-
Notifications
You must be signed in to change notification settings - Fork 35
/
tcr_sampler.py
922 lines (751 loc) · 38 KB
/
tcr_sampler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
from basic import *
import sys
import translation
from all_genes import all_genes, gap_character
from genetic_code import genetic_code, reverse_genetic_code
import logo_tools
import random
if pipeline_params['new_probs']:
Log( 'tcr_sampler: new_probs' )
import tcr_rearrangement_new as tcr_rearrangement
else:
Log( 'tcr_sampler: old_probs' )
import tcr_rearrangement
########################################################################################################################
default_mismatch_score_for_cdr3_nucseq_probabilities = -4 ## blast is -3
default_mismatch_score_for_junction_analysis = -4 ## blast is -3
def count_matches( a,b,mismatch_score=-3 ):
assert a[0].lower() == a[0]
#assert a[0].upper() == a[0]
## from the beginning
match_score = 1
best_score=0
score=0
num_matches = 0
for i in range(min(len(a),len(b))):
if a[i] == b[i] or logo_tools.nuc_match_lower_case.get( (a[i],b[i]), False ):
score += match_score
else:
score += mismatch_score
if score >= best_score: ## gt OR EQUAL! take longer matched regions
best_score = score
num_matches = i+1
return num_matches
def get_v_cdr3_nucseq( organism, v_gene, paranoid = False ):
vg = all_genes[organism][v_gene]
ab = vg.chain
v_nucseq = vg.nucseq
v_nucseq_offset = vg.nucseq_offset
v_nucseq = v_nucseq[ v_nucseq_offset: ]
v_alseq = vg.alseq
alseq_cpos = vg.cdr_columns[-1][0] -1
#print organism, v_gene, old_v_alseq
#print organism, v_gene, v_alseq
numgaps = v_alseq[:alseq_cpos].count('.')
v_cpos = alseq_cpos - numgaps
v_nucseq = v_nucseq[3*v_cpos:] ## now v_nucseq starts with the 'C' codon
# the following hacky adjustment is now incorporated in the dbfile
# if organism == 'mouse':
# if v_gene == 'TRAV13D-1*01':
# #-----------------------------------
# #../../../tmp.blat:mismatch: V 6 imgt: a genome: t TRAV13D-1*01
# #tmp.whoah:whoah 6 act: t 98.7 exp: a 1.1 TRAV13D-1*01 TRAV13-1*01 620
# #tmp.whoah:whoah: expected: caaggtatcgtgt consensus: caaggtttcgtgt TRAV13D-1*01 620
# #tmp.3.whoah:whoah 6 act: t 97.4 exp: a 1.4 TRAV13D-1*01 TRAV13-1*01 642
# #tmp.3.whoah:whoah: expected: caaggtatcgtgt consensus: caaggtttcgtgt TRAV13D-1*01 642
# #tmp.la_mc.whoah:whoah 6 act: t 89.0 exp: a 7.0 TRAV13D-1*01 TRAV13-1*01 100
# #tmp.la_mc.whoah:whoah: expected: caaggtatcgtgt consensus: caaggtttcgtgt TRAV13D-1*01 100
# assert v_nucseq == 'tgtgctatggaac' ## CAM ## THIS WILL FAIL SINCE WE ADDED THIS TO THE DB...
# v_nucseq = 'tgtgctttggaac' ## CAL
return v_nucseq
def get_j_cdr3_nucseq( organism, j_gene, paranoid = False ):
jg = all_genes[organism][j_gene]
ab = jg.chain
j_nucseq = jg.nucseq
j_nucseq_offset = jg.nucseq_offset
## goes up to (but not including) GXG
num_genome_j_aas_in_loop = len( jg.cdrs[0].replace(gap_character,''))
## trim j_nucseq so that it extends up to the F/W position
j_nucseq = j_nucseq[:3*num_genome_j_aas_in_loop + j_nucseq_offset]
