-
Notifications
You must be signed in to change notification settings - Fork 35
/
read_random_tcr_distances.py
416 lines (323 loc) · 17.9 KB
/
read_random_tcr_distances.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
from basic import *
import numpy as np
import parse_tsv
from scipy.stats import gaussian_kde
import util
#from tcr_distances_blosum
import tcr_distances
import html_colors
from all_genes import all_genes
with Parser(locals()) as p:
#p.str('organism').required()
p.str('clones_file').required()
p.str('file_tag').default('')
p.str('outfile_prefix')
p.str('organism').required()
p.float('nbrdist_rescale').default(1.0) # --float_arg 9.6
p.str('single_nbrdist_tag_for_plotting').default('wtd_nbrdist10')
p.flag('include_non_wtd') # --flag_arg (no argument passed)
p.flag('show') # --flag_arg (no argument passed)
p.flag('paper_supp') # --flag_arg (no argument passed)
p.flag('exclude_xr') # --flag_arg (no argument passed)
import matplotlib
matplotlib.rcParams['mathtext.default'] = 'regular'
if not show: matplotlib.use('Agg')
import matplotlib.pyplot as plt
def greek_seg( seg ):
return seg.replace( 'A', r'$\alpha$' ).replace( 'B', r'$\beta$' )
fake_chains = util.detect_fake_chains( clones_file )
## don't exclude xr guys just for discrimination vs random
##
ABs = ['A','B','AB']
## read random distances
random_nbrdists_file = '{}_random_nbrdists{}.tsv'.format( clones_file[:-4],file_tag )
assert exists(random_nbrdists_file)
outlogfile = '{}_random_aucs.log'.format( clones_file[:-4] )
print 'making:',outlogfile
outlog =open( outlogfile,'w')
if outfile_prefix is None:
outfile_prefix = random_nbrdists_file[:-4]
infields = []
rand_nbrdists = []
for line in open( random_nbrdists_file,'r'):
if not infields:
infields = line[:-1].split('\t')
rand_nbrdist_tags = [ x for x in infields if ( 'rank' not in x and 'nbrdist' in x ) ]
else:
l = parse_tsv_line( line[:-1], infields )
nbrdists = dict( ( ( x, l[x]) for x in rand_nbrdist_tags ) )
rand_nbrdists.append( nbrdists )
clones_file_with_nbrdists = '{}_nbrdists.tsv'.format( clones_file[:-4] )
header = open( clones_file_with_nbrdists,'r').readline()[:-1].split('\t')
nbrdist_tags = [ x for x in header if x in rand_nbrdist_tags and ( 'wtd' in x or include_non_wtd ) ]
nbrdist_tags.sort()
num_nbrdist_tags = len(nbrdist_tags)
Log('parsing {} for {} nbrdist_tags'.format( clones_file_with_nbrdists, num_nbrdist_tags ) )
tcr_fields = nbrdist_tags + [ 'va_genes','vb_genes','cdr3a','cdr3b']
all_tcrs = parse_tsv.parse_tsv_file( clones_file_with_nbrdists, ['epitope'], tcr_fields )
## look for cross-reactive tcrs
for e in all_tcrs:
new_tcrs = []
for l in all_tcrs[e]:
va_reps = frozenset( ( all_genes[organism][x].rep for x in l[-4].split(';') ) )
vb_reps = frozenset( ( all_genes[organism][x].rep for x in l[-3].split(';') ) )
new_tcrs.append( [ (nbrdist_rescale * float(x)) for x in l[:num_nbrdist_tags] ] +
[ va_reps, vb_reps, l[-2], l[-1], False ] ) ## add X-reactive flag
all_tcrs[e] = new_tcrs
va_genes_index = num_nbrdist_tags
vb_genes_index = num_nbrdist_tags+1
cdr3a_index = num_nbrdist_tags+2
cdr3b_index = num_nbrdist_tags+3
def same_tcr( a, b ):
