
AHB Example AMBA SYstem
Technical Reference Manual
Copyright © 1999 ARM Limited. All rights reserved.
DDI0170A

AHB Example AMBA SYstem
Technical Reference Manual

Copyright © 1999 ARM Limited. All rights reserved.

Release Information

Proprietary Notice

ARM, the ARM Powered logo, Thumb and StrongARM are registered trademarks of ARM Limited.

The ARM logo, AMBA, PrimeCell, Angel, ARMulator, EmbeddedICE, ModelGen, Multi-ICE,
ARM7TDMI, ARM7TDMI-S, ARM9TDMI, TDMI and STRONG are trademarks of ARM Limited.

All other products or services mentioned herein may be trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM Limited in good faith.
However, all warranties implied or expressed, including but not limited to implied warranties or
merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to
license restrictions in accordance with the terms of the agreement entered into by ARM and the party that
ARM delivered this document to.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

Change history

Date Issue Change

August 1999 A First release
ii Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

Contents
AHB Example AMBA SYstem Technical
Reference Manual

Preface
About this document .. vi
Further reading .. viii
Feedback ... ix

Chapter 1 Introduction
1.1 Overview of EASY .. 1-2

Chapter 2 The EASY Microcontroller
2.1 Functional overview .. 2-2
2.2 The AMBA system components .. 2-3
2.3 Reference peripherals ... 2-5
2.4 Example components ... 2-8
2.5 System test methodology .. 2-9

Chapter 3 ARM7TDMI AHB Wrapper
3.1 About the ARM7TDMI AHB wrapper ... 3-2
3.2 Signal interface ... 3-3
3.3 ARM7TDMI AHB signal descriptions .. 3-4
3.4 Overview of the ARM7TDMI wrapper ... 3-7
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. iii

Contents
3.5 Connections to ARM7TDMI core .. 3-9
3.6 Default signal configurations .. 3-13
3.7 Description of the ARM7TDMI wrapper blocks ... 3-14

Chapter 4 AHB Modules
4.1 APB bridge ... 4-2
4.2 Arbiter ... 4-14
4.3 Decoder .. 4-25
4.4 Default slave ... 4-29
4.5 Master to slave multiplexor ... 4-32
4.6 Slave to master multiplexor .. 4-36
4.7 Reset controller .. 4-40
4.8 Retry slave .. 4-46
4.9 Static memory interface .. 4-53
4.10 Test interface controller .. 4-64

Chapter 5 APB Modules
5.1 Interrupt controller .. 5-2
5.2 Remap and pause controller .. 5-12
5.3 Timers ... 5-20
5.4 Peripheral to bridge multiplexor .. 5-35

Chapter 6 Behavioral Modules
6.1 External RAM ... 6-2
6.2 External ROM ... 6-5
6.3 Internal RAM ... 6-8
6.4 Test interface driver .. 6-12
6.5 Tube ... 6-24

Chapter 7 Designer’s Guide
7.1 Adding bus masters .. 7-2
7.2 Adding AHB slaves ... 7-3
7.3 Adding APB peripherals ... 7-4
iv Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

Preface

This preface introduces the AHB Example AMBA SYstem (EASY) and its reference
documentation. It contains the following sections:

• About this document on page vi

• Further reading on page viii

• Feedback on page ix.
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. v

Preface
About this document

This document is a comprehensive manual for the behavioral HDL model of the
Example AMBA SYstem (EASY). It gives detailed information about:

• the function of the whole system

• each module in the system

• how to design a new system module.

This document refers to the Advanced High-performance Bus (AHB). For information
on the Advanced System Bus (ASB) refer to the ASB Example AMBA SYstem Technical
Reference Manual.

Intended audience

This document has been written for experienced hardware and software engineers who
wish to incorporate a fully functional AMBA system into their hardware and software
design.

Organization

This document is organized into the following chapters:

Chapter 1 Introduction

Read this chapter for an overview of the AHB Example AMBA SYstem.

Chapter 2 The EASY Microcontroller

Read this chapter for a description of the modules of the AHB EASY
microcontroller.

Chapter 3 ARM7TDMI AHB Wrapper

Read this chapter for a description of the ARM7TDMI AHB wrapper
module.

Chapter 4 AHB Modules

Read this chapter for details of the AHB modules that are used in the
AHB Example AMBA SYstem.

Chapter 5 APB Modules

Read this chapter for details of the APB modules that are used in the AHB
Example AMBA SYstem.
vi Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

Preface
Chapter 6 Behavioral Modules

Read this chapter for details of how to use the behavioral modules,
including memory modules and the external AMBA Test Interface Driver
module (the TICBOX). This chapter contains a description of the TICTalk
command language.

Chapter 7 Designer’s Guide

Read this chapter for details of how to add new bus master, slave and
peripheral modules to the AHB EASY microcontroller.

Typographical conventions

The following typographical conventions are used in this document:

bold Highlights ARM processor signal names within text, and interface
elements such as menu names. May also be used for emphasis in
descriptive lists where appropriate.

italic Highlights special terminology, cross-references, and citations.

typewriter Denotes text that may be entered at the keyboard, such as
commands, file names and program names, and source code.

typewriter Denotes a permitted abbreviation for a command or option. The
underlined text can be entered instead of the full command or
option name.

typewriter italic Denotes arguments to commands or functions where the argument
is to be replaced by a specific value.

typewriter bold Denotes language keywords when used outside example code.
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. vii

Preface
Further reading

This section lists publications by ARM Limited, and by third parties that provide
additional information on developing for the ARM processor, and general information
on related topics.

ARM publications

AMBA Specification (Rev 2.0) (ARM IHI 0011)

ARM Architecture Reference Manual (ARM DDI 01000)

ARM7TDMI Data Sheet (ARM DDI 0029)

Example AMBA SYstem User Guide (ARM DUI 0092)

ASB Example AMBA SYstem Technical Reference Manual (ARM DDI 0138)

Micropack AHB CPU Wrappers Technical Reference Manual (ARM DDI 0169).

Other publications

IEEE 1149.1 JTAG standard.
viii Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

Preface
Feedback

ARM Limited welcomes feedback both on the AHB Example AMBA SYstem, and on
the documentation.

Feedback on this document

If you have any comments on this document, please send email to errata@arm.com
giving:

• the document title

• the document number

• the page number(s) to which your comments refer

• an explanation of your comments.

General suggestions for additions and improvements are also welcome.

Feedback on the AHB Example AMBA SYstem

If you have any comments or suggestions about this product, please contact your
supplier giving:

• the product name

• a concise explanation of your comments.
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. ix

Preface
Timing diagram conventions

This manual contains one or more timing diagrams. The following key explains the
components used in these diagrams. Any variations are clearly labelled when they
occur. Therefore, no additional meaning should be attached unless specifically stated.

Key to timing diagram conventions

Shaded bus and signal areas are undefined, so the bus or signal can assume any value
within the shaded area at that time. The actual level is unimportant and does not affect
normal operation.

Clock

Bus stable

HIGH to LOW

Transient

Bus to high impedance

Bus change

HIGH/LOW to HIGH

High impedance to stable bus
x Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

Chapter 1
Introduction

This chapter introduces the AHB Example AMBA SYstem (EASY). It contains the
following section:

• Overview of EASY on page 1-2.
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 1-1

Introduction
1.1 Overview of EASY

The EASY microcontroller comprises the building blocks needed to create an example
system based on the low-power, generic design methodology of the Advanced
Microcontroller Bus Architecture (AMBA).

The EASY microcontroller:

• enables custom devices to be developed in very short design cycles

• allows the resulting subcomponents to be easily reused in future designs.

Note
 This document refers to the Advanced High-performance Bus (AHB). For information
on the Advanced System Bus (ASB) refer to the ASB Example AMBA SYstem Technical
Reference Manual.

1.1.1 EASY system blocks

The example design provides all the system modules needed to manage an AMBA
system:

• reset controller

• arbiter

• decoder.

These system modules control various aspects of the Advanced High Performance Bus
(AHB).

1.1.2 EASY components

The example design comprises:

• Two buses:

— the AHB

— the Advanced Peripheral Bus (APB).

• The ARM processor AHB wrapper, to allow execution of ARM code in an AHB
system.

• The Test Interface Controller (TIC), to allow external control of the AHB during
system test.

• A minimum set of basic microcontroller peripherals. These are supported, and are
implemented as low-power designs on the APB. They include:

— an interrupt controller
1-2 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

Introduction
— a remap and pause controller

— a 16-bit timer module.

• The example Static Memory Interface (SMI). This demonstrates the minimum
requirements for an External Bus Interface (EBI).

• A 1KB block of internal memory.

The EASY system consists of a microcontroller with some external memory as shown
in Figure 1-1.