# the following hacky adjustments are now incorporated in the dbfile
# if organism == 'mouse':
# if j_gene == 'TRAJ47*01':
# # -----------------------------------
# # ../../../tmp.blat:mismatch: J 2 imgt: c genome: g TRAJ47*01
# # ../../../tmp.blat:mismatch: J 24 imgt: g genome: t TRAJ47*01
# # tmp.whoah:whoah 2 act: g 81.9 exp: c 4.7 TRAJ47*01 TRAJ47*01 1412
# # tmp.whoah:whoah 24 act: t 82.7 exp: g 16.8 TRAJ47*01 TRAJ47*01 1412
# # tmp.whoah:whoah: expected: tgcactatgcaaacaagatgatctgt consensus: tggactatgcaaacaagatgatcttt TRAJ47*01 1412
# # tmp.3.whoah:whoah 2 act: g 81.6 exp: c 5.0 TRAJ47*01 TRAJ47*01 1362
# # tmp.3.whoah:whoah 24 act: t 82.7 exp: g 16.6 TRAJ47*01 TRAJ47*01 1362
# # tmp.3.whoah:whoah: expected: tgcactatgcaaacaagatgatctgt consensus: tggactatgcaaacaagatgatcttt TRAJ47*01 1362
# # tmp.la_mc.whoah:whoah 2 act: g 79.6 exp: c 5.3 TRAJ47*01 TRAJ47*01 113
# # tmp.la_mc.whoah:whoah 24 act: t 99.1 exp: g 0.9 TRAJ47*01 TRAJ47*01 113
# # tmp.la_mc.whoah:whoah: expected: tgcactatgcaaacaagatgatctgt consensus: tggactatgcaaacaagatgatcttt TRAJ47*01 113
# assert j_nucseq == 'tgcactatgcaaacaagatgatctgt' ## C at end
# j_nucseq = 'tggactatgcaaacaagatgatcttt' ## F at end
# elif j_gene == 'TRAJ24*01':
# # -----------------------------------
# # ../../../tmp.blat:unaligned: J 0 TRAJ24*01
# # ../../../tmp.blat:unaligned: J 1 TRAJ24*01
# # ../../../tmp.blat:gapped: J 6 TRAJ24*01
# # tmp.whoah:whoah 2 act: c 60.3 exp: a 15.3 TRAJ24*01 TRAJ24*01 464
# # tmp.whoah:whoah 4 act: a 88.6 exp: c 2.8 TRAJ24*01 TRAJ24*01 464
# # tmp.whoah:whoah 5 act: c 93.3 exp: t 1.5 TRAJ24*01 TRAJ24*01 464
# # tmp.whoah:whoah 6 act: t 97.2 exp: g 1.1 TRAJ24*01 TRAJ24*01 464
# # tmp.whoah:whoah: expected: tgaactggccagtttggggaaactgcagttt consensus: gacaactgccagtttggggaaactgcagttt TRAJ24*01 464
# # tmp.3.whoah:whoah 2 act: c 60.8 exp: a 13.9 TRAJ24*01 TRAJ24*01 475
# # tmp.3.whoah:whoah 4 act: a 86.3 exp: c 4.2 TRAJ24*01 TRAJ24*01 475
# # tmp.3.whoah:whoah 5 act: c 94.5 exp: t 1.1 TRAJ24*01 TRAJ24*01 475
# # tmp.3.whoah:whoah 6 act: t 98.1 exp: g 1.1 TRAJ24*01 TRAJ24*01 475
# # tmp.3.whoah:whoah: expected: tgaactggccagtttggggaaactgcagttt consensus: gacaactgccagtttggggaaactgcagttt TRAJ24*01 475
# # tmp.la_mc.whoah:whoah 2 act: c 75.3 exp: a 4.3 TRAJ24*01 TRAJ24*01 93
# # tmp.la_mc.whoah:whoah 4 act: a 89.2 exp: c 2.2 TRAJ24*01 TRAJ24*01 93
# # tmp.la_mc.whoah:whoah 5 act: c 97.8 exp: t 1.1 TRAJ24*01 TRAJ24*01 93
# # tmp.la_mc.whoah:whoah 6 act: t 98.9 exp: g 0.0 TRAJ24*01 TRAJ24*01 93
# # tmp.la_mc.whoah:whoah: expected: tgaactggccagtttggggaaactgcagttt consensus: gacaactgccagtttggggaaactgcagttt TRAJ24*01 93
# assert j_nucseq == 'tgaactggccagtttggggaaactgcagttt'
# j_nucseq = 'gacaactgccagtttggggaaactgcagttt'
# ## take the consensus
# ## given that there's an indel (and the alignment to the genome starts at j sequence position 3)
# ## it's hard to tell what to do at the beginning...
return j_nucseq
def analyze_junction( organism, v_gene, j_gene, cdr3_protseq, cdr3_nucseq, force_d_id=0, return_cdr3_nucseq_src=False ):
#print organism, v_gene, j_gene, cdr3_protseq, cdr3_nucseq
assert v_gene.startswith('TR') #and v_gene[2] == j_gene[2]
ab = all_genes[organism][v_gene].chain
v_nucseq = get_v_cdr3_nucseq( organism, v_gene )
j_nucseq = get_j_cdr3_nucseq( organism, j_gene )
## how far out do we match
num_matched_v = count_matches( v_nucseq, cdr3_nucseq, default_mismatch_score_for_junction_analysis )
num_matched_j = count_matches( ''.join( reversed( list( j_nucseq ) )),
''.join( reversed( list( cdr3_nucseq ))),
default_mismatch_score_for_junction_analysis )
if num_matched_v + num_matched_j > len(cdr3_nucseq):
