-
Notifications
You must be signed in to change notification settings - Fork 35
/
make_kpca_plots.py
612 lines (494 loc) · 22.5 KB
/
make_kpca_plots.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
from basic import *
import numpy as np
from sklearn.decomposition import KernelPCA
import html_colors
import parse_tsv
import util
from operator import add
with Parser(locals()) as p:
p.str('organism').required()
p.str('clones_file').required()
p.str('pngfile_prefix')
p.int('max_labels').default(5)
p.float('distance_scale_factor').default(0.01)
p.float('paper_figs_dpi').default(100.)
p.float('Dmax')
p.float('minval')
p.float('maxval')
p.flag('show')
p.flag('paper_figs')
p.flag('vertical') ## each epitope is a vertical stack of scatter plots
p.flag('showmotifs')
p.flag('use_tsne')
p.multiword('epitopes').cast(lambda x: x.split())
if pngfile_prefix is None:
pngfile_prefix = clones_file[:-4]
import matplotlib
matplotlib.rcParams['mathtext.default'] = 'regular'
if not show: matplotlib.use('Agg')
import matplotlib.pyplot as plt
greek_ab = {'a':r'$\alpha$', 'b':r'$\beta$'}
all_tcrs = parse_tsv.parse_tsv_file( clones_file, ['epitope'], ['clone_id'], True )
if showmotifs:
motifs_file = clones_file[:-4]+'_motifs.tsv'
if not exists( motifs_file ):
showmotifs = False
else:
assert exists(motifs_file)
all_motifs = parse_tsv.parse_tsv_file( motifs_file, ['epitope','chain'],
['id','showmotif', 'chi_squared',
'matches_with_nbrs', 'matches_with_nbrs_consensus', 'expected_fraction',
'cluster_number', 'is_cluster_center','cluster_consensus' ] )
if epitopes is None:
epitopes = all_tcrs.keys()[:]
epitopes.sort()
## first load all the distance matrices so we can use a consistent Dmax scaling (make landscapes comparable)
all_Ds = []
for epitope in epitopes:
tcrs = all_tcrs[epitope]
tcr_infos = [x[1] for x in all_tcrs[epitope]]
num_tcrs = len(tcr_infos)
## read distances
distfile = '{}_AB_{}.dist'.format(clones_file[:-4],epitope)
all_dists = []
for line in open( distfile,'r'):
l = line.split()
clone_id = l[0]
index = len(all_dists)
assert tcr_infos[ index ]['clone_id'] == clone_id
dists = [ distance_scale_factor*float(x) for x in l[1:] ]
assert len(dists) == num_tcrs
all_dists.append( dists )
D = np.matrix(all_dists)
print epitope, D.shape, 'D.max()=',D.max()
all_Ds.append( D )
max_Dmax = max( ( D.max() for D in all_Ds ) )
all_Dmax = [ D.max() for D in all_Ds ]
med_Dmax = get_median( all_Dmax )
print 'max_Dmax:',max_Dmax,'med_Dmax:',med_Dmax,'cmdline_Dmax:',Dmax
if Dmax is None:
Dmax = med_Dmax ## Note: using median value of D.max()
## now do kpca
all_xys = []
jc_all_xys = {}
for epitope,D in zip(epitopes,all_Ds):
old_Dmax = D.max()
D = np.minimum( D, np.full( D.shape, Dmax ) )
print 'true_Dmax:',old_Dmax,'using_Dmax:',Dmax,epitope
if use_tsne:
from sklearn.manifold import TSNE
tsne = TSNE(n_components=2, metric='precomputed')
xy = tsne.fit_transform(D)
