-
Notifications
You must be signed in to change notification settings - Fork 1
/
keras_ddpg.py
357 lines (271 loc) · 12.3 KB
/
keras_ddpg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
# adapted from https://github.com/keras-team/keras-io/blob/master/examples/rl/ddpg_pendulum.py
# BEWARE: what is called "state" in this code is actually what is called "observation" in the environment.
# it includes both the actual state (x,y,phi) and its time derivative (dx/dt,dy/dt,dphi/dt)!
import gym
import tensorflow as tf
from tensorflow.keras import layers
import numpy as np
import matplotlib.pyplot as plt
from time import sleep
### our env specifics:
from challenge_do_not_modify import InUnsafeWaters, evaluate
problem = "InUnsafeWaters"
#env = InUnsafeWaters(n_steps=100, boundary="line")
env = InUnsafeWaters(n_steps=100, boundary="circle")
# CHOOSE A RANDOM SEED:
# interesting cases in (rough subjective) order of ascending difficulty:
# for boundary=line: 7, 12, 37, 35, 23, 32
# for boundary=circle: 39, 21, 37, 10, 38, 20
env.seed(21)
# choose whether to reuse th same scenario (flow):
# (must be false in the final evaluation!):
reuse_scenario = True
# choose whether to use the real reward function (=survival yes or no, as used in final evaluation)
# or use survival time or squared survival time instead (may help in learning):
#reward_function = 'real'
#reward_function = 'survival time'
reward_function = 'squared time'
# optionally weigh down some observation items:
#obs_weights = np.ones(20) # use all parts of the observation
obs_weights = np.array([0,0,0,0, 1, 1,1, 0,0,0,0, 1, 1,1, 0,0,0,0,0,0]) # use D, theta and their derivs
#obs_weights = np.array([0,0,0,0, 0, 1,1, 0,0,0,0, 0, 0,0, 0,0,0,0,0,0]) # use only theta, as in "straight_away" strategy
# learner parameters:
total_episodes = 10000 # JH: original: 1000
std_dev = 0.2 # JH: original: 0.2
# Discount factor for future rewards:
gamma = 0.99 # JH: maybe set to 1?
# Learning rate for actor-critic models:
critic_lr = 0.002
actor_lr = 0.001
# Used to update target networks:
tau = 0.005
###
num_states = env.observation_space.shape[0]
print("Size of State Space -> {}".format(num_states))
num_actions = env.action_space.shape[0]
print("Size of Action Space -> {}".format(num_actions))
upper_bound = env.action_space.high
lower_bound = env.action_space.low
print("Max Value of Action -> {}".format(upper_bound))
print("Min Value of Action -> {}".format(lower_bound))
class OUActionNoise:
def __init__(self, mean, std_deviation, theta=0.15, dt=1e-2, x_initial=None):
self.theta = theta
self.mean = mean
self.std_dev = std_deviation
self.dt = dt
self.x_initial = x_initial
self.reset()
def __call__(self):
# Formula taken from https://www.wikipedia.org/wiki/Ornstein-Uhlenbeck_process.
x = (
self.x_prev
+ self.theta * (self.mean - self.x_prev) * self.dt
+ self.std_dev * np.sqrt(self.dt) * np.random.normal(size=self.mean.shape)
)
# Store x into x_prev
# Makes next noise dependent on current one
self.x_prev = x
return x
def reset(self):
if self.x_initial is not None:
self.x_prev = self.x_initial
else:
self.x_prev = np.zeros_like(self.mean)
class Buffer:
def __init__(self, buffer_capacity=100000, batch_size=64):