## some overlap!
extra = num_matched_v + num_matched_j - len(cdr3_nucseq )
fake_v_trim = extra/2 ## now deterministic
fake_j_trim = extra - fake_v_trim
num_matched_v -= fake_v_trim
num_matched_j -= fake_j_trim
assert num_matched_v + num_matched_j <= len(cdr3_nucseq)
if num_matched_v + num_matched_j == len(cdr3_nucseq):
nseq = ''
else:
nseq = cdr3_nucseq[num_matched_v:len(cdr3_nucseq)-num_matched_j]
ncount = [1] * len(cdr3_nucseq)
cdr3_nucseq_src = ['N'] * len(cdr3_nucseq)
for i in range(num_matched_v):
ncount[i] = 0
cdr3_nucseq_src[i] = 'V'
for i in range(num_matched_j):
ncount[-1-i] = 0
cdr3_nucseq_src[-1-i] = 'J'
assert num_matched_v + num_matched_j + len(nseq) == len(cdr3_nucseq)
v_trim = len(v_nucseq)-num_matched_v
j_trim = len(j_nucseq)-num_matched_j
assert len(cdr3_nucseq) == len(v_nucseq) + len(nseq) + len(j_nucseq) - ( v_trim + j_trim )
#d_info = ''
n_vj_insert = 0
n_vd_insert = 0
n_dj_insert = 0
d0_trim = 0
d1_trim = 0
best_d_id = 0
if ab == 'A':
n_vj_insert = len(nseq)
elif ab == 'B':
## look for one of the d-gene segments
max_overlap = 0
for d_id, d_nucseq in tcr_rearrangement.all_trbd_nucseq[organism].iteritems():
if force_d_id and d_id != force_d_id: continue
for start in range(len(d_nucseq)):
for stop in range(start,len(d_nucseq)):
overlap_seq = d_nucseq[start:stop+1]
if overlap_seq in nseq:
if len(overlap_seq)>max_overlap:
max_overlap = len(overlap_seq)
best_d_id = d_id
best_overlap_seq = overlap_seq
best_trim = (start,len(d_nucseq)-1-stop)
if max_overlap: ## found a bit of d, although it might be bogus (eg 1 nt)
pos = nseq.index( best_overlap_seq )
for i in range(pos+num_matched_v,pos+num_matched_v+max_overlap):
assert ncount[i] == 1
ncount[i] = 0
cdr3_nucseq_src[i] = 'D'
nseq = nseq[:i-num_matched_v] + '+' + nseq[i+1-num_matched_v:]
n_vd_insert = pos
n_dj_insert = len(nseq) - pos - len(best_overlap_seq)
d0_trim = best_trim[0]
d1_trim = best_trim[1]
expected_cdr3_nucseq_len = ( len(v_nucseq) + n_vd_insert +
len(tcr_rearrangement.all_trbd_nucseq[organism][best_d_id]) + n_dj_insert +
len(j_nucseq) -
( v_trim + d0_trim + d1_trim + j_trim ) )
assert len(cdr3_nucseq) == expected_cdr3_nucseq_len
else:
best_d_id = 0
n_vd_insert = 0
n_dj_insert = 0
d0_trim = 0
d1_trim = 0
if cdr3_protseq:
assert 3*len(cdr3_protseq) == len(ncount)
newseq = ''
newseq_ncount = ''
for i,a in enumerate(cdr3_protseq):
nc = sum(ncount[3*i:3*i+3])
newseq_ncount += `nc`
if nc>1:
newseq += a
elif nc==1:
newseq += a.lower()
else:
newseq += '-'
## output
cdr3_protseq_masked = newseq[:]
cdr3_protseq_new_nucleotide_countstring = newseq_ncount[:]
else:## no protseq given (perhaps its an out of frame?)
cdr3_protseq_masked = ''
cdr3_protseq_new_nucleotide_countstring = ''
new_nucseq = nseq[:]
trims = ( v_trim, d0_trim, d1_trim, j_trim )
inserts = ( best_d_id, n_vd_insert, n_dj_insert, n_vj_insert )
## new_nucseq spans the inserted nucleotide sequence and has '+' for D-nucleotides
if return_cdr3_nucseq_src:
return new_nucseq, cdr3_protseq_masked, cdr3_protseq_new_nucleotide_countstring, trims, inserts, cdr3_nucseq_src
else:
return new_nucseq, cdr3_protseq_masked, cdr3_protseq_new_nucleotide_countstring, trims, inserts
## what fraction of all the sequences that match nucseq at non-'n'-positions will code for protseq?
def get_coding_probability( nucseq, protseq ):
assert len(nucseq) == 3*len(protseq)
#probs = []
total_prob = 1.0
for i in range(len(protseq)):
aa = protseq[i]
ncodon = nucseq[3*i:3*i+3]
## what fraction of the possible codons here would actually code for the desired aa
count=0
for c in reverse_genetic_code[aa]:
match = True
for x,y in zip(c,ncodon):