else:
pca = KernelPCA(kernel='precomputed')
gram = 1 - ( D / Dmax )
xy = pca.fit_transform(gram)
xs = xy[:,0]
ys = xy[:,1]
all_xys.append( xy )
jc_all_xys[epitope] = xy
all_vals = reduce( add, [list(xy[:,0]) for xy in all_xys ] ) + \
reduce( add, [list(xy[:,1]) for xy in all_xys ] )
if minval is None:
minval, maxval = min(all_vals), max(all_vals)
else:
print 'minval {} maxval {}'.format(min(all_vals),max(all_vals))
assert minval <= min(all_vals)
assert maxval >= max(all_vals)
print 'minval {} maxval {}'.format(minval,maxval)
span = maxval-minval
minval -= 0.03*span
maxval += 0.03*span
span = maxval-minval
ticks = [ minval + x*span/10 for x in range(1,10) ]
#yticks = [ minval + x*span/10 for x in range(1,10) ]
if vertical:
assert not showmotifs # still have to mod plotno calc below
ncols = len(epitopes)
nrows = 4 + 2*showmotifs
else:
nrows = len(epitopes)
ncols = 4 + 2*showmotifs
#plotno = 0
plot_width_inches = 2.0
left_margin_inches = 0.5
right_margin_inches = 0.5
top_margin_inches = 0.5
bottom_margin_inches = 0.5
if vertical:
horizontal_spacer = 0.5
vertical_spacer = 0.04
else:
if paper_figs:
vertical_spacer = 0.04
horizontal_spacer = 0.04
left_margin_inches = 0.05
right_margin_inches = 0.05
top_margin_inches = 0.05
bottom_margin_inches = 0.05
else:
vertical_spacer = 0.5
horizontal_spacer = 0.04
fig_height = top_margin_inches + bottom_margin_inches + nrows * plot_width_inches + (nrows-1)*vertical_spacer
fig_width = left_margin_inches + right_margin_inches + ncols * plot_width_inches + (ncols-1)*horizontal_spacer
bottom_margin = bottom_margin_inches / fig_height
top_margin = (fig_height-top_margin_inches)/fig_height
left_margin = left_margin_inches / fig_width
right_margin = ( fig_width-right_margin_inches)/fig_width
hspace = vertical_spacer*(nrows-1) / fig_height
wspace = horizontal_spacer*(ncols-1) / fig_width
plt.figure(1,figsize=(fig_width,fig_height))
def setup_gridl( xy, minval, maxval, step, nx, ny, max_labels ):
grid_counts = {}
for i in range(num_tcrs):
x,y = xy[i][0], xy[i][1]
xg = int( floor( (x-minval)/step ) )
yg = int( floor( (y-minval)/step ) )
g= (xg,yg)
grid_counts[g] = grid_counts.get(g,0)+1
gridl = []
max_count=0
while len(gridl)<max_labels:
gridl = []
for xg in range(ngrid-nx+1):
for yg in range(ngrid-ny+1):
count=0
for xxg in range(xg,xg+nx):
for yyg in range(yg,yg+ny):
count += grid_counts.get( (xxg,yyg),0 )
if count<=max_count:
#print 'safe:',count,epitope,xg,yg
gridl.append( ( count, (xg,yg) ) )
max_count += 1
return gridl
def add_new_label_and_update_gridl( xy, minval, maxval, step, nx, ny, label_text, label_color, label_indices, gridl,
fontfamily = None ):
if not gridl:
return ## can't do anything
## find the best grid for this guy
min_avgdist = 1e6
for ii_gridl, (count,(xg,yg)) in enumerate(gridl):
x = minval + xg*step + nx*step*0.5
y = minval + yg*step + ny*step*0.5
avgdist = 0.