Figure 1-1 EASY system diagram

The descriptions in this manual refer to an AHB-based EASY system. For details of
ASB-based EASY system design refer to the Example AMBA SYstem Technical
Reference Manual.

AHB

APBXB

RetrySlave

ARM core
model

ExtROM

ExtRAM

Ticbox TICSMI Arbiter

IntMem

ResCntlDecoder

APBif

ARM core
AMBA wrapper

IntCntl

RemPause

Timers

Off-chip On-chip

FRC

FRC

MuxP2B

MuxS2M MuxM2S

Tube

Default
slave
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 1-3

Introduction
1-4 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

Chapter 2
The EASY Microcontroller

This chapter describes the microcontroller which is the main unit of the EASY system.
It contains the following sections:

• Functional overview on page 2-2

• The AMBA system components on page 2-3

• Reference peripherals on page 2-5

• Example components on page 2-8

• System test methodology on page 2-9.
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 2-1

The EASY Microcontroller
2.1 Functional overview

The modules of the EASY microcontroller are grouped in five classes:

AMBA system components

Used to control the general operation of the system.

Peripherals Low-power peripherals, which are connected to the peripheral
bus.

Example components

Demonstration modules that are only simulation models.

System test methodology

Modules used for testing the system.

Processor core The ARM processor core that is built into the EASY
microcontroller.

With the exception of the processor core the above modules are fully described in this
chapter. For details of the processor core refer to Chapter 3 ARM7TDMI AHB Wrapper.
2-2 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

The EASY Microcontroller
2.2 The AMBA system components

The Advanced Microcontroller Bus Architecture (AMBA) system comprises:

• Reset controller

• Arbiter

• Decoder

• AHB to APB bridge on page 2-4.

2.2.1 Reset controller

The reset controller consists of a state machine which generates the HRESETn signal.
This signal indicates the current reset state of the AMBA bus and is used by all the other
elements in the EASY microcontroller, primarily for power-on initialization.

Note
 All other reset modes, such as standby or warm reset, must be implemented separately.

2.2.2 Arbiter

The arbiter provides arbitration between bus masters competing for access to the AHB.
Although there are only two bus masters in the EASY microcontroller, the ARM and
the TIC, the arbiter has provision for up to four masters. To extend the number of
masters, refer to Chapter 7 Designer’s Guide. The arbitration is currently assigned with
a simple priority system, with the TIC as the highest priority, and the processor as the
lowest (also the reset default). The arbitration scheme is not defined in the AMBA
Specification and can be dependent on implementation.

2.2.3 Decoder

The decoder consists of a simple address decoding logic, which is used to select the
system bus slaves based on the address of the current transfer. This module controls the
configurable memory map for the system.
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 2-3

The EASY Microcontroller
2.2.4 AHB to APB bridge

The AHB to APB bridge interface is an AHB slave. When accessed (in normal
operation or system test) it initiates an access to the APB. APB accesses are of different
duration (three HCLK cycles in the EASY for a read, and two cycles for a write). They
also have their width fixed to one word, which means it is not possible to write only an
8-bit section of a 32-bit APB register. APB peripherals do not need a PCLK input as
the APB access is timed with an enable signal generated by the AHB to APB bridge
interface. This makes APB peripherals low power consumption parts, because they are
only strobed when accessed.

For more information on the APB bus refer to the AMBA Specification.
2-4 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

The EASY Microcontroller
2.3 Reference peripherals

Figure 2-1 shows how the reference peripherals are interconnected within the Reference
Peripherals Specification (RPS) block, and how they are connected to the bridge.

Figure 2-1 Block diagram of the RPS block and bridge

The base addresses of each of the peripherals (timer, interrupt controller, and remap and
pause controller) are defined in the AHB to APB bridge interface, which selects the
peripheral according to its base address. The whole APB address range is also defined
in the bridge.

These base addresses can be implementation-specific. The peripherals standard
specifies only the register offsets (from an unspecified base address), register bit
meaning, and minimum supported function.

Remap and
pause

controller

AHB to
APB

bridge

Advanced Peripheral Bus (APB)

AHB

Remap and
pause control

Processor
interrupts

Interrupt
sources

RPS
block

Peripheral
select
lines

Interrupt
controller

Timer
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 2-5

The EASY Microcontroller
Table 2-1 shows the three bases and their current addresses in the EASY
microcontroller.

Note
 When writing software or test patterns to run on the system, the absolute hex addresses
must not be used within the code. Instead, define the base addresses in a header and then
use the offset to this base address.

The APB data bus is split into two separate directions:

• read (PRDATA), where data travels from the peripherals to the bridge

• write (PWDATA), where data travels from the bridge to the peripherals.

This simplifies driving the buses because turnaround time between the peripherals and
bridge is avoided.

In the default system, because the bridge is the only master on the bus, PWDATA is
driven continuously. PRDATA is a multiplexed connection of all peripheral PRDATA
outputs on the bus, and is only driven when the slaves are selected by the bridge during
APB read transfers.

It is possible to combine these two buses into a single bidirectional bus, but precautions
must be taken to ensure that there is no bus clash between the bridge and the peripherals.

2.3.1 Timer

The timer comprises:

• two 16-bit periodic/free running down counters

• a clock prescaler (divide by 1, 16 or 256)

• a test veneer.

Table 2-1 Peripherals base addresses

Peripheral
EASY base
address

Interrupt controller 0x8000 0000

Timer 0x8400 0000

Remap and pause controller 0x8800 0000
2-6 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

The EASY Microcontroller
When the counters underflow (passing zero value and reloading) they can generate
interrupt requests which are passed to the interrupt controller. Both counter values can
be loaded, read, and controlled through addressable registers.

2.3.2 Interrupt controller

The interrupt controller contains a set of registers for controlling eight interrupt request
(IRQ) sources and one fast interrupt request (FIQ) source. These have the following
functions:

• enable or disable specific interrupt sources from triggering the ARM nIRQ or
nFIQ interrupt lines

• read the status of all interrupt sources at the inputs of the interrupt controller

• read the status of the interrupt sources enabled to trigger the ARM interrupt lines

• generate a software-triggered nIRQ signal to the ARM processor

• isolate the interrupt controller for test.

The number of IRQ sources can easily be extended by increasing the number of IRQ
registers.

2.3.3 Remap and pause controller

The remap and pause controller has three functions:

Reset status This enables software to determine whether the last reset was a
Power-On Reset (POR) or a soft reset. The latter function is
redundant in the EASY microcontroller, since it does not have a
soft reset. It is implemented only as an example for systems that
might provide a soft reset state.

Remap memory On reset the internal RAM is mapped out and bank 4 of the
external memory is mapped into location 0x0000 0000 which is the
boot location for the ARM processor. The reset memory map is
cancelled by writing to a register in this peripheral.

Pause mode The EASY microcontroller only supports one simple
power-saving mode, called Pause. This halts all bus activity (but
not the system clock) and waits for an interrupt signal from the
interrupt controller before restarting the system.

The remap and pause controller also contains an ID register which is currently only a
single bit. This block can be extended in many ways including support for
software-generated resets, more sophisticated power-saving modes and more detailed
ID information.
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 2-7

The EASY Microcontroller
2.4 Example components

The example components include:

• Internal memory

• Static memory interface

• Retry slave

• Default slave.

Typically these blocks must be re-implemented according to the specific system
requirements of the microcontroller being developed.

2.4.1 Internal memory

The internal memory is a very basic behavioral model of 1KB of zero wait state static
memory, which is not synthesizable. The size of the memory can be extended by
altering a setting in the HDL file.

2.4.2 Static memory interface

The SMI is a 32-bit External Bus Interface (EBI) that can connect up to four 256MB
banks of zero to four wait state memory to the EASY microcontroller. However, the
number of wait states is set as a constant in the HDL (before synthesis), and is set for
all four banks. The example SMI also supports test signals from the TIC. These override
the normal operation of the SMI during system test, and directly control the tristate
drivers on the XD bus.

2.4.3 Retry slave

The retry slave is an example of how to implement an AHB slave that generates retry
responses and wait states for read or write accesses. It is used as a template for building
slaves that require the use of a retry response.

2.4.4 Default slave

The default slave is used to fill holes in the memory map, so that the system will still
function if an invalid area of memory is accessed. This must be modified to suit the
memory map of the system, so that all areas of memory will access a system slave.
2-8 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

The EASY Microcontroller
2.5 System test methodology

Each AHB slave, AHB master, and APB peripheral should be tested in complete
isolation. This means that components must be designed with test veneers that allow
non-bus signals to be controlled and observed.

When a component is tested, a special test bit is set. This test bit switches these
multiplexed signals to test registers (accessible via the AHB or APB), which effectively
isolates each component from the rest of the system.

Test vectors should be written to test the component in isolation, making as few
assumptions about the rest of the system as possible.