## want to allow for the possibility of 'wskmyr' symbols in nucseq?
if x!= y and y != 'n' and not logo_tools.nuc_match_lower_case.get( (x,y), False ):
match = False
break
if match:
count+=1
if count==0:
total_prob=0
break
num_n = ncodon.count('n')
total_codons = 4**num_n
prob = float(count)/total_codons
#if num_n:
# print 'ncodon:',ncodon,aa,count,total_codons,prob
#probs.append( prob )
total_prob *= prob
return total_prob
def alpha_cdr3_protseq_probability( theid, organism, v_gene, j_gene, cdr3_protseq,
cdr3_nucseq = '', error_threshold = 0.05, verbose=False,
allow_early_nucseq_mismatches = True,
return_final_cdr3_nucseq = False ):
nucleotide_match = ( cdr3_nucseq != '' )
if nucleotide_match:
assert not cdr3_protseq
cdr3_protseq = translation.get_translation( cdr3_nucseq, '+1' )[0]
assert len(cdr3_nucseq) == 3 * len(cdr3_protseq )
ab = 'A'
assert all_genes[organism][v_gene].chain == ab
v_nucseq = get_v_cdr3_nucseq( organism, v_gene )
j_nucseq = get_j_cdr3_nucseq( organism, j_gene )
## what is the largest amount of these nucseqs we could preserve and still get cdr3_protseq
max_v_germline = 0
len_v_nucseq = len(v_nucseq)
max_j_germline = 0
len_j_nucseq = len(j_nucseq)
len_cdr3_protseq = len(cdr3_protseq)
len_cdr3_nucseq = len(cdr3_nucseq)
if nucleotide_match:
if allow_early_nucseq_mismatches:
mismatch_score = default_mismatch_score_for_cdr3_nucseq_probabilities
else:
mismatch_score = -100
max_v_germline = count_matches( v_nucseq, cdr3_nucseq, mismatch_score )
max_j_germline = count_matches( ''.join( reversed( list( j_nucseq ) )),
''.join( reversed( list( cdr3_nucseq ))),
mismatch_score )
if allow_early_nucseq_mismatches: ## obliterate the mismatches now
max_v, max_j = max_v_germline, max_j_germline
if max_v + max_j > len(cdr3_nucseq):
## some overlap!
extra = max_v + max_j - len(cdr3_nucseq )
#print 'TRIM extra',extra
fake_v_trim = extra/2 ## now dterministic
fake_j_trim = extra - fake_v_trim
max_v -= fake_v_trim
max_j -= fake_j_trim
old_cdr3_nucseq = cdr3_nucseq[:]
cdr3_nucseq = v_nucseq[:max_v] + \
cdr3_nucseq[ max_v : len_cdr3_nucseq-max_j ] + \
j_nucseq[len_j_nucseq-max_j:]
if old_cdr3_nucseq != cdr3_nucseq:
Log('{} early_cdr3a_nucseq_mismatch: {} {} before {} after {}'.format(theid, v_gene, j_gene,
old_cdr3_nucseq, cdr3_nucseq ) )
assert len(cdr3_nucseq) == len(old_cdr3_nucseq)
else:
for i in range( len(v_nucseq)):
i_aa = i/3 ## which aa do we code for?
len_codon = (i%3) + 1
if i_aa >= len(cdr3_protseq): break
start = 3*i_aa
codon = v_nucseq[ start:start+len_codon]
target_aa = cdr3_protseq[ i_aa ]
matched = False
for c in reverse_genetic_code[target_aa]:
if c.startswith(codon):
matched = True
if verbose:
print 'V',codon, target_aa, matched
if matched:
max_v_germline = i+1
else:
break
## how about J?
for i in range( len_j_nucseq):
i_aa = i/3 ## which aa do we code for?
len_codon = (i%3) + 1
if i_aa >= len(cdr3_protseq): break
end = len(j_nucseq)-3*i_aa
codon = j_nucseq[max(0,end-len_codon):end]
target_aa = cdr3_protseq[ len_cdr3_protseq-1-i_aa ]
matched = False
for c in reverse_genetic_code[target_aa]:
if c.endswith(codon):
matched = True
if verbose:
print 'J',codon, target_aa, matched
if matched:
max_j_germline = i+1
else:
break
min_insert = 3*len_cdr3_protseq - max_v_germline - max_j_germline
if verbose:
print 'max_v_germline:',max_v_germline, len_v_nucseq, v_nucseq, cdr3_nucseq
print 'max_j_germline:',max_j_germline, len_j_nucseq, j_nucseq, cdr3_nucseq, \
all_genes[organism][j_gene].protseq
print 'min_insert:',min_insert,max_v_germline,max_j_germline
total_prob = 0.0
min_extra_trim = max(0,-1*min_insert)
for extra_trim in range(min_extra_trim,100):
old_total_prob = total_prob
total_prob_this_trim = 0.0
for extra_v_trim in range(0,extra_trim+1):