for i in label_indices:
dist = sqrt( ( xy[i][0]-x)**2 + (xy[i][1]-y)**2 )
avgdist += dist
avgdist /= len(label_indices)
if avgdist<min_avgdist:
min_avgdist = avgdist
best_ii_gridl = ii_gridl
## now draw a label at this point
count,(xg,yg) = gridl[ best_ii_gridl ]
## remove gridl entries that would overlap with this new label
for ii in range(len(gridl)-1,-1,-1):
## should we delete this guy?
count2,(xg2,yg2) = gridl[ii]
if abs(xg2-xg)<nx and abs(yg2-yg)<ny:
del gridl[ii]
x0 = minval + xg*step
y0 = minval + yg*step
if xg==0: x0 += step*0.3 ## scoot over a little bit
if fontfamily:
fontdict = {'family': fontfamily, 'size': 6 }
plt.text( x0, y0, label_text, color=label_color, va = 'bottom', ha='left', fontdict=fontdict )
else:
plt.text( x0, y0, label_text, color=label_color, va = 'bottom', ha='left', fontsize=6 )
jcmaxlen = 0
kPCAset = set()
for ii_epitope, epitope in enumerate( epitopes ):
plt.figure(1,figsize=(fig_width,fig_height))
xy = all_xys[ ii_epitope ]
tcrs = all_tcrs[epitope]
tcr_infos = [x[1] for x in all_tcrs[epitope]]
num_tcrs = len(tcr_infos)
util.assign_label_reps_and_colors_based_on_most_common_genes_in_repertoire( tcr_infos, organism )
## now stored as va_label_rep, jb_label_rep
for jj_reptype, reptype in enumerate( ['va','ja','vb','jb'] ):
repcounts = {}
tcr_reps = []
tcr_colors = []
rep_colors = {}
for l in tcr_infos:
rep = l[reptype+'_label_rep']
color = l[reptype+'_label_rep_color']
repcounts[rep] = repcounts.get(rep,0)+1
tcr_reps.append( rep )
tcr_colors.append( color )
rep_colors[rep] = color
repl = [ (y,x) for x,y in repcounts.iteritems()]
repl.sort()
repl.reverse()
#plotno += 1
if vertical:
plotno = jj_reptype*ncols + ii_epitope+1
else:
plotno = ii_epitope*ncols + jj_reptype+1
axes = plt.subplot(nrows,ncols,plotno)
#axes.set_aspect('equal')
plt.scatter( xy[:,0], xy[:,1], s=10, c=tcr_colors, edgecolors='none' )
plt.xticks(ticks,[])
plt.yticks(ticks,[])
## can we figure out where to put labels?
## look for rows of grid points that are empty
##
ngrid = 20
step = (maxval-minval)/ngrid
nx = 4
ny = 1
gridl = setup_gridl( xy, minval, maxval, step, nx, ny, max_labels )
## now add labels for the top few reps
mincount_for_labels = float(num_tcrs)/25 ## 4%
for count,rep in repl[:max_labels]:
if count<mincount_for_labels:break
if not gridl:break
rep_indices = [ x for x in range(num_tcrs) if tcr_reps[x] == rep ]
add_new_label_and_update_gridl( xy, minval, maxval, step, nx, ny, rep, rep_colors[rep], rep_indices, gridl )
plt.xlim((minval,maxval))
plt.ylim((minval,maxval))
if paper_figs:
textpad = 0.05* (maxval-minval)
plt.text( minval +textpad, maxval-textpad, epitope, ha='left',va='top', fontsize=14 )
plt.text( maxval -textpad, maxval-textpad, '{}{} colors'.format( reptype[0].upper(), greek_ab[ reptype[1]]),
ha = 'right', va='top', fontsize=11 )
else:
plt.title('{} {}{}'.format(epitope, reptype[0].upper(), greek_ab[ reptype[1] ] ) )
if showmotifs:
if epitope not in all_motifs: continue
for jj_motifchain, motifchain in enumerate( 'AB' ):
if motifchain not in all_motifs[epitope]: continue
motifids = [] ## in decreasing order of chi-squared
motifid2info = {}
motif_cluster_centers = {} ## map from cluster_number to motifid
motif_cluster_members = {} ## map from cluster_number to motifids
