fork 0
/
24_planet_of_discord.rb
272 lines (243 loc) · 8.44 KB
/
24_planet_of_discord.rb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
SIDE_LEN = 5
NUM_ITERS = Hash.new(200)
NUM_ITERS[1205552] = 10
# Only 4 values are important: 0, 1, 2, 3+ (dead for sure)
# that's 2 bits
BITS_PER_NEIGHBOUR_COUNT = 2
NEIGHBOUR_COUNT_MASK = (1 << BITS_PER_NEIGHBOUR_COUNT) - 1
# For deciding whether a cell is alive at the next iteration,
# precompute groups at a time, keyed by concatenation of (neighbour counts, alive bits)
# (to disable cache, just lift the `until` and replace the `until` in `grow_bugs`)
# Through experimentation, 4 was a good group size? You'd think 5, but that was slower.
GROUP_SIZE = 4
BITS_PER_NEIGHBOUR_COUNT_GROUP = BITS_PER_NEIGHBOUR_COUNT * GROUP_SIZE
NEIGHBOUR_COUNT_GROUP_MASK = (1 << BITS_PER_NEIGHBOUR_COUNT_GROUP) - 1
ALIVE_GROUP_MASK = (1 << GROUP_SIZE) - 1
GROUP_CACHE = (1 << (GROUP_SIZE * (BITS_PER_NEIGHBOUR_COUNT + 1))).times.map { |x|
ncs = (x >> GROUP_SIZE) & NEIGHBOUR_COUNT_GROUP_MASK
current_alive = x & ALIVE_GROUP_MASK
pos = 0
new_level = 0
until ncs == 0
nc = ncs & NEIGHBOUR_COUNT_MASK
now_alive = nc == 1 || nc == 2 && current_alive & 1 == 0
new_level |= 1 << pos if now_alive
ncs >>= BITS_PER_NEIGHBOUR_COUNT
current_alive >>= 1
pos += 1
end
new_level
}.freeze
def grow_bugs(grids, neigh)
# Keyed by level, each value is the concatenated neighbour counts of all cells.
# Takes advantage of the fact that it's only possible to spread one level above and below.
# -1 will be at the end of the array, using negative indexing.
# Slightly faster than using Hash.new(0) and lmin, lmax = neigh_count.keys.minmax
neigh_count = Array.new(grids.size + 2, 0)
grids.each_with_index { |grid, level|
neigh.each { |v|
masked = grid & v[:mask]
v[:neigh][masked].each { |dlevel, neigh_contribs|
existing = neigh_count[level + dlevel]
if existing == 0
neigh_count[level + dlevel] = neigh_contribs
else
# Saturating add on each group of two bits.
# These formulae were determined by examining all 16 possibilities,
# and determining formulae by hand.
a = existing & 0xaaaaaaaaaaaaaaa
b = existing & 0x555555555555555
c = neigh_contribs & 0xaaaaaaaaaaaaaaa
d = neigh_contribs & 0x555555555555555
bd = b & d
# upper_bits is pretty much exactly like an adder.
upper_bits = a | c | (bd << 1)
alow = a >> 1
clow = c >> 1
# lower_bits would normally be like an adder (just b ^ d),
# but also adds the following:
# alow & clow, so that 10+10 == 11
# bd & (alow | clow), so that 11+01 == 01+11 == 11
lower_bits = (b ^ d) | (alow & clow) | (bd & (alow | clow))
# Alternative:
# Only cases where lower bit is 0: 00+00, 00+10, 01+01, 10+00.
# So lower bit is 1 if b | d, except if it's 01+01,
# And also need to make 10+10 == 11, which alow & clow will do.
#lower_bits = ((b | d) & (alow | clow | ~bd)) | (alow & clow)