# Number of "experiences" to store at max
self.buffer_capacity = buffer_capacity
# Num of tuples to train on.
self.batch_size = batch_size
# Its tells us num of times record() was called.
self.buffer_counter = 0
# Instead of list of tuples as the exp.replay concept go
# We use different np.arrays for each tuple element
self.state_buffer = np.zeros((self.buffer_capacity, num_states))
self.action_buffer = np.zeros((self.buffer_capacity, num_actions))
self.reward_buffer = np.zeros((self.buffer_capacity, 1))
self.next_state_buffer = np.zeros((self.buffer_capacity, num_states))
# Takes (s,a,r,s') obervation tuple as input
def record(self, obs_tuple):
# Set index to zero if buffer_capacity is exceeded,
# replacing old records
index = self.buffer_counter % self.buffer_capacity
self.state_buffer[index] = obs_tuple[0]
self.action_buffer[index] = obs_tuple[1]
self.reward_buffer[index] = obs_tuple[2]
self.next_state_buffer[index] = obs_tuple[3]
self.buffer_counter += 1
# Eager execution is turned on by default in TensorFlow 2. Decorating with tf.function allows
# TensorFlow to build a static graph out of the logic and computations in our function.
# This provides a large speed up for blocks of code that contain many small TensorFlow operations such as this one.
@tf.function
def update(
self, state_batch, action_batch, reward_batch, next_state_batch,
):
# Training and updating Actor & Critic networks.
# See Pseudo Code.
with tf.GradientTape() as tape:
target_actions = target_actor(next_state_batch, training=True)
y = reward_batch + gamma * target_critic(
[next_state_batch, target_actions], training=True
)
critic_value = critic_model([state_batch, action_batch], training=True)
critic_loss = tf.math.reduce_mean(tf.math.square(y - critic_value))
critic_grad = tape.gradient(critic_loss, critic_model.trainable_variables)
critic_optimizer.apply_gradients(
zip(critic_grad, critic_model.trainable_variables)
)
with tf.GradientTape() as tape:
actions = actor_model(state_batch, training=True)
critic_value = critic_model([state_batch, actions], training=True)
# Used `-value` as we want to maximize the value given
# by the critic for our actions
actor_loss = -tf.math.reduce_mean(critic_value)
actor_grad = tape.gradient(actor_loss, actor_model.trainable_variables)
actor_optimizer.apply_gradients(
zip(actor_grad, actor_model.trainable_variables)
)
# We compute the loss and update parameters
def learn(self):
# Get sampling range
record_range = min(self.buffer_counter, self.buffer_capacity)
# Randomly sample indices
batch_indices = np.random.choice(record_range, self.batch_size)
# Convert to tensors
state_batch = tf.convert_to_tensor(self.state_buffer[batch_indices])
action_batch = tf.convert_to_tensor(self.action_buffer[batch_indices])
reward_batch = tf.convert_to_tensor(self.reward_buffer[batch_indices])
reward_batch = tf.cast(reward_batch, dtype=tf.float32)
next_state_batch = tf.convert_to_tensor(self.next_state_buffer[batch_indices])
self.update(state_batch, action_batch, reward_batch, next_state_batch)
# This update target parameters slowly
# Based on rate `tau`, which is much less than one.
@tf.function
def update_target(target_weights, weights, tau):
for (a, b) in zip(target_weights, weights):
a.assign(b * tau + a * (1 - tau))
def get_actor():
# Initialize weights between -3e-3 and 3-e3
last_init = tf.random_uniform_initializer(minval=-0.003, maxval=0.003)
inputs = layers.Input(shape=(num_states,))
out = layers.Dense(256, activation="relu")(inputs)
out = layers.Dense(256, activation="relu")(out)
outputs = layers.Dense(num_actions, activation="tanh", kernel_initializer=last_init)(out) # JH: replaced 1 by num_actions
outputs = lower_bound + (outputs+1)/2 * (upper_bound-lower_bound) # JH: fixed bounds!