extra_j_trim = extra_trim - extra_v_trim
v_trim = len_v_nucseq - max_v_germline + extra_v_trim
j_trim = len_j_nucseq - max_j_germline + extra_j_trim
if v_trim > len_v_nucseq or j_trim > len_j_nucseq: continue
n_insert = min_insert + extra_v_trim + extra_j_trim
n_nucseq = v_nucseq[:len_v_nucseq-v_trim] + 'n'*n_insert + j_nucseq[j_trim:]
assert len(n_nucseq) == 3*len_cdr3_protseq
if nucleotide_match:
coding_prob = 0.25 ** n_insert
else:
coding_prob = get_coding_probability( n_nucseq, cdr3_protseq )
trim_prob = tcr_rearrangement.get_alpha_trim_probs( organism, v_trim, j_trim, n_insert )
total_prob_this_trim += coding_prob * trim_prob
total_prob += coding_prob * trim_prob
if verbose:
print 'coding_prob:',cdr3_protseq,v_trim,j_trim,n_insert,total_prob,coding_prob,trim_prob,n_nucseq
if extra_trim>2 and total_prob_this_trim < error_threshold * old_total_prob:
break
if return_final_cdr3_nucseq:
return total_prob, cdr3_nucseq
else:
return total_prob
def beta_cdr3_protseq_probability( theid, organism, v_gene, j_gene, cdr3_protseq,
cdr3_nucseq = '', error_threshold = 0.05, verbose=False,
allow_early_nucseq_mismatches = True,
return_final_cdr3_nucseq = False ):
nucleotide_match = ( cdr3_nucseq != '' )
if nucleotide_match:
assert not cdr3_protseq
cdr3_protseq = translation.get_translation( cdr3_nucseq, '+1' )[0]
assert len(cdr3_nucseq) == 3 * len(cdr3_protseq )
ab = 'B'
assert all_genes[organism][v_gene].chain == ab
v_nucseq = get_v_cdr3_nucseq( organism, v_gene )
j_nucseq = get_j_cdr3_nucseq( organism, j_gene )
## what is the largest amount of these nucseqs we could preserve and still get cdr3_protseq
max_v_germline = 0
max_j_germline = 0
len_v_nucseq = len(v_nucseq)
len_j_nucseq = len(j_nucseq)
len_cdr3_nucseq = len(cdr3_nucseq)
len_cdr3_protseq = len(cdr3_protseq)
if nucleotide_match:
if allow_early_nucseq_mismatches:
mismatch_score = default_mismatch_score_for_cdr3_nucseq_probabilities
else:
mismatch_score = -100
max_v_germline = count_matches( v_nucseq, cdr3_nucseq, mismatch_score )
max_j_germline = count_matches( ''.join( reversed( list( j_nucseq ) )),
''.join( reversed( list( cdr3_nucseq ))),
mismatch_score )
if allow_early_nucseq_mismatches: ## obliterate the mismatches now
max_v, max_j = max_v_germline, max_j_germline
if max_v + max_j > len(cdr3_nucseq):
## some overlap!
extra = max_v + max_j - len(cdr3_nucseq )
#print 'TRIM extra',extra
fake_v_trim = extra/2 ## now dterministic
fake_j_trim = extra - fake_v_trim
max_v -= fake_v_trim
max_j -= fake_j_trim
old_cdr3_nucseq = cdr3_nucseq[:]
cdr3_nucseq = v_nucseq[:max_v] + \
cdr3_nucseq[ max_v : len_cdr3_nucseq-max_j ] + \
j_nucseq[len_j_nucseq-max_j:]
if old_cdr3_nucseq != cdr3_nucseq:
Log('{} early_cdr3a_nucseq_mismatch: before {} after {}'.format(theid, old_cdr3_nucseq, cdr3_nucseq ) )
assert len(cdr3_nucseq) == len(old_cdr3_nucseq)
else:
## V
for i in range( len(v_nucseq)):
i_aa = i/3 ## which aa do we code for?
len_codon = (i%3) + 1
if i_aa >= len(cdr3_protseq): break
start = 3*i_aa
codon = v_nucseq[ start:start+len_codon]
target_aa = cdr3_protseq[ i_aa ]
matched = False
for c in reverse_genetic_code[target_aa]:
if c.startswith(codon):
matched = True
if verbose:
print 'V',codon, target_aa, matched
if matched:
max_v_germline = i+1
else:
break
## J
for i in range( len_j_nucseq):
i_aa = i/3 ## which aa do we code for?
len_codon = (i%3) + 1
if i_aa >= len(cdr3_protseq): break
end = len(j_nucseq)-3*i_aa
codon = j_nucseq[max(0,end-len_codon):end]
target_aa = cdr3_protseq[ len_cdr3_protseq-1-i_aa ]
matched = False
for c in reverse_genetic_code[target_aa]:
if c.endswith(codon):
matched = True
if verbose:
print 'J',codon, target_aa, matched
if matched:
max_j_germline = i+1
else:
break
if verbose:
print 'max_v_germline:',max_v_germline, len(v_nucseq)
