-
Notifications
You must be signed in to change notification settings - Fork 0
/
normalNN.py
48 lines (31 loc) · 887 Bytes
/
normalNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import numpy as np
def nonlin(x, deriv=False):
if(deriv == True):
return x*(1-x)
return 1/(1+np.exp(-x))
X = np.array([[0, 0, 1],
[0, 1, 1],
[1, 0, 1],
[1, 1, 1]])
y = np.array([[0],
[1],
[1],
[0]])
np.random.seed(1)
syn0 = 2*np.random.random((3, 4)) - 1
syn1 = 2*np.random.random((4, 1)) - 1
for j in range(60000):
# Feed forward through layers 0, 1, and 2
l0 = X
l1 = nonlin(np.dot(l0, syn0))
l2 = nonlin(np.dot(l1, syn1))
l2_error = y - l2
if (j % 10000) == 0:
print("Error:" + str(np.mean(np.abs(l2_error))))
l2_delta = l2_error*nonlin(l2, deriv=True)
l1_error = l2_delta.dot(syn1.T)
l1_delta = l1_error * nonlin(l1, deriv=True)
syn1 += l1.T.dot(l2_delta)
syn0 += l0.T.dot(l1_delta)
print("Output After Training:")
print(l2)