Figure 2-2 Simple test veneer example

A good example of this approach is provided by the test veneer for the ARM processor,
which is described in the AMBA ARM7TDMI Interface Data Sheet. This approach is
also used to test the peripherals on the APB bus.

Under normal conditions, when the TIC is not in use, the current bus master performs
transfers to and from any one of the following slaves:

• internal memory

• AHB to APB bridge interface (to access the peripherals)

• example retry slave

• EBI.

On-chip
output

Off-chip connections
do not require mux

Component
under test

Test Register

Test mux
(optional)

Test mux

On-chip input

Output value
during test

APB or AHB

Test Register
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 2-9

The EASY Microcontroller
However, when test mode is entered, and the TIC is the current master, the following
slaves can be accessed:

• internal memory

• AHB to APB bridge interface (to access the peripherals)

• example retry slave

• ARM bus master (test veneer).

Note
 Bus masters can become slaves during test mode. The EBI cannot be tested via the TIC
due to the way test access is provided to the AHB bus. The TIC is a state machine driven
by the test request inputs (TESTREQA and TESTREQB). It also contains a register
that allows it to read address information from the test bus (TESTBUS) and drive it onto
the AHB address bus (HADDR). However, it cannot drive the test bus. Instead, it
overrides the normal function of the EBI, forcing it to provide a 32-bit channel between
HRDATA and TESTBUS, passing out read data during a read test vector. Thus, in test
mode, the EBI cannot function as a slave.

TESTBUS must be a 32-bit channel. In a system which only supports a 16-bit or 8-bit
external data bus, additional external pins such as address lines must be forced into a
special test mode in order to supply the full 32-bit bidirectional channel required.

For more information about:

• the test interface, see the AMBA Specification

• applying test vectors to an EASY-based microcontroller, see the EASY User
Guide.

Note
 The TESTREQA, TESTREQB and TESTBUS signals are the same as the TREQA,
TREQB and TBUS signals described in the AMBA Specification (Rev 2.0).
2-10 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

Chapter 3
ARM7TDMI AHB Wrapper

This chapter describes the ARM7TDMI processor core wrapper that can be used with
an AHB-based EASY system.

Note
 For details of other supported CPU wrappers refer to the Micropack AHB CPU
Wrappers Technical Reference Manual.

This chapter contains the following sections:

• About the ARM7TDMI AHB wrapper on page 3-2

• Signal interface on page 3-3

• ARM7TDMI AHB signal descriptions on page 3-4

• Overview of the ARM7TDMI wrapper on page 3-7

• Connections to ARM7TDMI core on page 3-9

• Default signal configurations on page 3-13

• Description of the ARM7TDMI wrapper blocks on page 3-14.
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 3-1

ARM7TDMI AHB Wrapper
3.1 About the ARM7TDMI AHB wrapper

The ARM7TDMI AHB wrapper module interfaces between the ARM7TDMI and the
AHB bus, allowing the ARM7TDMI to become an AHB bus master. The module also
includes a test interface, allowing the ARM7TDMI to be selected as a bus slave and
tested via the TIC interface. If, however, an alternative test approach is to be used, the
test logic may be removed from the AMBA interface.

The top level block diagram is shown in Figure 3-1, which shows how the wrapper
interfaces to the ARM7TDMI. The AHB input signals are routed through the wrapper
before becoming inputs to the ARM7TDMI. The outputs are also routed through the
wrapper before being driven onto the AHB.

Figure 3-1 ARM7TDMI AHB AMBA wrapper block diagram

ABE

ABORT

ALE

APE

BIGEND

BL[3:0]

BREAKPT

CPA

CPB

DBGEN

DBGRQ

EXTERN0

EXTERN1

ISYNC

nENIN

nRESET

nWAIT

SDOUTBS

TBE

nFIQ
nIRQ

nTRST
TCK
TDI
TMS

DIN

MCLK

BUSEN
DBE

BUSDIS

DBGACK

DBGRQI

HIGHZ

LOCK

nCPI

nENOUT

nENOUTI

nEXEC

nM

RANGEOUT0

RANGEOUT1

SCREG

TBIT

COMMRX
COMMTX
nTDOEN

A
nMREQ

SEQ
nRW
MAS

nOPC
nTRANS

DOUT

A7TWrap

ARMNFIQ
ARMNIRQ

nTRST
TCK
TDI

TMS

HWDATAin
HRDATAin

HCLK

HRESETn

HTRANSin
HWRITEin
HREADYin

HRESPin
HGRANTarm

COMMRX
COMMTX
nTDOEN

HADDRout
HTRANSout

HWRITEout
HSIZE
HPROT

HWDATAout
HRDATAout

HBURST
HREADYout
HRESPout
HBUSREQarm
HLOCKarm

ARM7TDMI

T

e

s

t

I

n

p

u

t

s

T

e

s

t

O

u

t

p

u

t

s

TDO TDO
3-2 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

ARM7TDMI AHB Wrapper
3.2 Signal interface

The ARM7TDMI AHB wrapper has a combined AHB master and AHB slave interface.
The master interface is used during normal system operation. The slave interface is used
during testing of the core when the Test Interface Controller (TIC) is acting as the
current AHB bus master.
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 3-3

ARM7TDMI AHB Wrapper
3.3 ARM7TDMI AHB signal descriptions

Table 3-1 describes the signals used by the ARM7TDMI AHB wrapper.

Table 3-1 ARM7TDMI AHB signal descriptions

Signal Type Direction Description

HCLK Bus clock Input This clock times all bus transfers. All signal timings are
related to the rising edge of HCLK.

HRESETn Reset Input The bus reset signal is active LOW and is used to reset the
system and the bus. This is the only active LOW AHB signal.

HADDRout[31:0] Address bus Output This is the 32-bit system address bus.

HTRANSin[1:0]
HTRANSout[1:0]

Transfer type Input/
output

These signals indicates the type of the current transfer, which
can be NONSEQUENTIAL, SEQUENTIAL, or IDLE. The
wrapper does not use the BUSY transfer type.

HWRITEin

HWRITEout

Transfer direction Input/
output

When HIGH this signal indicates a write transfer and when
LOW a read transfer.

HSIZE[2:0] Transfer size Output This signal indicates the size of the transfer, which is
typically byte (8-bit), halfword (16-bit) or word (32-bit).

HBURST[2:0] Burst type Output This signal indicates if the transfer forms part of a burst. The
ARM core always performs incrementing bursts of
unspecified length.

HPROT[3:0] Protection control Output The protection control signals indicate if the transfer is an
opcode fetch or data access, and if the transfer is a supervisor
mode access or user mode access.

HWDATAin[31:0]

HWDATAout[31:0]

Write data bus Input/
output

The write data bus is used to transfer data from the master to
the bus slaves during write operations.

HSELArmTest Slave select Input Each AHB slave has its own select signal and this signal
indicates that the current transfer is intended for the selected
slave. This signal is a combinatorial decode of the address
bus.

HRDATAin[31:0]

HRDATAout[31:0]

Read data bus Input/
output

The read data bus is used to transfer data from bus slaves to
the bus master during read operations.

HREADYin
HREADYout

Transfer done Input/
output

When HIGH the HREADY signal indicates that a transfer
has finished on the bus. This signal may be driven LOW to
extend a transfer.
3-4 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

ARM7TDMI AHB Wrapper
HRESPin[1:0]
HRESPout[1:0]

Transfer response Input /
output

The transfer response provides additional information on the
status of a transfer. The wrapper only uses the OKAY
response.

HBUSREQarm Bus request Output A signal from the wrapper to the bus arbiter which indicates
that it requires the bus. This output signal is always set HIGH
as the core requires use of the bus all of the time.

HLOCKarm Locked transfers Output When HIGH this signal indicates that the master requires
locked access to the bus and no other master should be
granted the bus until this signal is LOW.

HGRANTarm Bus grant Input This signal indicates that the ARM core is currently the
highest priority master. Ownership of the address/control
signals changes at the end of a transfer when HREADY is
HIGH, so a master gains access to the bus when both
HREADY and HGRANTx are HIGH.

ARMNFIQ ARM fast
interrupt

Input This is the ARM fast interrupt request, and is routed to the
nFIQ input on the ARM CPU.

ARMNIRQ ARM interrupt Input This is the ARM interrupt request, and is routed to the nIRQ
input on the ARM CPU.

COMMRX Comms receive Output When LOW, this signal denotes that the communications
channel receive buffer is empty. The communications
channel allows serial communication of bytes between the
processor and an external device, using the JTAG port as the
serial connection.

COMMTX Comms transmit Output When HIGH, this signal denotes that the communications
channel transmit buffer is empty.

nTRST Not test reset Input Active LOW reset signal for the boundary scan logic. This
pin must be pulsed or driven LOW to achieve normal device
operation. This is part of the IEEE 1149.1 JTAG standard.