neigh_count[level + dlevel] = upper_bits | lower_bits
end
}
}
}
lmin = -1
lmin += 1 until neigh_count[lmin] != 0
lmax = grids.size
lmax -= 1 until neigh_count[lmax] != 0
# Note this doesn't preserve indices, but it doesn't matter.
# Careful to preserve empty levels, however.
(lmin..lmax).map { |level|
ncs = neigh_count[level]
current_alive = (0...grids.size).cover?(level) ? grids[level] : 0
pos = 0
new_level = 0
until ncs == 0
nc = ncs & NEIGHBOUR_COUNT_GROUP_MASK
now_alive = current_alive & ALIVE_GROUP_MASK
new_level |= GROUP_CACHE[(nc << GROUP_SIZE) | now_alive] << pos
ncs >>= BITS_PER_NEIGHBOUR_COUNT_GROUP
current_alive >>= GROUP_SIZE
pos += GROUP_SIZE
end
new_level
}
end
# the neighbours of each individual position
# Hash[position] => Array[Tuple[delta_depth, position]]
def neigh_map(side_len, recursive: false)
mid_coord = side_len / 2
in_bounds = ->*ns { ns.all? { |n| (0...side_len).cover?(n) } }
directions = [
[-1, 0, ->nx { [1, side_len - 1, nx] }],
[1, 0, ->nx { [1, 0, nx] }],
[0, -1, ->ny { [1, ny, side_len - 1] }],
[0, 1, ->ny { [1, ny, 0] }],
].map(&:freeze).freeze
(side_len * side_len).times.map { |pos|
y, x = pos.divmod(side_len)
unless recursive
next directions.filter_map { |dy, dx, _|
ny = y + dy
nx = x + dx
[0, ny * side_len + nx] if in_bounds[ny, nx]
}
end
directions.flat_map { |dy, dx, inner_neigh|
ny = y + dy
nx = x + dx
if ny == mid_coord && nx == mid_coord
side_len.times.map(&inner_neigh)
elsif in_bounds[ny, nx]
[[0, ny, nx]]
else
[[-1, mid_coord + dy, mid_coord + dx]]
end
}.map { |d, ny, nx| [d, ny * side_len + nx] }
}.freeze
end
# Array[Group]
# Group = {
# mask: Int
# neigh: Hash[Int => Array[Tuple[delta_depth, neighbour_counts]]]
# }
# To compute the neighbour contributions of a group,
# mask the grid bitfield with the group's mask,
# then index into the neigh map.
# Multiple neighbour counts are to be combined with saturating add.
def grouped_neigh_map(side_len, recursive: false)
neigh_map = neigh_map(side_len, recursive: recursive)
mid_coord = side_len / 2
groups = Hash.new { |h, k| h[k] = [] }
(side_len * side_len).times { |pos|
# This seems to be a good division,
# balancing between not having any one group be too large
# vs not having to do as many neighbour count saturating additions.
# Current sizes are 4, 6, 6, 5, 4
# It does perform slightly better than the obvious `group = pos / 5`
y, x = pos.divmod(side_len)
on_vert_edge = y == 0 || y == side_len - 1
on_horiz_edge = x == 0 || x == side_len - 1
group = if on_vert_edge && on_horiz_edge
:corner
elsif on_vert_edge
:vert_edge
elsif on_horiz_edge
:horiz_edge
elsif y == mid_coord || x == mid_coord
:mid
else
:other
end
groups[group] << pos
}
groups.values.map { |group|
neigh = (1 << group.size).times.to_h { |n|
n_bits = n.digits(2)
# neigh_count[dlevel][npos] = 0..3
# Could use one integer (all counts concatenated),
# but this function is such a small portion of the runtime that it's not worth it.
neigh_count = Hash.new { |h, k| h[k] = Hash.new(0) }
shifted = group.zip(n_bits).sum { |pos, bit| (bit || 0) << pos }
n_bits.zip(group) { |bit, pos|
next if bit == 0
neigh_map[pos].each { |dlevel, npos|
neigh_count[dlevel][npos] += 1
}
}
[shifted, neigh_count.transform_values { |count_for_level|
count_for_level.sum { |npos, count_for_pos|
[count_for_pos, NEIGHBOUR_COUNT_MASK].min << (npos * BITS_PER_NEIGHBOUR_COUNT)
}
}.freeze]
}
raise "Should be #{1 << group.size} in neighbours map, only have #{neigh.size}" if neigh.size != 1 << group.size
{
neigh: neigh.freeze,
mask: group.sum { |b| 1 << b },
}.freeze
}.freeze
end
def first_repeat(x)
seen = {}
until seen[x]
seen[x] = true
x = yield x
end
[x, seen.size]
end
def show_grids(grids)
size = SIDE_LEN * SIDE_LEN
grids.each_with_index { |g, i|
puts i if grids.size > 1
bits = g.digits(2)
bits << 0 until bits.size == size
bits.each_slice(SIDE_LEN) { |row| puts row.join.tr('01', '.#') }
puts
}
end
verbose = ARGV.delete('-v')
bit = {?# => 1, ?. => 0}.freeze
input = ARGV[0]&.match?(/^[0-9]$/) ? Integer(ARGV) : ARGF.each_line.map { |l|
l.chomp.tap { |lc| raise "wrong size #{l}" if lc.size != SIDE_LEN }
}.join.each_char.with_index.sum { |c, i| bit.fetch(c) << i }
raise "too big #{input}" if input >= 1 << (SIDE_LEN * SIDE_LEN)
neigh = grouped_neigh_map(SIDE_LEN)
if verbose && NUM_ITERS[input] <= 10
grids = [input]
puts "----- 0 minutes -----"
show_grids(grids)
NUM_ITERS[input].times { |i|
grids = grow_bugs(grids, neigh)
puts "----- #{i + 1} minutes -----"
show_grids(grids)
}
end
repeat, time = first_repeat(input) { |x|
xs = grow_bugs([x], neigh)
raise "expanded to another level in part 1??? #{xs}" if xs.size > 1
xs[0] || 0
}
if verbose
puts "----- repeat after #{time} minutes -----"
show_grids([repeat])
end
p repeat
neigh = grouped_neigh_map(SIDE_LEN, recursive: true)
grids = [input]
NUM_ITERS[input].times {
grids = grow_bugs(grids, neigh)
}
if verbose
puts "----- #{NUM_ITERS[input]} minutes, recursive -----"
show_grids(grids)
end
p grids.sum { |g| g.digits(2).count(1) }