for ( motifid, showmotif, chi_squared, matches_with_nbrs, matches_with_nbrs_consensus, expected_fraction,
cluster_number, is_cluster_center,cluster_consensus ) in all_motifs[epitope][motifchain]:
#if float(expected_fraction)>max_expected_fraction: continue
motifids.append( motifid )
cnum = int( cluster_number )
info = { 'cluster_number':cnum,
'matches_with_nbrs':matches_with_nbrs,
'showmotif':showmotif,
'consensus':matches_with_nbrs_consensus,
'cluster_consensus':cluster_consensus,
'chi_squared':float(chi_squared) }
motifid2info[ motifid ] = info
if cnum not in motif_cluster_members:
motif_cluster_members[cnum] = []
motif_cluster_members[cnum].append( motifid )
if int(is_cluster_center):
motif_cluster_centers[ cnum ] = motifid
#print motif_cluster_centers
assert max( motif_cluster_centers.keys() ) == len(motif_cluster_centers.keys())-1 ## 0-indexed cluster #s
l_clusters = [ ( max( ( motifid2info[m]['chi_squared'] for m in members ) ), cnum )
for cnum,members in motif_cluster_members.iteritems() ]
l_clusters.sort()
l_clusters.reverse() ## decreasing order of top chi_squared for each cluster
#print l_clusters
motif_cluster_colors = dict( zip( [ x[1] for x in l_clusters ],
html_colors.get_rank_colors_no_lights( len(motif_cluster_centers) ) ) )
plotno = ii_epitope*ncols + 4 + jj_motifchain + 1
assert not vertical
axes = plt.subplot(nrows,ncols,plotno)
#axes.set_aspect('equal')
## first show them all light grey
xs = xy[:,0]
ys = xy[:,1]
light_gray = '#D3D3D3'
tcr_colors = [light_gray]*num_tcrs
ngrid = 20
step = (maxval-minval)/ngrid
nx = 6 ## little bit bigger
ny = 1
gridl = setup_gridl( xy, minval, maxval, step, nx, ny, max_labels )
motif_cluster_indices = {}
for cnum in motif_cluster_colors:
motif_cluster_indices[cnum] = set()
all_matched_ids = set()
for motifid in reversed( motifids ):
info = motifid2info[ motifid ]
cluster_number = info['cluster_number'] #0-indexed
color = motif_cluster_colors[ cluster_number ]
#showmotif = motifl[0]
matched_ids = frozenset( info['matches_with_nbrs'].split(',') ) ## including nbrs
all_matched_ids |= matched_ids
indices = frozenset( [ x for x in range(num_tcrs) if tcr_infos[x]['clone_id'] in matched_ids ] )
motif_cluster_indices[cluster_number] |= indices
for ind in indices:
tcr_colors[ind] = color
for (chi_squared,cnum) in l_clusters[:max_labels]:
members = motif_cluster_members[ cnum ]
indices = motif_cluster_indices[ cnum ]
color = motif_cluster_colors[cnum]
if len(indices)<mincount_for_labels: continue
num_visible = tcr_colors.count(color)
if num_visible<mincount_for_labels: continue
top_chi_squared, top_motifid = max( ( (motifid2info[m]['chi_squared'],m) for m in members ) )
assert abs(top_chi_squared-chi_squared)<1e-3
#label = motifid2info[top_motifid]['consensus']
#label = motifid2info[ motif_cluster_centers[ cnum ] ]['consensus']
label = motifid2info[ motif_cluster_centers[ cnum ] ]['cluster_consensus']
if gridl:
add_new_label_and_update_gridl( xy, minval, maxval, step, nx, ny, label, color,
indices, gridl, fontfamily='monospace' )
assert len(tcr_colors) == len(xs)
## now do all the plotting
plt.scatter( [ xs[i] for i in range(num_tcrs) if tcr_colors[i] == light_gray ],
[ ys[i] for i in range(num_tcrs) if tcr_colors[i] == light_gray ],
s=10, c=light_gray, edgecolors='none' )
for motifid in reversed( motifids ):