## how about J?
min_insert = 3*len_cdr3_protseq - max_v_germline - max_j_germline
if verbose:
print 'max_j_germline:',max_j_germline, len_j_nucseq,cdr3_protseq,\
all_genes[organism][j_gene].protseq
print 'min_insert:',min_insert,max_v_germline,max_j_germline
if organism in ['human','mouse'] and j_gene[3] == 'B':
trbj_index = int( j_gene[4] ) ## to decide which d genes to allow
assert trbj_index in [1,2]
else:
## no D/J compatibility check
trbj_index=0
total_prob = 0.0
min_extra_trim = max(0,-1*min_insert)
dids = tcr_rearrangement.all_trbd_nucseq[organism].keys()
for extra_trim in range(min_extra_trim,100):
old_total_prob = total_prob
total_prob_this_trim = 0.0
for extra_v_trim in range(0,extra_trim+1):
extra_j_trim = extra_trim - extra_v_trim
v_trim = len_v_nucseq - max_v_germline + extra_v_trim
j_trim = len_j_nucseq - max_j_germline + extra_j_trim
if v_trim > len_v_nucseq or j_trim > len_j_nucseq: continue
n_insert = min_insert + extra_v_trim + extra_j_trim
assert n_insert>=0 ## b/c of min_extra_trim
total_prob_this_insert = 0.0
## now we are looking to fit part of the D gene into this middle region and still code for the right aas
for did in dids:
if trbj_index == 1:
if did == 1:
did_prob = 1.0
else:
continue
else:
did_prob = 1.0/float(len(dids))
d_nucseq = tcr_rearrangement.all_trbd_nucseq[organism][did]
len_d_nucseq = len( d_nucseq )
for d0_trim in range(len_d_nucseq+1):
for d1_trim in range(len_d_nucseq+1):
len_d_insert = len_d_nucseq - d0_trim - d1_trim
if len_d_insert < 0 or len_d_insert > n_insert: continue
#if len_d_insert == 0 and d1_trim: continue ## only hit this one once!
d_insert = d_nucseq[ d0_trim: len_d_nucseq-d1_trim]
num_n = n_insert - len_d_insert
for num_n_before_d in range(num_n+1):
num_n_after_d = num_n - num_n_before_d
assert num_n_after_d>=0
n_nucseq = ( v_nucseq[:len_v_nucseq-v_trim] +
'n'*num_n_before_d + d_insert + 'n'*num_n_after_d +
j_nucseq[j_trim:] )
assert len(n_nucseq) == 3*len_cdr3_protseq
trim_prob = tcr_rearrangement.get_beta_trim_probs( organism, did,
v_trim, d0_trim, d1_trim, j_trim,
num_n_before_d, num_n_after_d )
if not trim_prob: continue
if nucleotide_match:
assert len(n_nucseq) == len_cdr3_nucseq
matched = True
#print n_nucseq, cdr3_nucseq
for a,b in zip( n_nucseq, cdr3_nucseq ):
if a!=b and a!= 'n':
matched=False
if matched:
coding_prob = 0.25 ** num_n
else:
coding_prob = 0.0
else:
coding_prob = get_coding_probability( n_nucseq, cdr3_protseq )
prob = did_prob * coding_prob * trim_prob
total_prob_this_insert += prob ## just for status output
total_prob_this_trim += prob
total_prob += prob
if verbose and coding_prob:
print 'coding_prob:',cdr3_protseq,"trims:",v_trim,d0_trim,d1_trim,j_trim,\
"inserts:",num_n_before_d,num_n_after_d,\
"d_insert:",d_insert,\
"total_prob:",total_prob,"prob:",prob,"coding_prob:",coding_prob,\
"trim_prob:",trim_prob,n_nucseq
if verbose:
print 'n_insert:',n_insert,extra_v_trim,extra_j_trim,'total_prob:',total_prob,\
'total_prob_this_insert:',total_prob_this_insert
if extra_trim>2 and total_prob_this_trim < error_threshold * old_total_prob:
break
if return_final_cdr3_nucseq:
return total_prob, cdr3_nucseq
else:
return total_prob
def setup_random_sampling_list( probs ):
#print 'setup_random_sampling_list:',probs
total_prob = 0.0
l = []
for k,p in probs.iteritems():
total_prob += p
l.append( ( total_prob,k ) )
assert abs( 1-total_prob )<1e-3 ## since we normalized already...
