-
Notifications
You must be signed in to change notification settings - Fork 131
/
experiment_classifier.py
339 lines (297 loc) · 12.1 KB
/
experiment_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
from config import *
from dataset import *
import pandas as pd
import json
import os
import copy
import numpy as np
import pytorch_lightning as pl
from pytorch_lightning import loggers as pl_loggers
from pytorch_lightning.callbacks import *
import torch
class ZipLoader:
def __init__(self, loaders):
self.loaders = loaders
def __len__(self):
return len(self.loaders[0])
def __iter__(self):
for each in zip(*self.loaders):
yield each
class ClsModel(pl.LightningModule):
def __init__(self, conf: TrainConfig):
super().__init__()
assert conf.train_mode.is_manipulate()
if conf.seed is not None:
pl.seed_everything(conf.seed)
self.save_hyperparameters(conf.as_dict_jsonable())
self.conf = conf
# preparations
if conf.train_mode == TrainMode.manipulate:
# this is only important for training!
# the latent is freshly inferred to make sure it matches the image
# manipulating latents require the base model
self.model = conf.make_model_conf().make_model()
self.ema_model = copy.deepcopy(self.model)
self.model.requires_grad_(False)
self.ema_model.requires_grad_(False)
self.ema_model.eval()
if conf.pretrain is not None:
print(f'loading pretrain ... {conf.pretrain.name}')
state = torch.load(conf.pretrain.path, map_location='cpu')
print('step:', state['global_step'])
self.load_state_dict(state['state_dict'], strict=False)
# load the latent stats
if conf.manipulate_znormalize:
print('loading latent stats ...')
state = torch.load(conf.latent_infer_path)
self.conds = state['conds']
self.register_buffer('conds_mean',
state['conds_mean'][None, :])
self.register_buffer('conds_std', state['conds_std'][None, :])
else:
self.conds_mean = None
self.conds_std = None
if conf.manipulate_mode in [ManipulateMode.celebahq_all]:
num_cls = len(CelebAttrDataset.id_to_cls)
elif conf.manipulate_mode.is_single_class():
num_cls = 1
else:
raise NotImplementedError()
# classifier
if conf.train_mode == TrainMode.manipulate:
# latent manipluation requires only a linear classifier
self.classifier = nn.Linear(conf.style_ch, num_cls)
else:
raise NotImplementedError()
self.ema_classifier = copy.deepcopy(self.classifier)
def state_dict(self, *args, **kwargs):
# don't save the base model
out = {}
for k, v in super().state_dict(*args, **kwargs).items():
if k.startswith('model.'):
pass
elif k.startswith('ema_model.'):
pass
else:
out[k] = v
return out
def load_state_dict(self, state_dict, strict: bool = None):
if self.conf.train_mode == TrainMode.manipulate:
# change the default strict => False
if strict is None:
strict = False
else:
if strict is None:
strict = True
return super().load_state_dict(state_dict, strict=strict)
def normalize(self, cond):
cond = (cond - self.conds_mean.to(self.device)) / self.conds_std.to(
self.device)
return cond
def denormalize(self, cond):
cond = (cond * self.conds_std.to(self.device)) + self.conds_mean.to(
self.device)
return cond
def load_dataset(self):
if self.conf.manipulate_mode == ManipulateMode.d2c_fewshot:
return CelebD2CAttrFewshotDataset(
cls_name=self.conf.manipulate_cls,
K=self.conf.manipulate_shots,
img_folder=data_paths['celeba'],
img_size=self.conf.img_size,
seed=self.conf.manipulate_seed,
all_neg=False,
do_augment=True,
)
elif self.conf.manipulate_mode == ManipulateMode.d2c_fewshot_allneg:
# positive-unlabeled classifier needs to keep the class ratio 1:1
# we use two dataloaders, one for each class, to stabiliize the training
img_folder = data_paths['celeba']
return [
CelebD2CAttrFewshotDataset(
cls_name=self.conf.manipulate_cls,
K=self.conf.manipulate_shots,
img_folder=img_folder,
img_size=self.conf.img_size,
only_cls_name=self.conf.manipulate_cls,
only_cls_value=1,
seed=self.conf.manipulate_seed,
all_neg=True,
do_augment=True),
CelebD2CAttrFewshotDataset(
cls_name=self.conf.manipulate_cls,
K=self.conf.manipulate_shots,
img_folder=img_folder,
img_size=self.conf.img_size,
only_cls_name=self.conf.manipulate_cls,
only_cls_value=-1,
seed=self.conf.manipulate_seed,
all_neg=True,
do_augment=True),
]
elif self.conf.manipulate_mode == ManipulateMode.celebahq_all:
return CelebHQAttrDataset(data_paths['celebahq'],
self.conf.img_size,
data_paths['celebahq_anno'],
do_augment=True)
else:
raise NotImplementedError()
def setup(self, stage=None) -> None:
##############################################
# NEED TO SET THE SEED SEPARATELY HERE
if self.conf.seed is not None:
seed = self.conf.seed * get_world_size() + self.global_rank
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
print('local seed:', seed)
##############################################
self.train_data = self.load_dataset()
if self.conf.manipulate_mode.is_fewshot():
# repeat the dataset to be larger (speed up the training)
if isinstance(self.train_data, list):
# fewshot-allneg has two datasets
# we resize them to be of equal sizes
a, b = self.train_data
self.train_data = [
Repeat(a, max(len(a), len(b))),
Repeat(b, max(len(a), len(b))),
]
else:
self.train_data = Repeat(self.train_data, 100_000)
def train_dataloader(self):