info = motifid2info[ motifid ]
cluster_number = info['cluster_number'] #0-indexed
color = motif_cluster_colors[ cluster_number ]
plt.scatter( [ xs[i] for i in range(num_tcrs) if tcr_colors[i] == color ],
[ ys[i] for i in range(num_tcrs) if tcr_colors[i] == color ],
s=10, c=color, edgecolors='none' )
for ji in range(num_tcrs): #JCC--adding ability to output kPC info
templi = []
for jx in tcr_infos[ji]:
templi.append(tcr_infos[ji][jx].strip())
tempstr = tcrs[ji][0] + "\t" + tcr_infos[ji]["epitope"] + "\t" + str(xs[ji]) + "\t" + str(ys[ji]) + "\t" + tcr_colors[ji] + "\t" + "\t".join(str(x) for x in jc_all_xys[epitope][ji])
jcmaxlen = max(jcmaxlen, len(tempstr.split("\t")))
kPCAset.add(tempstr) #--JCC
print '{} {} matched: {} {:.6f}'.format(epitope,motifchain,len(all_matched_ids),
float(len(all_matched_ids))/num_tcrs)
plt.xticks(ticks,[])
plt.yticks(ticks,[])
plt.xlim((minval,maxval))
plt.ylim((minval,maxval))
plt.title('{} {}-motifs'.format(epitope,motifchain.upper()))
if paper_figs:
## make a special secret figure just for this epitope
margin=0.1
sep=0.07
pwidth=2.
if vertical:
height=2*margin+3*sep+4*pwidth
width=2*margin+pwidth
else:
width=2*margin+3*sep+4*pwidth
height=2*margin+pwidth
plt.figure(2,figsize=(width,height))
plt.clf()
for jj_reptype, reptype in enumerate( ['va','ja','vb','jb'] ):
repcounts = {}
tcr_reps = []
tcr_colors = []
rep_colors = {}
for l in tcr_infos:
rep = l[reptype+'_label_rep']
color = l[reptype+'_label_rep_color']
repcounts[rep] = repcounts.get(rep,0)+1
tcr_reps.append( rep )
tcr_colors.append( color )
rep_colors[rep] = color
repl = [ (y,x) for x,y in repcounts.iteritems()]
repl.sort()
repl.reverse()
nr,nc = (4,1) if vertical else (1,4)
plt.subplot(nr,nc,1+jj_reptype)
#axes.set_aspect('equal')
textpad = 0.03*(maxval-minval)
plt.scatter( xy[:,0], xy[:,1], s=10, c=tcr_colors, edgecolors='none' )
if reptype=='va': ## epitope label
plt.text( maxval-1.5*textpad, maxval-1.5*textpad, epitope,
va='top', ha='right', fontsize=14 )
plt.text( maxval-textpad, minval+textpad,
'{}{} colors'.format( reptype[0].upper(), greek_ab[ reptype[1] ] ),
va='bottom', ha='right', fontsize=8 )
# plt.text( (maxval+minval)/2., minval+textpad,
# '{}{} colors'.format( reptype[0].upper(), greek_ab[ reptype[1] ] ),
# va='bottom', ha='center', fontsize=8 )
plt.xticks(ticks,[])
plt.yticks(ticks,[])
## can we figure out where to put labels?
## look for rows of grid points that are empty
##
ngrid = 20
step = (maxval-minval)/ngrid
nx = 4
ny = 1
gridl = setup_gridl( xy, minval, maxval, step, nx, ny, max_labels )
## now add labels for the top few reps
mincount_for_labels = float(num_tcrs)/25 ## 4%
for count,rep in repl[:max_labels]:
if count<mincount_for_labels:break
if not gridl:break
rep_indices = [ x for x in range(num_tcrs) if tcr_reps[x] == rep ]
add_new_label_and_update_gridl( xy, minval, maxval, step, nx, ny, rep, rep_colors[rep], rep_indices, gridl )
plt.xlim((minval,maxval))
plt.ylim((minval,maxval))
#plt.title('{} {}'.format(epitope,reptype.upper()))
plt.subplots_adjust( hspace=(3*sep)/height, wspace=sep/width, left=margin/width, right=(width-margin)/width,
bottom=margin/height, top=(height-margin)/height )
pngfile = '{}_{}_kpca.png'.format(pngfile_prefix,epitope)
print 'making:',pngfile
plt.savefig(pngfile,dpi=paper_figs_dpi)