TCK Test clock Input This is the JTAG clock. This is part of the IEEE 1149.1 JTAG
standard.

TDI Test data in Input This is part of the IEEE 1149.1 JTAG standard.

Table 3-1 ARM7TDMI AHB signal descriptions (continued)

Signal Type Direction Description
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 3-5

ARM7TDMI AHB Wrapper
TMS Test mode select Input This is part of the IEEE 1149.1 JTAG standard.

nTDOEN Not TDO enable Output When LOW, this signal denotes that serial data is being
driven out on the TDO output. nTDOEN would normally be
used as an output enable for a TDO pin in a packaged part.

TDO Test data out Output This is part of the IEEE 1149.1 JTAG standard.

Table 3-1 ARM7TDMI AHB signal descriptions (continued)

Signal Type Direction Description
3-6 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

ARM7TDMI AHB Wrapper
3.4 Overview of the ARM7TDMI wrapper

The ARM7TDMI AHB wrapper (A7TWrap) is made up of the following five blocks:

A7TWrapBurst Controls the AHB address and control output generation during
burst transfers.

A7TWrapLock Used to generate the HLOCK output, when the core performs a
locked transfer (SWP instruction).

A7TWrapMaster Controls the bus master interface to the AHB.

A7TWrapCtrl Contains a test multiplexor used to drive the core control inputs
with test data during TIC testing of the core. During normal
operation the control inputs are driven with default values. This
block is removable.

A7TWrapTest Contains the main test state machine used to control the
application of test vectors during core TIC testing. A test register
stores the core control inputs during test, which are driven through
the A7TWrapCtrl block, and the core control outputs are driven
onto the AHB read data bus.

For more details of these blocks, refer to Description of the ARM7TDMI wrapper blocks
on page 3-14.
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 3-7

ARM7TDMI AHB Wrapper
Figure 3-2 shows the connections between the blocks that make up the wrapper module.

Figure 3-2 ARM7TDMI AHB wrapper block diagram

ARM7TDMI
core

A7TWrap
Burst

A7TWrap
Master

A7TWrap
Lock

A7TWrap
Test

A7TWrap
Ctrl

AHB lock

Test control
signals

Test
control
signals

Core address
and control

AHB
address
and
control

AHB
master
interface

Core control
outputs

Core control
inputs

Core clock and
data inputs

Core control

AHB inputs

AHB slave
interface

AHB
wrapper
interface

A7TWrap
3-8 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

ARM7TDMI AHB Wrapper
3.5 Connections to ARM7TDMI core

Table 3-2 shows the connections of the ARM7TDMI core inputs and outputs.

Table 3-2 Connections of ARM7TDMI signals

Signal Type Direction Connected to

A[31:0] Addresses Output HADDRout[31:0]

ABE Address bus enable Input Tied HIGH to drive the address and control signals at
all times.

ABORT Memory abort Input Generated from slave response when wrapper is bus
master.

ALE Address latch enable Input Tied HIGH to allow pipelined addresses from the core.

APE Address pipeline enable Input Tied HIGH to allow pipelined addresses from the core.

BIGEND Big endian configuration Input Default configuration is tied LOW for little-endian
operation.

BL[3:0] Byte latch control Input Tied HIGH to latch all 32 bits of the data bus when the
core is clocked.

BREAKPT Breakpoint Input Tied LOW as there is no external debug logic.

BUSDIS Bus disable Output Only used for test.

BUSEN Data bus configuration Input Tied HIGH to use the unidirectional data buses.

COMMRX Communications channel
receive

Output Connected to system output COMMRX.

COMMTX Communications channel
transmit

Output Connected to system output COMMTX.

CPA Coprocessor absent Input Tied HIGH as there is no external coprocessor.

CPB Coprocessor busy Input Tied HIGH as there is no external coprocessor.

D[31:0] Data bus Input/
output

Unconnected as the unidirectional data buses are used.

DBE Data bus enable Input Tied HIGH to drive the data buses at all times.

DBGACK Debug acknowledge Output Only used for test.

DBGEN Debug enable Input Tied HIGH to allow use of JTAG debug.
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 3-9

ARM7TDMI AHB Wrapper
DBGRQ Debug request Input Tied LOW as there is no external debug logic.

DBGRQI Internal debug request Output Only used for test.

DIN[31:0] Data input bus Input Comes from HRDATAin when a bus master, and from
HWDATAin when a slave in TIC test mode.

DOUT[31:0] Data output bus Output Used to drive HWDATAout.

DRIVEBS Boundary scan cell enable Output Unconnected output.

ECAPCLK Extest capture clock Output Unconnected output.

ECAPCLKBS Extest capture clock for
boundary scan

Output Unconnected output.

ECLK External clock input Output Unconnected output.

EXTERN[1:0] External input Input Tied LOW as there is no external debug logic.

HIGHZ - Output Only used for test.

ICAPSCLKBS Intest capture clock Output Unconnected output.

IR[3:0] TAP controller instruction
register

Output Unconnected output.

ISYNC Synchronous interrupts Input Tied HIGH for synchronous interrupts.

LOCK Locked operation Output Only used for test.

MAS[1:0] Memory access size Output Used to generate HSIZE.

MCLK Memory clock input Output Main clock input of opposite phase to HCLK.

nCPI Not coprocessor
instruction

Output Only used for test.

nENIN Not enable input Input Tied LOW to enable data buses.

nENOUT Not enable output Output Only used for test.

nENOUTI Not enable output Output Only used for test.

nEXEC Not executed Output Only used for test.

nFIQ Not fast interrupt request Input Connected to system ARMNFIQ.

nHIGHZ Not HIGHZ Output Unconnected output.

Table 3-2 Connections of ARM7TDMI signals (continued)

Signal Type Direction Connected to
3-10 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

ARM7TDMI AHB Wrapper
nIRQ Not interrupt request Input Connected to system ARMNIRQ.

nM[4:0] Not processor mode Output Only used for test.

nMREQ Not processor request Output Used to generate HTRANS.

nOPC Not opcode fetch Output Used to generate HPROT and HLOCKarm.

nRESET Not reset Input From system reset HRESETn.

nRW Not read/write Output Used to generate HWRITE.

nTDOEN Not TDO enable Output To system nTDOEN.

nTRANS Not memory translate Output Used to generate HPROT.

nTRST Not test reset Input From system nTRST.

nWAIT Not wait Input Tied HIGH, as wait states are inserted by disabling the
core clock MCLK.

PCLKBS Boundary scan update
clock

Output Unconnected output.

RANGEOUT[1:0] EmbeddedICE macrocell Output Only used for test.

RSTCLKBS Boundary scan reset clock Output Unconnected output.

SCREG[3:0] Scan chain register Output Only used for test.

SDINBS Boundary scan serial input
data

Output Unconnected output.

SDOUTBS Boundary scan serial
output data

Input Tied LOW as no external scan chains implemented.

SEQ Sequential address Output Used to generate HTRANS.

SHCLKBS Boundary scan shift clock,
phase 1

Output Unconnected output.

SHCLK2BS Boundary scan shift clock,
phase 2

Output Unconnected output.

TAPSM[3:0] TAP controller state
machine

Output Unconnected output.

TBE Test bus enable Input Tied HIGH to drive outputs.

Table 3-2 Connections of ARM7TDMI signals (continued)

Signal Type Direction Connected to
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 3-11

ARM7TDMI AHB Wrapper
TBIT Thumb state Output Only used for test.

TCK Test clock Input From system TCK.

TCK1 TCK, phase 1 Output Unconnected output.

TCK2 TCK, phase 2 Output Unconnected output.

TDI Test data input Input From system TDI.

TDO Test data output Output To system TDO.

TMS Test mode select Input From system TMS.

Table 3-2 Connections of ARM7TDMI signals (continued)

Signal Type Direction Connected to
3-12 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

ARM7TDMI AHB Wrapper
3.6 Default signal configurations

Within the wrapper there are a number of control signals that are tied to default values.
The following configurations exist:

• BIGEND is tied LOW for little-endian operation, but may be tied HIGH for
big-endian operation.

• ISYNC is tied HIGH for synchronous interrupts, but may be tied LOW if
asynchronous interrupts are used.

• The debug input signals (BREAKPT, DBGEN, DBGRQ and EXTERN[1:0])
are tied to fixed values. These signals may be used to implement additional debug
logic external to the core.

• The coprocessor signals (CPA, CPB) are tied HIGH, but will be required if an
external coprocessor is to be added.