return ( a[cdr3a_index] == b[cdr3a_index] and
a[cdr3b_index] == b[cdr3b_index] and
(not a[va_genes_index].isdisjoint( b[va_genes_index])) and
(not a[vb_genes_index].isdisjoint( b[vb_genes_index]) ) )
if exclude_xr:
print 'finding X-reactive'
for e1 in all_tcrs:
for e2 in all_tcrs:
if e1==e2: continue
for a in all_tcrs[e1]:
for b in all_tcrs[e2]:
if same_tcr(a,b):
print 'X-react:',e1,a[cdr3a_index],a[cdr3b_index],e2,b[cdr3a_index],b[cdr3b_index]
a[-1] = True
b[-1] = True
epitopes = all_tcrs.keys()
epitopes.sort()
all_aucs_random = {}
all_aucs_others = {}
nbrdist_tags_for_plotting = []
for epitope in epitopes:
for chains in ABs:
prefix = '{}_{}_'.format(epitope,chains)
for ii_nbrdist_tag, nbrdist_tag in enumerate( nbrdist_tags ):
if not nbrdist_tag.startswith(prefix): continue
nbrdist_tag_suffix = nbrdist_tag[len(prefix):]
nbrdist_tag_suffix_w_chains = chains+'_'+nbrdist_tag[len(prefix):]
if nbrdist_tag_suffix not in all_aucs_others:
all_aucs_others[nbrdist_tag_suffix] = []
all_aucs_random[nbrdist_tag_suffix] = []
nbrdist_tags_for_plotting.append( nbrdist_tag_suffix )
if nbrdist_tag_suffix_w_chains not in all_aucs_others:
all_aucs_others[nbrdist_tag_suffix_w_chains] = []
all_aucs_random[nbrdist_tag_suffix_w_chains] = []
## sort the nbrdist_tags_for_plotting
l = []
for tag in nbrdist_tags_for_plotting:
if 'nbrdist' in tag:
num = int( tag[ tag.index('nbrdist')+7:] )
if num<0:
l.append( ( -1*num, tag, 'nbrdist{}'.format(-1*num)) )
else:
l.append( ( 100*num,tag, 'nbrdist{}P'.format(num)))
else:
assert 'dens' in tag
sdev = int( tag[ tag.index('dens')+4:] )
l.append( ( 10000*sdev, tag, 'nbrdens{}'.format(sdev)))
l.sort()
nbrdist_tags_for_plotting = [x[1] for x in l] ## now sorted from most focused to most averaged
nbrdist_labels_for_plotting = [x[2] for x in l] ## now sorted from most focused to most averaged
#print 'nbrdist_tags_for_plotting:',nbrdist_tags_for_plotting
#print 'nbrdist_labels_for_plotting:',nbrdist_tags_for_plotting
nrows = len(epitopes)
ncols = len(nbrdist_tags_for_plotting)
nrows_single = len(epitopes)
ncols_single = 6
top_margin_inches = 1.25
bottom_margin_inches = 0.5
left_margin_inches = 1.0
right_margin_inches = 1.0
plot_height_inches = 2.0 * nrows
plot_width_inches = 3.0 * ncols
fig_height = top_margin_inches + plot_height_inches + bottom_margin_inches
fig_width = left_margin_inches + plot_width_inches + right_margin_inches
fig_width_summary = 12.0
top_margin = float( plot_height_inches + bottom_margin_inches ) / fig_height
bottom_margin = float( bottom_margin_inches ) / fig_height
left_margin = float( left_margin_inches ) / fig_width
right_margin = float( left_margin_inches + plot_width_inches ) / fig_width
assert single_nbrdist_tag_for_plotting in nbrdist_tags_for_plotting
## these hold dats for the single_nbrdist_tag_for_plotting nbrdist_tag
save_epitope_nbrdists = {}
save_epitope_rocs = {}
for ii_epitope, epitope in enumerate(epitopes):
other_epitopes = [ x for x in epitopes if x != epitope ]
for ii_chains,chains in enumerate( ABs ):
prefix = '{}_{}_'.format(epitope,chains)
for ii_nbrdist_tag, nbrdist_tag in enumerate( nbrdist_tags ):