return l
def sample_from_random_sampling_list( l ):
#print 'sample_from_random_sampling_list:',l
f = random.random()
for (prob,k) in l:
if f<=prob:
return k
return l[-1][1]
def sample_alpha_sequences( organism, nsamples, v_gene, j_gene, force_aa_length = 0,
in_frame_only = True, no_stop_codons = True,
max_tries = 100000000,
include_annotation= False ):
ab = 'A'
#organism = 'mouse'
bases = 'acgt'
trim_probs = tcr_rearrangement.all_trim_probs[ organism ]
v_nucseq = get_v_cdr3_nucseq( organism, v_gene )
j_nucseq = get_j_cdr3_nucseq( organism, j_gene )
v_nucseq_len = len( v_nucseq )
j_nucseq_len = len( j_nucseq )
max_v_trim = min( 15, v_nucseq_len -3 )
max_j_trim = min( 15, j_nucseq_len -3 )
seqs = []
nsampled = 0
v_trim_probsl = setup_random_sampling_list( trim_probs[ 'A_v_trim' ] )
j_trim_probsl = setup_random_sampling_list( trim_probs[ 'A_j_trim' ] )
vj_insert_probsl = setup_random_sampling_list( trim_probs[ 'A_vj_insert' ] )
ntries=0
while nsampled < nsamples:
ntries += 1
if ntries%100000==0:
Log('sample_alpha_sequences: ntries: {} {} {} {} force_aa_length {}'\
.format(ntries,nsampled,v_gene,j_gene,force_aa_length))
if ntries>max_tries:
break
vtrim = sample_from_random_sampling_list( v_trim_probsl )
jtrim = sample_from_random_sampling_list( j_trim_probsl )
n_insert = sample_from_random_sampling_list( vj_insert_probsl )
if vtrim > max_v_trim or jtrim > max_j_trim: continue
## check if in frame?
cdr3_len = v_nucseq_len + j_nucseq_len + n_insert - ( vtrim + jtrim )
if in_frame_only and (cdr3_len%3 != 0): continue
if force_aa_length and force_aa_length != cdr3_len/3: continue
vj_insert = ''
for i in range(n_insert): vj_insert += random.choice( bases )
cdr3_seq = v_nucseq[:v_nucseq_len-vtrim] + vj_insert + j_nucseq[jtrim:]
assert len(cdr3_seq) == cdr3_len
## check for stop codons?
protseq = ''
for i in range(cdr3_len/3):
protseq += genetic_code[ cdr3_seq[ 3*i : 3*i+3 ] ]
if '*' in protseq and no_stop_codons:
continue
if include_annotation:
cdr3_annotation = ( 'V'*(v_nucseq_len-vtrim) +
'N'*n_insert +
'J'*(j_nucseq_len-jtrim) )
assert len(cdr3_seq) == len(cdr3_annotation)
seqs.append( ( cdr3_seq, protseq, cdr3_annotation ) )
else:
seqs.append( ( cdr3_seq, protseq ) )
nsampled += 1
return seqs
def sample_beta_sequences( organism, nsamples, v_gene, j_gene, force_aa_length = 0,
in_frame_only = True,
no_stop_codons = True,
max_dj_insert = 10,
max_tries = 100000000,
include_annotation = False ):
trim_probs = tcr_rearrangement.all_trim_probs[ organism ]
#organism = 'mouse'
bases = 'acgt'
v_nucseq = get_v_cdr3_nucseq( organism, v_gene )
j_nucseq = get_j_cdr3_nucseq( organism, j_gene )
v_nucseq_len = len( v_nucseq )
j_nucseq_len = len( j_nucseq )
max_v_trim = min( 15, v_nucseq_len -3 )
max_j_trim = min( 15, j_nucseq_len -3 )
v_trim_probsl = setup_random_sampling_list( trim_probs[ 'B_v_trim' ] )
j_trim_probsl = setup_random_sampling_list( trim_probs[ 'B_j_trim' ] )
vd_insert_probsl = setup_random_sampling_list( trim_probs[ 'B_vd_insert' ] )
dj_insert_probsl = setup_random_sampling_list( trim_probs[ 'B_dj_insert' ] )
dids = tcr_rearrangement.all_trbd_nucseq[organism].keys()
d_trim_probsl = dict( zip( dids, [ setup_random_sampling_list( trim_probs['B_D{}_d01_trim'.format(x)] )
for x in dids] ) )
# d_trim_probsl = { 1: setup_random_sampling_list( trim_probs['B_D1_d01_trim'] ),
# 2: setup_random_sampling_list( trim_probs['B_D2_d01_trim'] ) }
jno = 0 # no D filtering
if organism in ['human','mouse'] and j_gene[2] == 'B':
jno = int( j_gene[4] )
assert jno in [1,2]
if jno == 1:
allowed_dgenes = [1]
else:
allowed_dgenes = dids[:]
seqs = []
nsampled = 0
ntries=0
while nsampled < nsamples:
ntries += 1
if ntries%100000==0:
Log('sample_beta_sequences: ntries: {} {} {} {} force_aa_length {}'\
.format(ntries,nsampled,v_gene,j_gene,force_aa_length))
if ntries>max_tries:
break
## pick d segment
dgene = random.choice( allowed_dgenes )
d_nucseq = tcr_rearrangement.all_trbd_nucseq[organism][dgene]
d_nucseq_len = len(d_nucseq)
vtrim = sample_from_random_sampling_list( v_trim_probsl )
jtrim = sample_from_random_sampling_list( j_trim_probsl )
n_vd_insert = sample_from_random_sampling_list( vd_insert_probsl )
n_dj_insert = sample_from_random_sampling_list( dj_insert_probsl )
n_d0_trim,n_d1_trim = sample_from_random_sampling_list( d_trim_probsl[dgene] )
if n_dj_insert > max_dj_insert: continue ## some of these are probably bogus (sequencing errors)
if vtrim > max_v_trim or jtrim > max_j_trim or (n_d0_trim + n_d1_trim) > d_nucseq_len: continue