• If an additional boundary scan is to be added, the SDOUTBS input will be
required.
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 3-13

ARM7TDMI AHB Wrapper
3.7 Description of the ARM7TDMI wrapper blocks

This section contains descriptions of each of the following blocks:

• A7TWrap

• A7TWrapBurst

• A7TWrapLock on page 3-23

• A7TWrapMaster on page 3-27

• A7TWrapCtrl on page 3-33

• A7TWrapTest on page 3-34

• Non-standard design practices on page 3-42.

3.7.1 A7TWrap

This top-level block is purely structural, and connects together all of the blocks within
the wrapper.

If the test interface is to be removed, it can be done by removing it from this module and
tying the unconnected output signals that are generated to appropriate levels, as
described within the HDL code. Removal of the test multiplexor is optional, because
when the test interface is removed the multiplexor control input will be tied LOW.

3.7.2 A7TWrapBurst

The burst control block generates the AHB address and control outputs from the core
address and control outputs. A simplified diagram of the HDL code is shown in
Figure 3-3 on page 3-15.
3-14 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

ARM7TDMI AHB Wrapper
Figure 3-3 A7TWrapBurst block system diagram

Tran
Reg

iHaddr
Int

+ 1

iHtransInt

HaddrInt

HtransInt

A

nMREQ
& SEQ

TranComb

Addr
SelReg

Skip

MclkNext

Hwrite
Int

Hsize
Lat

nTrans
Reg

nRW

MAS

nTRANS

HwriteInt

HsizeInt

HprotInt

Bound
Reg

iHaddrInt

iHsizeInt
Bound

HREADY

TranInc

AddrSel

iHsizeInt

TranReg
Mod

TranInc

Skip

MclkNext

0
iHSizeInt

00
HprotInt

AlignA

nTrans
Reg

nTRANS

nTrans
Reg

HLOCK

iHtransInt
CurrInstr

LastInstr

nOpcGen
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 3-15

ARM7TDMI AHB Wrapper
There are three main sections to this block:

• HADDR generation

• HTRANS generation on page 3-20

• Other control signal generation on page 3-20.

HADDR generation

The address generation section generates the output address from two sources:

• the core address output A
• the internal address incrementer.

These address sources are selected according to the current transfer type, using the state
machine shown in Figure 3-4.

Figure 3-4 Address selection state machine

The four states are described in:

• STA_INCR on page 3-17

• STA_SKIP on page 3-17

• STA_INT on page 3-18

• STA_CORE on page 3-18.

(HREADY = 1 and S_CYC)
or (HREADY = 0 and
(S_CYC or I_CYC orC_CYC))

HRESETn = 0

HREADY = 1
and N_CYC

HREADY = 1
and (I_CYC
or C_CYC)

N_CYC

HREADY = 0 or
(HREADY = 1 and
MclkNext = 0 and
(N_CYC or S_CYC))

HREADY = 0
and N_CYC

HREADY = 1 and
MclkNext = 1 and
(N_CYC or S_CYC)

S_CYC

STA_INCR

STA_CORE

STA_SKIP

I_CYC or
C_CYC

STA_INT

HREADY = 1 and
(I_CYC or C_CYC)
3-16 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

ARM7TDMI AHB Wrapper
• STA_INCR

During this state the bus is synchronized with the core, and is performing the
current core transfer.

Due to the late address output from the core, the incrementer is used as the current
source for the AHB address output, allowing the system address to be driven out
much earlier than the core A output.

As the current core transfer is the same as the current bus transfer, the HTRANS
output is generated combinatorially from the core outputs.

The STA_INCR state is entered from:

— reset, when the system is initialized

— STA_INT when an S_CYC follows an I_CYC or C_CYC

— STA_CORE when both the bus and the core are clocked after an N_CYC

— STA_INCR when the bus is clocked with an S_CYC, or when the bus is not
clocked and is not performing an N_CYC.

The next state is:

— STA_SKIP when the bus is clocked and the core starts an N_CYC

— STA_INT when the bus is clocked and the core starts an I_CYC or C_CYC

— STA_CORE when the bus is not clocked and the core starts an N_CYC

— STA_INCR when the bus is clocked with an S_CYC, or when the bus is not
clocked and is not performing an N_CYC.

• STA_SKIP

During this state the core is running one cycle ahead of the bus.

When the core starts an N_CYC, a new address value will be driven out by the
core that is not related to the address of the previous transfer. An IDLE cycle is
inserted on the AHB during the STA_INCR state when the core first started the
N_CYC, allowing time for the new core address to be sampled, and then the
NONSEQUENTIAL transfer is started on the AHB during this state.

To allow the AHB to resynchronize with the core, the core clock is stopped during
the next cycle, using the skip block output which is passed to the core clock
enabling logic.

The STA_SKIP state is entered from:

— STA_INCR when the bus is clocked and the core starts an N_CYC

— STA_INT when the core performs an N_CYC following an I_CYC or
C_CYC.

The next state is always STA_CORE, as the previous IDLE transfer will always
receive a zero wait OKAY response.
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 3-17

ARM7TDMI AHB Wrapper
• STA_INT

During this state the core and bus are synchronized.

When the bus is clocked and the core starts an internal cycle, this state is entered.
The core address is selected, as if the following transfer is a SEQUENTIAL or
internal the address output will not change. If the next transfer is a
NONSEQUENTIAL, then a new address will be driven out by the core, and will
be sampled when the STA_SKIP state is entered.

The STA_INT state is entered from:

— STA_INCR when the bus is clocked and the core starts an I_CYC or
C_CYC after an S_CYC

— STA_CORE when the bus is clocked and the core starts an I_CYC or
C_CYC after an N_CYC

— STA_INT when following an I_CYC or C_CYC the bus is not clocked or
the core starts another I_CYC or C_CYC.

The next state is:

— STA_INCR when the core starts an S_CYC

— STA_SKIP when the core starts an N_CYC

— STA_INT when the core starts an I_CYC or C_CYC or the bus is not
clocked.

• STA_CORE

During this state the bus resynchronizes with the core, as the core is not clocked,
and the current core transfer is started on the AHB. The core address output is
used to generate HADDR.

When this state is entered from STA_INCR, the STA_SKIP state is bypassed.
This is possible as when the bus is not clocked and the core starts an N_CYC, the
IDLE cycle will be started on the bus during the HREADY LOW cycle. As
HREADY being LOW causes the core clock to be disabled for one cycle, then the
STA_SKIP state is not needed to allow the bus and core to resynchronize, and the
STA_CORE state can be entered immediately as the core and bus will now be
synchronized again.

The STA_CORE state is entered from:

— STA_SKIP following an N_CYC when the bus is clocked

— STA_INCR following an N_CYC when the bus is not clocked

— STA_CORE when the bus is not clocked, or when the bus is clocked and
the core is not clocked and is performing an S_CYC or N_CYC.
3-18 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

ARM7TDMI AHB Wrapper
The next state is:

— STA_INCR when both the bus and core are clocked

— STA_INT when the bus is clocked and the core starts an I_CYC or C_CYC

— STA_CORE when the bus is not clocked, or when the bus is clocked and
the core is not clocked and is performing an S_CYC or N_CYC.

The output of the state machine is used to control the input to the iHaddrInt
registers, selecting either the incremented or the core address. There is also a
multiplexor after the incrementer which selects the current AHB address output
when the core is not clocked, because the incremented address must not change
if the core is not clocked. For example, this happens when the wrapper is not
granted the bus but the core wants to perform a transfer.

The 8-bit incrementer uses the HADDR output value, and increments against
halfword or word boundaries depending on the size of the current transfer. When
the address incrementer overflows, the bound signal becomes valid, which causes
an IDLE and NONSEQUENTIAL transfer sequence to be inserted, allowing time
for the new address value to be sampled from the core.

The HADDR output is stored in a register to improve the output timing. This
structure may need to be changed, as detailed in the HDL code, depending on the
clock frequency that the system is driven with. The default system assumes that
the A address output from the core becomes valid in time to be sampled on the
rising edge of HCLK by the iHaddrInt registers. If this is not possible then an
array of latches must be used to hold the address, with an array of registers used
to store the output of the incrementer, as shown in Figure 3-5.

Figure 3-5 Address output latches used with slow core output address

+ 1

HaddrInt

A

Incrm
address
register

iHsizeInt

Core
address

latch
ENHCLK

HCLK
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 3-19

ARM7TDMI AHB Wrapper
HTRANS generation

The HtransInt output is mainly generated from the core transfer signals nMREQ and
SEQ, as well as the address selection state machine.

The HTRANS output multiplexor is used to select either the current core transfer
output, or the previous transfer held in the TranReg registers, according to the address
selection state machine.

When the incremented address is the source of the current AHB address, then the
current core transfer outputs are used to generate the AHB transfer outputs. As the
incremented address is generated before the core starts the transfer that relates to that
address, then the direct core outputs must be used.