if not nbrdist_tag.startswith(prefix): continue
nbrdist_tag_suffix = nbrdist_tag[len(prefix):]
nbrdist_tag_suffix_w_chains = chains+'_'+nbrdist_tag[len(prefix):]
if nbrdist_tag_suffix not in all_aucs_others:
all_aucs_others[nbrdist_tag_suffix] = []
all_aucs_random[nbrdist_tag_suffix] = []
if nbrdist_tag_suffix_w_chains not in all_aucs_others:
all_aucs_others[nbrdist_tag_suffix_w_chains] = []
all_aucs_random[nbrdist_tag_suffix_w_chains] = []
positive_nbrdists = [ x[ ii_nbrdist_tag ] for x in all_tcrs[ epitope ] if not x[-1] ]
negative_nbrdists_random = [ nbrdist_rescale*float( x[ nbrdist_tag ] ) for x in rand_nbrdists ]
sign_factor = -1.0 if 'dens' in nbrdist_tag else 1.0
auc_random, xvals_random, yvals_random = tcr_distances.compute_auc( positive_nbrdists, negative_nbrdists_random,
sign_factor = sign_factor )
outlog.write( 'auc_random {:7.3f} {:6d} {:6d} {:2s} {} {}\n'\
.format( auc_random, len(positive_nbrdists), len(negative_nbrdists_random),
chains, epitope, nbrdist_tag_suffix ) )
all_aucs_random[nbrdist_tag_suffix].append( auc_random )
all_aucs_random[nbrdist_tag_suffix_w_chains].append( auc_random )
## now versus TCRs from other epitopes
negative_nbrdists_others = [ x[ ii_nbrdist_tag ] for e2 in other_epitopes for x in all_tcrs[e2] if not x[-1] ]
auc_others, xvals_others, yvals_others = tcr_distances.compute_auc( positive_nbrdists, negative_nbrdists_others,
sign_factor = sign_factor )
outlog.write( 'auc_others {:7.3f} {:6d} {:6d} {:2s} {} {}\n'\
.format( auc_others, len(positive_nbrdists), len(negative_nbrdists_others),
chains, epitope, nbrdist_tag_suffix ) )
all_aucs_others[nbrdist_tag_suffix].append( auc_others )
all_aucs_others[nbrdist_tag_suffix_w_chains].append( auc_others )
## plotting ############################################################################################
# which plotno?
assert nbrdist_tag_suffix in nbrdist_tags_for_plotting
ii_nbrdist_tag_suffix = nbrdist_tags_for_plotting.index( nbrdist_tag_suffix )
plotno = ii_epitope * ncols + ii_nbrdist_tag_suffix + 1
## the kde-smoothed distributions
plt.figure(2*ii_chains+1,figsize=(fig_width,fig_height))
plt.subplot( nrows,ncols,plotno )
mn = min( positive_nbrdists + negative_nbrdists_random + negative_nbrdists_others )
mx = max( positive_nbrdists + negative_nbrdists_random + negative_nbrdists_others )
if chains in fake_chains:
continue ## the next line will fail if all positive_nbrdists are 0
positive_density = gaussian_kde( positive_nbrdists )
negative_density_random = gaussian_kde( negative_nbrdists_random )
if other_epitopes: negative_density_others = gaussian_kde( negative_nbrdists_others )
#line_style = ['--',':','-'][ ii_chains ]
line_style = '-'
xs = np.linspace( mn, mx, 100 )
ys0 = positive_density(xs)
if other_epitopes: ys1 = negative_density_others(xs)
ys2 = negative_density_random(xs)
plt.plot( xs, ys0, line_style, c='r' )
if other_epitopes: plt.plot( xs, ys1, line_style, c='g' )
plt.plot( xs, ys2, line_style, c='b' )
plt.title('{} {}'.format(epitope, nbrdist_labels_for_plotting[ ii_nbrdist_tag_suffix ] ) )
