Skip to content

Latest commit

 

History

History
110 lines (76 loc) · 5.54 KB

README.md

File metadata and controls

110 lines (76 loc) · 5.54 KB

ResNet Profile

License: MIT Framework: PyTorch

Contents

  1. Overview
  2. Setup Instructions
  3. Repository Overview
  4. Reproduction
  5. Results

1. Overview

This repo contains the folowing Performance Stats for a few popularly used backbone networks in the field of Computer Vision:

- Inference Time on a GTX 2080Ti

- Inference Time on a TitanXP

- Infernce Time on a CPU

- Memory Report during Inference

- Model Structures

I have performed experiments on two types of inputs:

Size Format: (B,C,H,W)

  • Cityscapes: Input of size = (1,3,1024,2048)

  • PASCAL-VOC-2012: Input of size = (1,3,500,334)

2. Setup Instructions

You can setup the repo by running the following commands:

$ git clone https://github.com/praeclarumjj3/BackBone-Profile.git
$ pip install -r requirements.txt

3. Repository Overview

The repository contains the following architecture:

4. Reproduction

  • Refer to the README.md of the corresponding architectures.

5. Results

All the experiments are performed with a batch size=1 and 300 iterations.

Performance on Cityscapes

Model Inference Time (ms) [2080Ti] Inference Time (ms) [TitanXP] FPS [2080Ti] FPS [TitanXP] Allocated Memory (MB) # Params (M)
ResNet-18 18.719 23.622 53.42 42.33 68.69 11.689
ResNet-34 31.779 38.588 31.46 25.91 108.16 21.797
ResNet-50 61.397 82.334 16.28 12.14 121.73 25.557
ResNet-101 100.426 122.491 9.95 8.16 194.65 44.549
MobileNet-V2 33.627 54.314 29.73 18.41 37.58 3.504
Xception 77.079 144.919 12.97 6.90 111.45 22.855

Performance on PASCAL-VOC-2012

Model Inference Time (ms) [2080Ti] Inference Time (ms) [TitanXP] FPS [2080Ti] FPS [TitanXP] Allocated Memory (MB) # Params (M)
ResNet-18 2.547 2.940 392.61 340.13 46.60 11.689
ResNet-34 5.197 4.959 192.41 201.65 85.20 21.797
ResNet-50 7.628 8.927 131.09 112.01 100.23 25.557
ResNet-101 12.579 14.509 79.49 68.92 172.65 44.549
MobileNet-V2 5.570 5.795 179.53 172.56 14.49 3.504
Xception 7.919 12.042 126.27 83.04 89.36 22.855

Inference Time (CPU)

Performance on Cityscapes

Model Inference Time (ms) FPS
ResNet-18 566.75 1.76
ResNet-34 807.57 1.23
ResNet-50 1626.05 0.61
ResNet-101 2344.98 0.42
MobileNet-V2 560.022 1.78
Xception 2782.874 0.35

Performance on PASCAL-VOC-2012

Model Inference Time (ms) FPS
ResNet-18 55.79 17.92
ResNet-34 78.77 12.69
ResNet-50 133.71 7.47
ResNet-101 223.59 4.47
MobileNet-V2 70.180 14.24
Xception 229.000 4.36