When the core address is the current source, then the registered transfer value is used to
generate the AHB transfer outputs. When the core address is valid, it relates to the
previous transfer that the core was generating, so the registered transfer values must be
used.

The core transfer type outputs are modified so that:

• when an incrementer address boundary is crossed, a NONSEQUENTIAL cycle
is generated

• when a SEQUENTIAL follows an INTERNAL cycle, a NONSEQUENTIAL is
generated

• when the core indicates an INTERNAL or COPROCESSOR cycle, an IDLE is
generated.

The output of the multiplexor is then converted from the core transfer type encoding
into the AHB HTRANS transfer encoding.

Other control signal generation

Registers are used to generate HwriteInt, HsizeInt(1:0) and HprotInt(1) directly from
the core outputs, so that they are valid with the correct AHB timing.

It is assumed that the core outputs being used are valid early enough to be sampled on
the rising edge of HCLK (falling edge of MCLK). If these signals cannot be
guaranteed to be valid on this edge (for example, the system bus speed is run at a
frequency approaching the maximum frequency of the ARM7TDMI core, effectively
making the core outputs valid later in the clock cycle), then clock HIGH enabled
transparent latches will need to be used to store the signals, so that the control outputs
are stable at the end of the address phase on the rising edge of the clock.
3-20 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

ARM7TDMI AHB Wrapper
The timing of the nOPC output from the core does not naturally match up with the AHB
bus control signal timing, so an internally generated version of this signal is used to
drive bit zero of the HprotInt output. A simple state machine is used to control the
generation of this signal, which is shown in Figure 3-6 below:

Figure 3-6 Instruction fetch state machine

The three states are described in:

• STI_INSTR

• STI_IDLE on page 3-22

• STI_NSEQ on page 3-22.

STI_INSTR

During this state the wrapper is performing an instruction fetch, and bit zero of
HprotInt is driven HIGH.

The STI_INSTR state is entered from:

• reset, when the system is initialized

• STI_NSEQ when a NONSEQUENTIAL transfer is started that is not part of a
locked transfer

• STI_INSTR when an instruction fetch is being performed.

The next state is:

• STI_IDLE when an IDLE transfer is inserted before a transfer that is not an
instruction fetch

(nOpcReg = 0 or iHtransInt != NSEQ)
and (nOPC = 0 or iHtransInt != IDLE)

HRESETn = 0

(nOpcReg = 0 or iHtransInt != NSEQ)
and nOPC = 1 and iHtransInt = IDLE

nOpcReg = 1 and
iHtransInt = NSEQ

iHtransInt =
NSEQ

HlockReg = 0 and
iHtransInt = NSEQ

STI_INSTR

STI_IDLE

HlockReg = 1 or
iHtransInt != NSEQ

STI_NSEQ

iHtransInt != NSEQ
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 3-21

ARM7TDMI AHB Wrapper
• STI_NSEQ when a NONSEQUENTIAL transfer is performed that is not an
instruction fetch

• STI_INSTR when an instruction fetch is being performed.

STI_IDLE

During this state the wrapper is performing an IDLE transfer before a
NONSEQUENTIAL bus access that is not an instruction fetch. Bit zero of HprotInt is
driven HIGH, as during an IDLE cycle the value of HPROT is not used.

The STI_IDLE state is entered from:

• STI_INSTR when an IDLE transfer is inserted before a transfer that is not an
instruction fetch

• STI_IDLE when the NONSEQUENTIAL transfer has not been started yet.

The next state is:

• STI_NSEQ when the NONSEQUENTIAL transfer has started, following the
IDLE

• STI_IDLE when the NONSEQUENTIAL transfer has not been started yet.

STI_NSEQ

During this state the wrapper is not performing an instruction fetch, so bit zero of
HprotInt is driven LOW.

The STI_NSEQ state is entered from:

• STI_INSTR when a NONSEQUENTIAL transfer is performed that is not an
instruction fetch

• STI_IDLE when the NONSEQUENTIAL transfer has started, following the
IDLE

• STI_NSEQ when a burst of SEQUENTIAL transfers is being performed, or a
locked transfer is performed that consists of two back to back
NONSEQUENTIAL transfers.
3-22 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

ARM7TDMI AHB Wrapper
3.7.3 A7TWrapLock

The Lock generation block controls the generation of the HLOCK wrapper output,
which is only set when the core performs a SWP instruction. A simplified diagram of
the HDL code is shown in Figure 3-7.

Figure 3-7 A7TWrapLock block system diagram

This block detects when the core is about to perform a SWP instruction by looking at
the instructions that are being read in on the HRDATAin bus, and then checking that
the instruction is actually being executed when it exits the instruction pipeline.

When the block detects a SWP instruction being read in, it is passed along the line of
two registers (equivalent to the three-stage pipelining of the ARM7TDMI, with the first
stage being the cycle that the instruction is read in). It is then used to set the HLOCK
output HIGH when the SWP instruction is performed.

SWPEn

SWP

Detect SWP

DetReg

2

SWP

DetReg

1

Tran

Prev

nRW

Prev1

nRW

Prev2

Inst

Fetch

Hlock

Reg

nRW

nMREQ

SEQ

nOPC

HTRANS

HWRITE

InstAddr Branch
Hlock

Curr

HRDATA

MclkNext

Hlock

Int
HlockInt

Mclk

Next

Reg
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 3-23

ARM7TDMI AHB Wrapper
The code can branch before the SWP is performed, and this needs to be checked for.
This is done by detecting when a NONSEQUENTIAL instruction fetch is performed,
as this indicates that a new location in memory has been jumped to. The only case when
this does not indicate a branch is when it follows a write cycle. The first instruction fetch
after a write will always be NONSEQUENTIAL, and a branch will never immediately
follow a write. A read is always followed by an INTERNAL cycle, and the following
instruction fetch will be SEQUENTIAL if the code has not branched. So, the branch
signal is set HIGH when there is a SWP instruction in the pipeline and the core is
performing a NONSEQUENTIAL instruction fetch which is not immediately after a
write. This is then used to synchronously reset the last SWP register (register 2 is not
cleared as the instruction after the branch may be a SWP) and clear iHlockInt, so that
the HLOCK output does not get set if the code branches before it reaches the SWP
instruction.

If wait states or SPLIT/RETRY cycles are inserted during an instruction fetch, then it is
possible for the read data to become available many cycles after the address cycle of the
instruction fetch is performed. MclkNext is used to enable the SWP detection registers,
ensuring that they are only clocked when the instruction fetch transfer completes.

The lock state machine shown in Figure 3-8 on page 3-25 controls the generation of the
HLOCK wrapper output. Two locked states are used to indicate the locked read and
write transfers that are performed during a SWP instruction.
3-24 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

ARM7TDMI AHB Wrapper
Figure 3-8 Locked state machine

The three states are described in:

• ST_NORMAL

• ST_LOCK1 on page 3-26

• ST_LOCK2 on page 3-26.

• ST_NORMAL

This state is used when the core is not performing a locked SWP transfer, and the
HLOCK output is held LOW.

The ST_NORMAL state is entered from:

— reset, when the system is initialized

— ST_LOCK2 when the transfer after the SWP read has started

— ST_NORMAL when a locked transfer is not being performed on the bus

The next state is:

— ST_LOCK1 when the instruction fetch preceding the SWP transfers is
performed and the SWP is not branched past

— ST_NORMAL when a locked transfer is not being performed on the bus.

InstFetch = 1 and
SWPDetReg1 = 1 and
Branch = 0

InstFetch = 1 or
SWPDetReg1 = 0 or
Branch = 1

ST_NORMAL

HRESETn = 0

MclkNextReg = 0ST_LOCK1

ST_LOCK2

MclkNextReg = 1
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 3-25

ARM7TDMI AHB Wrapper
• ST_LOCK1

This state is entered during the transfer before the read transfer of the SWP
instruction, which is always an instruction fetch. If a branch has occurred before
this instruction fetch has been performed, then this state is not entered, as it will
not be necessary to perform a locked transfer.

The HLOCK output is held HIGH, indicating that the next AHB transfer (the
SWP read) is locked.

The ST_LOCK1 state is entered from:

— ST_NORMAL when the instruction fetch preceding the SWP transfers is
performed and the SWP is not branched past

— ST_LOCK1 when the core has not started the read transfer of the SWP
instruction.

The next state is:

— ST_LOCK2 when the core has been clocked, and is starting the locked read
transfer of the SWP instruction

— ST_LOCK1 when the core has not started the locked read transfer of the
SWP instruction.

• ST_LOCK2

This state is used during the read of the locked transfer to indicate that the
following write transfer is also locked.

The HLOCK output is held HIGH, indicating that the next AHB transfer (the
SWP write) is locked.