model = tf.keras.Model(inputs, outputs)
return model
def get_critic():
# State as input
state_input = layers.Input(shape=(num_states))
state_out = layers.Dense(16, activation="relu")(state_input)
state_out = layers.Dense(32, activation="relu")(state_out)
# Action as input
action_input = layers.Input(shape=(num_actions))
action_out = layers.Dense(32, activation="relu")(action_input)
# Both are passed through seperate layer before concatenating
concat = layers.Concatenate()([state_out, action_out])
out = layers.Dense(256, activation="relu")(concat)
out = layers.Dense(256, activation="relu")(out)
outputs = layers.Dense(1)(out)
# Outputs single value for give state-action
model = tf.keras.Model([state_input, action_input], outputs)
return model
def policy(state, noise_object):
sampled_actions = tf.squeeze(actor_model(state))
noise = noise_object()
# Adding noise to action
sampled_actions = sampled_actions.numpy() + noise
# We make sure action is within bounds
legal_action = np.clip(sampled_actions, lower_bound, upper_bound)
# return [np.squeeze(legal_action)]
return np.squeeze(legal_action) # JH: removed square brackets
ou_noise = OUActionNoise(mean=np.zeros(1), std_deviation=float(std_dev) * np.ones(1))
actor_model = get_actor()
critic_model = get_critic()
target_actor = get_actor()
target_critic = get_critic()
# Making the weights equal initially
target_actor.set_weights(actor_model.get_weights())
target_critic.set_weights(critic_model.get_weights())
critic_optimizer = tf.keras.optimizers.Adam(critic_lr)
actor_optimizer = tf.keras.optimizers.Adam(actor_lr)
buffer = Buffer(50000, 64)
# To store reward history of each episode
ep_reward_list = []
# To store average reward history of last few episodes
avg_reward_list = []
# Takes about 4 min to train
for ep in range(total_episodes):
prev_state = env.reset(same=reuse_scenario)
episodic_reward = 0
step = 0
while True:
# Uncomment this to see the Actor in action
# But not in a python notebook.
# env.render()
tf_prev_state = tf.expand_dims(tf.convert_to_tensor(prev_state), 0)
if any(np.isnan(prev_state)):
print("WARNING, state contains nan values:", prev_state)
action = policy(tf_prev_state, ou_noise)
# Receive state and reward from environment.
state, reward, done, info = env.step(action)
# JH: optionally suppress or reweight part of the state:
state *= obs_weights
# JH: optionally use an auxiliary reward function instead:
if reward_function == 'real':
pass # use the real rewards
elif reward_function == 'survival time':
reward = 3.0 / env.n_steps if not done else 0.0
# this gives 3.0 if surviving all of the n_steps many steps between time 0 and time 3
elif reward_function == 'squared time':
reward = 18.0 * step / env.n_steps**2 if not done else 0.0
# this gives 9.0 if surviving all of the n_steps many steps between time 0 and time 3
step += 1
else:
raise Exception('unknown reward function')
buffer.record((prev_state, action, reward, state))
episodic_reward += reward
buffer.learn()
update_target(target_actor.variables, actor_model.variables, tau)
update_target(target_critic.variables, critic_model.variables, tau)
# End this episode when `done` is True
if done:
break
prev_state = state
ep_reward_list.append(episodic_reward)
# Mean of last 40 episodes
avg_reward = np.mean(ep_reward_list[-40:])
print("Episode * {} * Avg Reward is ==> {}".format(ep, avg_reward))
avg_reward_list.append(avg_reward)
# Plotting graph
# Episodes versus Avg. Rewards
plt.plot(avg_reward_list)
plt.xlabel("Episode")
plt.ylabel("Avg. Epsiodic Reward")
plt.show()
# Save the weights
actor_model.save_weights("/tmp/actor.h5")
critic_model.save_weights("/tmp/critic.h5")
target_actor.save_weights("/tmp/target_actor.h5")
target_critic.save_weights("/tmp/target_critic.h5")
# JH: finally evaluate trained actor on actual reward function and show one run:
no_noise = OUActionNoise(mean=np.zeros(1), std_deviation=float(0.0) * np.ones(1))
def my_policy(obs):
tf_prev_state = tf.expand_dims(tf.convert_to_tensor(obs), 0)
return policy(tf_prev_state, no_noise)
# THIS IS THE LINE YOU NEED TO CALL BEFORE SUBMITTING YOUR SOLUTION AS WELL
# (with the seed value we tell you on Sunday morning):
rate = evaluate(my_policy, n_steps=100, seed=1)
# Then send us the output.
obs = env.reset(same=reuse_scenario)
while True:
tf_prev_state = tf.expand_dims(tf.convert_to_tensor(obs), 0)
action = policy(tf_prev_state, no_noise)
print(action)
obs, reward, terminated, info = res = env.step(action)
env.render()
sleep(0.1)
if terminated:
break
sleep(100)