# ## make a special secret figure just for this epitope
# margin=0.1
# sep=0.1
# pwidth=2.
# width=2*margin+sep+2*pwidth
# plt.figure(2,figsize=(width,width))
# plt.clf()
# for jj_reptype, reptype in enumerate( ['va','ja','vb','jb'] ):
# repcounts = {}
# tcr_reps = []
# tcr_colors = []
# rep_colors = {}
# for l in tcr_infos:
# rep = l[reptype+'_label_rep']
# color = l[reptype+'_label_rep_color']
# repcounts[rep] = repcounts.get(rep,0)+1
# tcr_reps.append( rep )
# tcr_colors.append( color )
# rep_colors[rep] = color
# repl = [ (y,x) for x,y in repcounts.iteritems()]
# repl.sort()
# repl.reverse()
# plt.subplot(2,2,1+jj_reptype)
# #axes.set_aspect('equal')
# plt.scatter( xy[:,0], xy[:,1], s=10, c=tcr_colors, edgecolors='none' )
# plt.xticks(ticks,[])
# plt.yticks(ticks,[])
# ## can we figure out where to put labels?
# ## look for rows of grid points that are empty
# ##
# ngrid = 20
# step = (maxval-minval)/ngrid
# nx = 4
# ny = 1
# gridl = setup_gridl( xy, minval, maxval, step, nx, ny, max_labels )
# ## now add labels for the top few reps
# mincount_for_labels = float(num_tcrs)/25 ## 4%
# for count,rep in repl[:max_labels]:
# if count<mincount_for_labels:break
# if not gridl:break
# rep_indices = [ x for x in range(num_tcrs) if tcr_reps[x] == rep ]
# add_new_label_and_update_gridl( xy, minval, maxval, step, nx, ny, rep, rep_colors[rep], rep_indices, gridl )
# plt.xlim((minval,maxval))
# plt.ylim((minval,maxval))
# #plt.title('{} {}'.format(epitope,reptype.upper()))
# space, lower, upper = sep/width, margin/width, (width-margin)/width
# plt.subplots_adjust( hspace=space, wspace=space, left=lower, right=upper, bottom=lower, top=upper )
# pngfile = '{}_{}_kpca.png'.format(pngfile_prefix,epitope)
# print 'making:',pngfile
# plt.savefig(pngfile,dpi=paper_figs_dpi)
plt.figure(1,figsize=(fig_width,fig_height))
plt.subplots_adjust( hspace=hspace, wspace = wspace, left=left_margin, right = right_margin,
bottom= bottom_margin, top=top_margin )
#plt.suptitle('epitope={} 2D kernal-PCA projection'.format(epitope),size='large')
pngfile = pngfile_prefix + '_kpca.png'
print 'making',pngfile
plt.savefig(pngfile,dpi=paper_figs_dpi)
util.readme( pngfile, """
Kernel Principle Components Analysis (kPCA) 2D projection plots for the repertoires. Each row is a repertoire,
and each point in the plots corresponds to a single TCR clone, with the points arranged so as to keep nearby
TCRs (as measured by TCRdist) nearby in 2 dimensions. The four different panels are the same 2D projection
colored by gene usage for the four different segments (left to right: Va,Ja,Vb,Jb)""")
if show:
plt.show()
print "kPCA results:"
print "clone.id" + "\t" + "epitope" + "\t" + "XS" + "\t" + "YS" + "\t" + "Color" + "\t" + "\t".join([("kPC" + str(i)) for i in range(jcmaxlen-5)])
for l in kPCAset:
print l