The ST_LOCK2 state is always entered from ST_LOCK1 when the core has been
clocked and starts the read transfer.

The next state is always ST_NORMAL, when the locked write transfer is started.

If multiple SWP instructions are performed sequentially, then the state machine
will continue to cycle through all three states as the core performs:

1. an instruction fetch

2. the read and write transfers of the SWP

3. the next instruction fetch and SWP instruction.
3-26 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

ARM7TDMI AHB Wrapper
3.7.4 A7TWrapMaster

This block controls the interface of the wrapper to the AHB as a bus master. A
simplified diagram of the HDL code is shown in Figure 3-9.

Figure 3-9 A7TWrapMaster block system diagram

Current
Grant

HREADYin
HGRANTarm

AddrDrive
DataDrive

Next

Grant

MclkEn

MclkNext
MCLK

MclkNext
HCLK

MclkEn
Reg

HoldSel

HoldSel

Next

Holding
Regs

HoldEn

Internal AHB
Address and

Control signals

AHB Address
and Control
Outputs

DOUT HWDATAout

SR2DataDrive
HREADYin

HRESPin
SR1

AbortInt
iDataDrive

HRESPin

HRDATAin

TestMode

DIN
HWDATAin
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 3-27

ARM7TDMI AHB Wrapper
The A7TWrapMaster block is made up of many different sections, the main ones being
the:

• Granted state machine

• Core clock generation on page 3-30

• Address and control holding registers on page 3-31

• Address, control and data output drivers on page 3-32.

Granted state machine

This is used to determine when the wrapper is granted the bus as a bus master, and when
it can drive the address, control and data outputs without clashing with other bus
masters. The AddrDrive and DataDrive outputs are generated from the current state, and
can be used to enable or disable the wrapper address, control and data outputs onto the
AHB depending on the interconnection scheme used.

The state machine used is shown in Figure 3-10, and only advances when HREADYin
is HIGH.

Figure 3-10 A7TWrapMaster block state machine

The four states are described in:

• ST_NOT_GRANT on page 3-29

• ST_GAIN_GRANT on page 3-29

ST_GAIN_GRANT

AddrDrive = 1

DataDrive = 0

ST_LOSE_GRANT

AddrDrive = 0

DataDrive = 1

HGRANT = 1

HGRANT = 1

HGRANT = 0

HGRANT = 0

HGRANT = 0

HGRANT = 1

HGRANT = 0

ST_NOT_GRANT

AddrDrive = 0

DataDrive = 0

HGRANT = 1
ST_GRANT

AddrDrive = 1

DataDrive = 1

HRESETn = 0
3-28 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

ARM7TDMI AHB Wrapper
• ST_GRANT

• ST_LOSE_GRANT on page 3-30.

• ST_NOT_GRANT

This state is used when the wrapper is not granted control of the bus, and the
address, control and data outputs are all driven LOW to avoid clashing with the
current bus master.

The ST_NOT_GRANT state is entered from:

— reset, when the system is initialized

— ST_LOSE_GRANT when the grant input has been set LOW for two
completed bus cycles

— ST_NOT_GRANT when the grant input has been set LOW for at least three
completed bus cycles.

The next state is:

— ST_GAIN_GRANT when the grant input is first set HIGH

— ST_NOT_GRANT when the grant input is set LOW.

• ST_GAIN_GRANT

This state is used when the wrapper has first been granted control of the bus, and
can drive the address and control outputs onto the bus. The previously granted
master still has control of the read and write data buses from the previous transfer.

The ST_GAIN_GRANT state is entered from:

— ST_NOT_GRANT when the grant input is first set HIGH

— ST_LOSE_GRANT when the wrapper lost control of the bus for one cycle,
but has been granted control of the bus again.

The next state is:

— ST_GRANT when the grant input is set HIGH

— ST_LOSE_GRANT when the wrapper was only granted control of the bus
for one cycle.

• ST_GRANT

This state is used when the wrapper has been granted the bus for at least two
cycles, and can drive all of the address, control and data outputs without clashing
with another bus master.

The ST_GRANT state is entered from:

— ST_GAIN_GRANT when the grant input has been set HIGH for two
completed bus cycles

— ST_GRANT when the grant input has been set HIGH for at least three
completed bus cycles.
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 3-29

ARM7TDMI AHB Wrapper
The next state is:

— ST_LOSE_GRANT when the grant input is first set LOW

— ST_GRANT if the grant input is still set HIGH.

• ST_LOSE_GRANT

This state is used when the grant input has just been set LOW, and the wrapper
can only drive the data outputs. The address and control lines will be driven by
the currently granted bus master.

The ST_LOSE_GRANT state is entered from:

— ST_GRANT when the grant input is first set LOW

— ST_GAIN_GRANT when the wrapper was only granted control of the bus
for one cycle.

The next state is:

— ST_NOT_GRANT when the grant input has been set LOW for two cycles,
and the wrapper fully loses control of the bus

— ST_GAIN_GRANT when the wrapper lost control of the bus for one cycle,
but has been granted control of the bus again.

Core clock generation

This controls the generation of the MCLK input to the core, which is of the opposite
phase to HCLK.

The core clock is disabled:

• when HREADYin is LOW and the core is granted the bus

• when the holding registers contain an unperformed transfer

• when the Skip input from the A7TWrapBurst block is set HIGH, indicating that
the clock must be disabled while a new core address is being sampled.

The clock is enabled at all other times.

A combinatorial path is used between the system clock input (HCLK), the enabling and
inverting logic, and the core clock output (MCLK). This is required as both clocks are
running at the same frequency, so a registered MCLK output cannot be used.

The latched enable signal (MclkEn) is gated with the system clock to generate the core
clock. A latch is used for the enable to ensure that no glitches are generated after the
rising edge of the system clock.
3-30 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

ARM7TDMI AHB Wrapper
If a rising edge register was used to hold the enable, then when the enable changed from
HIGH to LOW, the output of the enable register would not change until after the rising
edge of the clock. This would mean that the core clock output would be set LOW for a
short time until the enable output became HIGH.

The registered clock enable (MclkEnReg) is used in this block to control the operation
of the holding registers, and is needed to align the clock enable to the rising edge of the
clock.

Address and control holding registers

Holding registers are needed to allow the regeneration of transfers that were stopped due
to a SPLIT or RETRY response from the current slave, or when the wrapper loses grant.

During normal operation the outputs of the holding registers are not used, but they are
enabled so that they always contain a copy of the previous transfer address and control
data. When they are needed, the enable is set LOW, ensuring that the registers hold their
current values until after the transfer has been regenerated. The clock signal Enable is
used to control the loading of the holding registers.

A multiplexor is used to select either the current transfer signals, or the holding register
outputs. As it is possible for a transfer to be held for many cycles, a register is used to
store the multiplexor control signal. This is set and cleared using the HoldSet and
HoldClr signals.

HoldSel is set HIGH during a split or retry cycle, or when the core has lost grant, and
is requesting a SEQUENTIAL or NONSEQUENTIAL transfer.

HoldSel is cleared when the holding registers have been used to regenerate a transfer,
which is when the wrapper has been regranted the bus, or during the second phase of a
SPLIT or RETRY cycle when the wrapper has not lost grant of the bus.

The HTRANS signal is modified before and after the holding registers. As a
regenerated transfer will never be part of a burst, then if a SEQUENTIAL transfer is
stored in the holding registers it is first converted to a NONSEQUENTIAL. Also, after
the holding register selection multiplexors, the transfer type is converted to IDLE during
the second cycle of a SPLIT or RETRY transfer, as the current transfer must always be
IDLE during this cycle.
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 3-31

ARM7TDMI AHB Wrapper
The holding register HLOCK signal is modified before passing through the holding
register selection multiplexers. If an idle transfer is generated after an instruction fetch
and immediately before a locked SWP read, it will not be regenerated if the instruction
fetch is split or retried. This means that when the instruction fetch is regenerated, the
next transfer will be the locked read, so the HLOCK output must be set HIGH during
the instruction fetch transfer. As the holding registers will not have HLOCK set HIGH
for the instruction fetch, a combinatorial path must exist between the internal lock
signal and the HLOCK wrapper output. This is generated by ORing the internal lock
signal with the output of the lock holding register.

Address, control and data output drivers

The outputs from the holding register multiplexers are used to directly drive the address
and control outputs.

The HBURST output is held at 001, as the core only performs incrementing bursts of
unspecified length.

The HBUSREQarm output is held HIGH, as the wrapper is always requesting use of
the bus.

If it is not possible for the wrapper to continuously drive its outputs all of the time
without clashing with other masters on the bus (for example, the system uses an OR bus
connection scheme), the outputs must be enabled only when the wrapper is granted
control of the bus.