# make sure to use the fraction of batch size
# the batch size is global!
conf = self.conf.clone()
conf.batch_size = self.batch_size
if isinstance(self.train_data, list):
dataloader = []
for each in self.train_data:
dataloader.append(
conf.make_loader(each, shuffle=True, drop_last=True))
dataloader = ZipLoader(dataloader)
else:
dataloader = conf.make_loader(self.train_data,
shuffle=True,
drop_last=True)
return dataloader
@property
def batch_size(self):
ws = get_world_size()
assert self.conf.batch_size % ws == 0
return self.conf.batch_size // ws
def training_step(self, batch, batch_idx):
self.ema_model: BeatGANsAutoencModel
if isinstance(batch, tuple):
a, b = batch
imgs = torch.cat([a['img'], b['img']])
labels = torch.cat([a['labels'], b['labels']])
else:
imgs = batch['img']
# print(f'({self.global_rank}) imgs:', imgs.shape)
labels = batch['labels']
if self.conf.train_mode == TrainMode.manipulate:
self.ema_model.eval()
with torch.no_grad():
# (n, c)
cond = self.ema_model.encoder(imgs)
if self.conf.manipulate_znormalize:
cond = self.normalize(cond)
# (n, cls)
pred = self.classifier.forward(cond)
pred_ema = self.ema_classifier.forward(cond)
elif self.conf.train_mode == TrainMode.manipulate_img:
# (n, cls)
pred = self.classifier.forward(imgs)
pred_ema = None
elif self.conf.train_mode == TrainMode.manipulate_imgt:
t, weight = self.T_sampler.sample(len(imgs), imgs.device)
imgs_t = self.sampler.q_sample(imgs, t)
pred = self.classifier.forward(imgs_t, t=t)
pred_ema = None
print('pred:', pred.shape)
else:
raise NotImplementedError()
if self.conf.manipulate_mode.is_celeba_attr():
gt = torch.where(labels > 0,
torch.ones_like(labels).float(),
torch.zeros_like(labels).float())
elif self.conf.manipulate_mode == ManipulateMode.relighting:
gt = labels
else:
raise NotImplementedError()
if self.conf.manipulate_loss == ManipulateLossType.bce:
loss = F.binary_cross_entropy_with_logits(pred, gt)
if pred_ema is not None:
loss_ema = F.binary_cross_entropy_with_logits(pred_ema, gt)
elif self.conf.manipulate_loss == ManipulateLossType.mse:
loss = F.mse_loss(pred, gt)
if pred_ema is not None:
loss_ema = F.mse_loss(pred_ema, gt)
else:
raise NotImplementedError()
self.log('loss', loss)
self.log('loss_ema', loss_ema)
return loss
def on_train_batch_end(self, outputs, batch, batch_idx: int,
dataloader_idx: int) -> None:
ema(self.classifier, self.ema_classifier, self.conf.ema_decay)
def configure_optimizers(self):
optim = torch.optim.Adam(self.classifier.parameters(),
lr=self.conf.lr,
weight_decay=self.conf.weight_decay)
return optim
def ema(source, target, decay):
source_dict = source.state_dict()
target_dict = target.state_dict()
for key in source_dict.keys():
target_dict[key].data.copy_(target_dict[key].data * decay +
source_dict[key].data * (1 - decay))
def train_cls(conf: TrainConfig, gpus):
print('conf:', conf.name)
model = ClsModel(conf)
if not os.path.exists(conf.logdir):
os.makedirs(conf.logdir)
checkpoint = ModelCheckpoint(
dirpath=f'{conf.logdir}',
save_last=True,
save_top_k=1,
# every_n_train_steps=conf.save_every_samples //
# conf.batch_size_effective,
)
checkpoint_path = f'{conf.logdir}/last.ckpt'
if os.path.exists(checkpoint_path):
resume = checkpoint_path
else:
if conf.continue_from is not None:
# continue from a checkpoint
resume = conf.continue_from.path
else:
resume = None
tb_logger = pl_loggers.TensorBoardLogger(save_dir=conf.logdir,
name=None,
version='')
# from pytorch_lightning.
plugins = []
if len(gpus) == 1:
accelerator = None
else:
accelerator = 'ddp'
from pytorch_lightning.plugins import DDPPlugin
# important for working with gradient checkpoint
plugins.append(DDPPlugin(find_unused_parameters=False))
trainer = pl.Trainer(
max_steps=conf.total_samples // conf.batch_size_effective,
resume_from_checkpoint=resume,
gpus=gpus,
accelerator=accelerator,
precision=16 if conf.fp16 else 32,
callbacks=[
checkpoint,
],
replace_sampler_ddp=True,
logger=tb_logger,
accumulate_grad_batches=conf.accum_batches,
plugins=plugins,
)
trainer.fit(model)