plt.suptitle('Smoothed {} {} distributions\nRed= epitope-specific TCRs\ngreen= TCRs from other epitopes\nblue= random TCRs'.format(chains, 'nbrdens' if 'dens' in nbrdist_tag else 'nbrdist' ),y=1.0)
plt.subplots_adjust( hspace = 0.3, bottom = bottom_margin, right = right_margin,
top = top_margin, left = left_margin )
if 'dens' in nbrdist_tag:
ymn,ymx = plt.ylim()
ymx = min( ymx, 4*max(ys0) )
plt.ylim( (ymn,ymx) )
plt.figure(2*ii_chains+2,figsize=(fig_width,fig_height))
plt.subplot( nrows,ncols,plotno )
#line_style = ['--',':','-'][ ii_chains ]
line_style = '-'
if other_epitopes:
plt.plot( xvals_others, yvals_others, line_style, c='g',label='others {}'.format(int(100*auc_others) ))
plt.plot( xvals_random, yvals_random, line_style, c='b',label='random {}'.format(int(100*auc_random) ))
plt.title('{} {}'.format(epitope, nbrdist_labels_for_plotting[ ii_nbrdist_tag_suffix ] ) )
plt.suptitle('{} ROC curves (AUROCs in legend)\nRed= epitope-specific TCRs\ngreen= TCRs from other epitopes\nblue= random TCRs'.format(chains),y=1.0)
plt.subplots_adjust( hspace = 0.3, bottom = bottom_margin, right = right_margin, top = top_margin,
left = left_margin )
plt.legend(loc='lower right',fontsize='small')
if nbrdist_tag_suffix == single_nbrdist_tag_for_plotting:
save_epitope_rocs[ epitope ] = ( xvals_random, yvals_random, auc_random )
save_epitope_nbrdists[ epitope ] = positive_nbrdists
## now put everything into a single plot
plt.figure(7,figsize=(fig_width_summary,fig_height))
plotno = ii_epitope * ncols_single + ii_chains + 1
plt.subplot( nrows_single, ncols_single, plotno )
## density:
plt.plot( xs, ys0, line_style, c='r' )
if other_epitopes: plt.plot( xs, ys1, line_style, c='g' )
plt.plot( xs, ys2, line_style, c='b' )
plt.yticks([],[])
if paper_supp:
locs,labels = plt.xticks()
print 'locs,labels:',locs,labels
newlocs,newlabels = [],[]
for loc in locs:
if abs(loc/100.0 - int(loc/100.0))<1e-3:
newlocs.append(loc)
newlabels.append(str(int(loc+1e-3)))
plt.xticks(newlocs,newlabels)
plt.title('{} {}'.format(epitope,greek_seg(chains)))
if 'dens' in nbrdist_tag:
ymn,ymx = plt.ylim()
ymx = min( ymx, 4*max(ys0) )
plt.ylim( (ymn,ymx) )
plotno = ii_epitope * ncols_single + ii_chains + 4
plt.subplot( nrows_single, ncols_single, plotno )
## ROC:
if other_epitopes:
plt.plot( xvals_others, yvals_others, line_style, c='g',label='others {}'.format(int(100*auc_others) ))
plt.plot( xvals_random, yvals_random, line_style, c='b',label='random {}'.format(int(100*auc_random) ))
plt.title('{} {}'.format(epitope,greek_seg(chains)))
plt.legend(loc='lower right',fontsize='small')
if paper_supp: ## special ticks
plt.xticks( [0,.2,.4,.6,.8,1.0], ['0','.2','.4','.6','.8','1'] )
plt.yticks( [0,.2,.4,.6,.8,1.0], ['0','.2','.4','.6','.8','1'] )
## suptitle
if paper_supp:
title = 'Smoothed NN-distance histograms (left columns) and ROC curves (right columns, AUROCs given in legend)\nRed= epitope-specific TCRs, green= TCRs from other epitopes, blue= random background TCRs'
plt.suptitle( title, y=( top_margin + 4.0 )/5.0 )
else:
plt.suptitle('Smoothed {} histograms (left cols) and ROC curves (right cols, AUROCs in legend)\nRed= epitope-specific TCRs, green= TCRs from other epitopes, blue= random TCRs'\
