Skip to content

Latest commit

 

History

History
267 lines (183 loc) · 7.37 KB

README.md

File metadata and controls

267 lines (183 loc) · 7.37 KB

Validate Brazilian Identification Numbers

Python functions for working with CNPJ, CEI, CPF, PIS/PASEP, CEP, and município numbers, which identify firms, people, and places in Brazil.

Installation

pip install brazilnum

Usage Examples

Works with Python 2.7 and 3.

Validation Functions

Validate a CNPJ number for a firm, in this case Telefônica Brasil:

>>> from brazilnum.cnpj import validate_cnpj
>>> validate_cnpj('02.558.157/0001-62')
True
>>> validate_cnpj('02.558.157/0001-55')
False

Integer input that is too short due to missing zeros is auto-corrected:

>>> validate_cnpj(2558157000162)
True
>>> validate_cnpj(2558157000162, autopad=False)
False

Validate a CEI number, used for businesses that do not require a CNPJ:

>>> from brazilnum.cei import validate_cei
>>> validate_cei('11.583.00249/85')
True
>>> validate_cei('11.583.00249/84')
False
>>> validate_cei(115830024985)
True

Validate CPF and PIS/PASEP numbers for individuals:

>>> from brazilnum.pis import validate_pis
>>> validate_pis('125.6124.131-0')
True
>>> validate_pis('111.6124.131-0')
False

>>> from brazilnum.cpf import validate_cpf
>>> validate_cpf('968.811.342-58')
True
>>> validate_cpf('327.861.067-97')
False

Validation functions work with integer and unformatted input:

>>> validate_pis(12561241310)
True
>>> validate_cpf(96881134258)
True
>>> validate_pis('12561241310')
True
>>> validate_cpf('32786106797')
False

Formatting and Padding

Use the format function when displaying identifiers:

>>> from brazilnum.cnpj import format_cnpj
>>> format_cnpj('02558157000162')
'02.558.157/0001-62'

>>> from brazilnum.cei import format_cei
>>> format_cei('115830024985')
'11.583.00249/85'

>>> from brazilnum.pis import format_pis
>>> format_pis('12561241310')
'125.6124.131-0'

>>> from brazilnum.cpf import format_cpf
>>> format_cpf('96881134258')
'968.811.342-58'

There is a helper function to remove formatting from identifiers; it always returns a string:

>>> from brazilnum.util import clean_id
>>> clean_id('02.558.157/0001-62')
'02558157000162'

>>> clean_id(115830024985)
'115830024985'

Your data source probably stores identifiers as integers, so leading zeros are missing. You can pad and validate these in one step:

>>> from brazilnum.cnpj import pad_cnpj
>>> pad_cnpj(2558157000162, validate=True)
('02558157000162', True)

>>> pad_cnpj(2558157000155, validate=True)
('02558157000155', False)

>>> from brazilnum.cei import pad_cei
>>> pad_cei(115830024985, validate=True)
('115830024985', True)

You can skip the validation step:

>>> pad_cnpj(2558157000155, validate=False)
'02558157000155'

Padding works the same way for PIS/PASEP and CPF numbers:

>>> from brazilnum.pis import pad_pis
>>> pad_pis(12561241310, validate=True)
('12561241310', True)

>>> pad_pis(11161241310, validate=True)
('11161241310', False)

>>> from brazilnum.cpf import pad_cpf
>>> pad_cpf(4193675866, validate=True)
('04193675866', True)

>>> pad_cpf(4193675867, validate=True)
('04193675867', False)

CNPJ Parsing

The first 8 digits of CNPJs identify a firm, and the following 4 digits identify a specific business establishment owned by that firm. Headquarters is often establishment 0001. The cnpj_from_firm_id function will create a full CNPJ from the first 8 digits and a given establishment number:

>>> from brazilnum.cnpj import cnpj_from_firm_id
>>> cnpj_from_firm_id('02.558.157')
'02558157000162'

>>> cnpj_from_firm_id('02.558.157', establishment='0002')
'02558157000243'

>>> cnpj_from_firm_id('02.558.157', establishment='0002', formatted=True)
'02.558.157/0002-43'

CNPJ can be parsed into firm, establishment, and check digit components:

>>> from brazilnum.cnpj import parse_cnpj
>>> parse_cnpj('02.558.157/0001-62')
CNPJ(cnpj='02.558.157/0001-62', firm='02.558.157', establishment='0001', check='62', valid=True)

>>> parse_cnpj('02.558.157/0001-62', formatted=False)
CNPJ(cnpj=2558157000162, firm=2558157, establishment=1, check=(6, 2), valid=True)

CEP Parsing

Códigos de Endereçamentos Postais (zip codes) can be formatted and parsed:

>>> from brazilnum.cep import format_cep, parse_cep
>>> format_cep(13165000)
'13165-000'

>>> format_cep(1002010)
'01002-010'

>>> format_cep(73080)
'73080-000'

>>> parse_cep('01255-080', numeric=True)
CEP(cep=1255080, region=0, subregion=1, sector=12, subsector=125, division=1255, suffix=80)

>>> parse_cep('01255-080', numeric=False)
CEP(cep='01255-080', region='0', subregion='01', sector='012', subsector='0125', division='01255', suffix='080')

Correios has more information about the structure of CEP.

Municípios (Municipalities)

Validation of IBGE município (municipal) identifiers is also possible:

>>> from brazilnum.muni import validate_muni
>>> validate_muni(3550308)  # São Paulo
True

>>> validate_muni(4305871)  # Coronel Barros (see note below)
True

Note that 9 true codes do not follow the correct verification pattern. ENCAT has a technical note about this issue. The program correctly handles special codes like Coronel Barros, RS (see above).

If you need a list of municípios with names and coordinates, see poliquin/br-localidades. If you need historical and current codes with names, see paulofreitas/dtb-ibge.

Random Identifiers

If you need random CNPJ for database testing, use the random_cnpj function, which can return either unformatted or formatted identifiers:

from brazilnum.cnpj import random_cnpj
random_cnpj()       # for a random, formatted CNPJ
random_cnpj(False)  # for a random, unformatted CNPJ

Use random_cei for random CEI identifiers:

from brazilnum.cei import random_cei
random_cei()

The same thing exists for PIS/PASEP and CPF identifiers:

from brazilnum.pis import random_pis
random_pis()

from brazilnum.cpf import random_cpf
random_cpf()

Check Digits

If you're interested in the check digits, there are functions for calculating them that return integers:

>>> from brazilnum.cnpj import cnpj_check_digits
>>> cnpj_check_digits('02.558.157/0001-62')
(6, 2)

>>> from brazilnum.cei import cei_check_digit
>>> cei_check_digit('11.583.00249/85')
5

>>> from brazilnum.cpf import cpf_check_digits
>>> cpf_check_digits('041.936.758-66')
(6, 6)

>>> from brazilnum.pis import pis_check_digit
>>> pis_check_digit('125.6124.131-0')
0

CNPJ check digits are calculated from the first 12 digits:

>>> cnpj_check_digits('025581570001')
(6, 2)

The CEI check digit is calculated from the first 11 digits:

>>> cei_check_digit('11583002498')
5

CPF check digits are calculated from the first 9 digits:

>>> cpf_check_digits('041936758')
(6, 6)

The PIS/PASEP check digit is calculated from the first 10 digits:

>>> pis_check_digit('1256124131')
0