## check if in frame?
cdr3_len = v_nucseq_len + j_nucseq_len + d_nucseq_len + n_vd_insert + n_dj_insert - \
( vtrim+jtrim+n_d0_trim+n_d1_trim )
if in_frame_only and (cdr3_len%3 != 0): continue
if force_aa_length and force_aa_length != cdr3_len/3: continue
vd_insert = ''
for i in range(n_vd_insert): vd_insert += random.choice( bases )
dj_insert = ''
for i in range(n_dj_insert): dj_insert += random.choice( bases )
## choose inserted bases
d_seq = d_nucseq[ n_d0_trim : d_nucseq_len-n_d1_trim]
cdr3_seq = v_nucseq[:v_nucseq_len-vtrim] + vd_insert + d_seq + dj_insert + j_nucseq[jtrim:]
assert len(cdr3_seq) == cdr3_len
## check for stop codons?
protseq = ''
for i in range(cdr3_len/3):
protseq += genetic_code[ cdr3_seq[ 3*i : 3*i+3 ] ]
if '*' in protseq and no_stop_codons:
continue
if include_annotation:
cdr3_annotation = ( 'V'*(v_nucseq_len-vtrim) +
'N'*n_vd_insert +
'D'*len(d_seq)+
'N'*n_dj_insert+
'J'*(j_nucseq_len-jtrim) )
assert len(cdr3_seq) == len(cdr3_annotation)
seqs.append( ( cdr3_seq, protseq, cdr3_annotation ) )
else:
seqs.append( ( cdr3_seq, protseq ) )
nsampled += 1
return seqs
def sample_tcr_sequences( organism, nsamples, v_gene, j_gene,
force_aa_length = 0,
in_frame_only = True,
no_stop_codons = True,
max_tries = 100000000,
include_annotation = False ):
ab = all_genes[organism][v_gene].chain
assert ab in 'AB'
if ab == 'A':
return sample_alpha_sequences( organism, nsamples, v_gene, j_gene, force_aa_length = force_aa_length,
in_frame_only = in_frame_only, no_stop_codons = no_stop_codons,
max_tries = max_tries, include_annotation = include_annotation )
else:
return sample_beta_sequences( organism, nsamples, v_gene, j_gene, force_aa_length = force_aa_length,
in_frame_only = in_frame_only, no_stop_codons = no_stop_codons,
max_tries = max_tries, include_annotation = include_annotation )
def add_masked_CDR3_sequences_to_tcr_dict( organism, vals ):
## this code is mostly taken from compute_probs.py
va_gene = vals['va_gene']
ja_gene = vals['ja_gene']
vb_gene = vals['vb_gene']
jb_gene = vals['jb_gene']
cdr3a_protseq = vals['cdr3a']
cdr3a_nucseq = vals['cdr3a_nucseq']
cdr3b_protseq = vals['cdr3b']
cdr3b_nucseq = vals['cdr3b_nucseq']
a_junction_results = analyze_junction( organism, va_gene, ja_gene, cdr3a_protseq, cdr3a_nucseq )
b_junction_results = analyze_junction( organism, vb_gene, jb_gene, cdr3b_protseq, cdr3b_nucseq )
cdr3a_new_nucseq, cdr3a_protseq_masked, cdr3a_protseq_new_nucleotide_countstring,a_trims,a_inserts \
= a_junction_results
cdr3b_new_nucseq, cdr3b_protseq_masked, cdr3b_protseq_new_nucleotide_countstring,b_trims,b_inserts \
= b_junction_results
# from tcr_sampler.py:
# trims = ( v_trim, d0_trim, d1_trim, j_trim )
# inserts = ( best_d_id, n_vd_insert, n_dj_insert, n_vj_insert )
assert a_trims[1] + a_trims[2] + a_inserts[0] + a_inserts[1] + a_inserts[2] + b_inserts[3] == 0
assert a_inserts[3] == len( cdr3a_new_nucseq )
ita = '+%d-%d'%(sum(a_inserts[1:]),sum(a_trims))
itb = '+%d-%d'%(sum(b_inserts[1:]),sum(b_trims))
vals[ 'cdr3a_protseq_masked'] = cdr3a_protseq_masked
vals[ 'a_indels'] = ita
vals[ 'cdr3a_new_nucseq' ] = cdr3a_new_nucseq
vals[ 'cdr3b_protseq_masked'] = cdr3b_protseq_masked
vals[ 'b_indels'] = itb
vals[ 'cdr3b_new_nucseq' ] = cdr3b_new_nucseq
########################################################################################################################
########################################################################################################################
########################################################################################################################
########################################################################################################################
########################################################################################################################
########################################################################################################################
########################################################################################################################
########################################################################################################################
########################################################################################################################
########################################################################################################################
########################################################################################################################
########################################################################################################################
########################################################################################################################