.format( nbrdist_labels_for_plotting[ ii_nbrdist_tag_suffix ] ), y=1.0)
plt.subplots_adjust( hspace = 0.3, bottom = bottom_margin, right = 0.98, top = top_margin, left = 0.05 )
for nbrdist_tag_suffix in sorted( all_aucs_others.keys()):
l_random = all_aucs_random[nbrdist_tag_suffix]
l_others = all_aucs_others[nbrdist_tag_suffix]
outlog.write( 'avg_auc_random {:7.3f} {}\n'.format( sum( l_random ) / len( l_random ), nbrdist_tag_suffix ) )
outlog.write( 'avg_auc_others {:7.3f} {}\n'.format( sum( l_others ) / len( l_others ), nbrdist_tag_suffix ) )
outlog.close()
for ii_roc in range(2):
for ii_chains,chains in enumerate(ABs):
figno = 2*ii_chains + ii_roc + 1
figtype = 'roc' if ii_roc else 'nbrdists'
pngfile = '{}_{}_{}.png'.format(outfile_prefix, figtype, chains )
print 'making:',pngfile
plt.figure(figno)
plt.savefig(pngfile)
if ii_roc==0:
util.readme(pngfile, """KDE-smoothed histograms of different {} nbrdist measures, comparing each epitope-specific repertoire (red)
to TCRs from the other repertoires (green) and to random TCRs (blue).<br><br>
""".format(chains))
else:
util.readme( pngfile, """ROC curves showing true- (y-axis) versus false-positives (x-axis) as the sorting metric increases. Legends give the area under the curve (AUROC) values, ranging from 100 (perfect discrimination, curve goes straight
up then straight across), to 50 (random), to 0 (total failure, all negatives come before all positives, curve goes straight across then straight up).<br><br>
""".format(chains))
figno = 7
pngfile = '{}_summary.png'.format(outfile_prefix)
plt.figure(figno)
print 'making:',pngfile
plt.savefig(pngfile)
util.readme( pngfile, """KDE-smoothed nbrdist10P histograms for alpha (col 1), beta (col 2), and alpha-beta (col 3). ROC curves for
the same in columns 4-6.<br><br>""")
## make a figure showing all the nbrdist distributions (left col) and all the ROC curves
figno = 10 ## hope this is larger than the others
plt.figure(figno,figsize=(12,8))
plt.subplot(121) ## the nbrdist distributions
mn = 0
mx = max( ( max(x) for x in save_epitope_nbrdists.values() ) )
for epitope,color in zip( epitopes, html_colors.get_rank_colors_no_lights(len(epitopes))):
nbrdists = save_epitope_nbrdists[epitope]
positive_density = gaussian_kde( nbrdists )
xs = np.linspace( mn, mx, 100 )
ys0 = positive_density(xs)
plt.plot( xs,ys0,c=color,label='{} ({:.1f})'.format(epitope,sum(nbrdists)/len(nbrdists)) )
plt.legend(fontsize=9,frameon=False,loc='best')
plt.subplot(122) ## now the ROC curves
for epitope,color in zip( epitopes, html_colors.get_rank_colors_no_lights(len(epitopes))):
xvals,yvals,auc = save_epitope_rocs[epitope]
plt.plot( xvals,yvals,c=color,label='{} ({:.3f})'.format(epitope,auc))
plt.xlim((0,1.0))
plt.ylim((0,1.0))
plt.legend(fontsize=9,frameon=False,loc='best')
pngfile = '{}_nbrdist_roc_superpositions.png'.format(outfile_prefix)
print 'making:',pngfile
plt.savefig(pngfile)
util.readme( pngfile, """
Superimposed KDE-smoothed NNdistance ({}) distributions (left) and ROC curves (right) for all epitopes (paired-chain analyses).<br><br>
""".format(single_nbrdist_tag_for_plotting))
if show:
plt.show()