This is done using the AddrDrive and DataDrive outputs from the granted state
machine. AddrDrive is used to enable the address and control outputs (HADDRout,
HTRANSout, HWRITEout, HSIZE, HPROT and HLOCKarm), and is set during
the ST_GAIN_GRANT and ST_GRANT states. DataDrive is used to enable the write
data output (HWDATAout) during the ST_GRANT and ST_LOSE_GRANT states.

The AHB slave outputs are only used during TIC testing mode. HREADYout is driven
by the HreadyInt signal from the test block. HRESPout is always driven to OKAY, as
the wrapper will never assert SPLIT, RETRY or ERROR responses.

This section of the block is also used to drive some core inputs. AbortInt (which is
passed to the A7TWrapCtrl block) is set HIGH when an error response is generated
from the currently selected slave, and is used to drive the ABORT core input during
normal operation.

DIN, the core data input, is driven with HWDATAin during TIC testing mode, or with
HRDATAin when the wrapper is acting as a standard AHB bus master.
3-32 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

ARM7TDMI AHB Wrapper
3.7.5 A7TWrapCtrl

This block contains the test wrapper control multiplexor used during TIC testing of the
core. A simplified diagram of the A7TWrapCtrl block is shown in Figure 3-11.

Figure 3-11 A7TWrapCtrl block system diagram

This block is only used during test mode when the wrapper is acting as an AHB slave,
and drives the control inputs of the core with the TIC test data. It is separated from the
main test block (A7TWrapTest) to allow for easier removal of the test wrapper.

When not in test mode the control inputs are driven to their default values (either HIGH
or LOW), or are driven with wrapper inputs, such as the two interrupt lines and the
JTAG pins. The AbortInt signal is generated in the A7TWrapMaster block.

If the test wrapper is removed, then this multiplexor will be optimized out during
synthesis, and the outputs will be driven with their default values. It is also possible to
remove this block if the test wrapper is not used. The default connections that the
outputs must be tied to are shown in the A7TWrap HDL file.

BUSEN, DBE and nENIN are all set to constant values, because they do not need to be
controlled during normal system use, or during core TIC testing.

TestCtrl

TestMode

Core control
inputs

Default core
control values
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 3-33

ARM7TDMI AHB Wrapper
3.7.6 A7TWrapTest

The test interface block is used to allow the wrapper module to act as an AHB slave
during TIC testing of the core. A simplified diagram of the HDL code is shown in
Figure 3-12.

Figure 3-12 A7TWrapTest block system diagram

The main parts of this block are:

• the test state machine, which controls the application of the test vectors

• the 28-bit test register, which stores the value of the control inputs during test.

The state diagram for the test state machine is shown in Figure 3-13 on page 3-35.

HREADYout

Current
Test

TestMode
Next

Test
Mode

TestClk

Next

iTestClk

TestRead
Next

iTest

Read

TestStat

Next
Test
Stat

NewCtrl
Next

NewCtrl

nENOUT
Reg

nENOUTI
Reg

HTRANSin

Test
Mode

Test
Clk

Test
Read

Test
Stat

TestCtrl

Test
Ctrl

HWDATAin[27:0]

Core
control
outputs

A
Test
Data

nENOUT

nENOUTI

HWRITEin NextTest

HSELArmTest
TestEn

1

TestStat

TestRead

TestData

HRDATAoutDOUT

00 HRESPout
3-34 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

ARM7TDMI AHB Wrapper
Figure 3-13 A7TWrap Test block state machine

The TestEn signal is used to control when test vectors are applied to the core, and
therefore controls the transitions through the test state machine. TestEn is set HIGH
when the core is addressed during a valid transfer, when the HTRANS input indicates
a NONSEQUENTIAL or a SEQUENTIAL transfer.

The seven states are described in:

• ST_INACTIVE on page 3-36

• ST_CTRL_IN on page 3-36

• ST_DATA_IN on page 3-36

• ST_DATA_OUT on page 3-37

• ST_STAT_OUT on page 3-37

• ST_ADDR_OUT on page 3-37

• ST_TURNAROUND on page 3-38.

TestEn = 0

TestEn = 1

TestEn = 0

TestEn = 1 and
HWRITEin = 1

TestEn = 1 and
HWRITEin = 0

TestEn = 1 TestEn = 1

TestEn = 0

TestEn = 1

TestEn = 0

TestEn = 0

TestEn = 1

TestEn = 1

HRESETN = 0

TestEn = 0

TestEn = 0

ST_CTRL_IN

ST_DATA_IN

ST_INACTIVE

ST_DATA_OUT

ST_STAT_OUT

ST_ADDR_OUT ST_TURNAROUND
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 3-35

ARM7TDMI AHB Wrapper
• ST_INACTIVE

This state is used when the wrapper is not in test mode, and all test outputs are
driven to their default levels. The core is clocked as normal in this state.

The ST_INACTIVE state is entered from:

— reset, when the system is initialized

— ST_ADDR_OUT when the end of the test has been reached.

The next state is:

— ST_CTRL_IN when test mode is first entered

— ST_INACTIVE when the test wrapper is not addressed during a valid
transfer.

• ST_CTRL_IN

This state is used to load the test register with the control data that is currently on
the write data bus. This then determines the values of the control signals that will
be applied to the core when it is clocked. The core is not clocked during this state.

The ST_CTRL_IN state is entered from:

— ST_INACTIVE when test mode is first entered

— ST_TURNAROUND when the next control vector is being written onto the
data bus

— ST_CTRL_IN when test mode has been entered, but the wrapper is not
currently selected.

The next state is:

— ST_DATA_IN when write data is being applied to the core

— ST_DATA_OUT when read data is being loaded from the core.

• ST_DATA_IN

In this state write data is being applied to the core (the core is performing a read
transfer). The core is clocked in this state.

The ST_DATA_IN state is entered from:

— ST_CTRL_IN when write data is being applied to the core

— ST_DATA_IN when write data has been applied to the core, but the wrapper
is not currently selected.

The next state is:

— ST_STAT_OUT when the wrapper is selected for the output status signals
to be read

— ST_DATA_IN when the wrapper is not currently selected.
3-36 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

ARM7TDMI AHB Wrapper
• ST_DATA_OUT

In this state read data is being loaded from the core (the core is performing a write
transfer). The core is clocked in this state.

The ST_DATA_OUT state is entered from:

— ST_CTRL_IN when read data is being loaded from the core

— ST_DATA_OUT when read data has been loaded from the core, but the
wrapper is not currently selected.

The next state is:

— ST_STAT_OUT when the wrapper is selected for the output status signals
to be read

— ST_DATA_OUT when the wrapper is not currently selected.

• ST_STAT_OUT

This state is used to read the output status signals from the core. The core is not
clocked in this state.

The ST_STAT_OUT state is entered from:

— ST_DATA_OUT when the previous transfer was a data write to the core

— ST_DATA_IN when the previous transfer was a data read from the core

— ST_STAT_OUT when the core output status signals have just been read, but
the wrapper is not currently selected.

The next state is:

— ST_ADDR_OUT when the wrapper is selected for the address output to be
read from the core

— ST_STAT_OUT when the wrapper is not currently selected.

• ST_ADDR_OUT

This state is used to read the address output from the core. The core is not clocked
in this state.

The ST_ADDR_OUT state is only entered from ST_STAT_OUT, when the
previous transfer was a read of the core status outputs.

The next state is:

— ST_INACTIVE when the wrapper is still selected, indicating the end of the
test

— ST_TURNAROUND when the wrapper is not selected, indicating the
turnaround cycle before the new control data is written to the test registers.
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 3-37

ARM7TDMI AHB Wrapper
• ST_TURNAROUND

This state is used to allow the external data bus time to turnaround between the
address read cycle and the control vector write cycle. The core is not clocked in
this state.

The ST_TURNAROUND state is entered from:

— ST_ADDR_OUT when the wrapper is not selected after the address read
cycle

— ST_TURNAROUND when a turnaround cycle has been inserted on the
external data bus, but the wrapper is not currently selected.

The next state is:

— ST_CTRL_IN when the turnaround cycle has been inserted, and the next
control vector is being written into the test registers

— ST_TURNAROUND when the wrapper is not currently selected.

The 28-bit test register that is loaded during the ST_CTRL_IN state determines
the control inputs to the core when it is clocked during the ST_DATA_IN or
ST_DATA_OUT states. Table 3-3 shows the control input bit positions.

Table 3-3 ARM7TDMI control input bit position

Signal Description
Bit
position

Comments

SDOUTBS Boundary scan serial
output data

27 -

TBE Test bus enable 26 -

APE Address pipeline
enable

25 -

BL[3:0] Byte latch control 24:21 ANDed with TestClk, and should only
be valid during data access cycle.

TMS Test mode select 20 -

TDI Test data in 19 -

TCK Test clock 18 ANDed with TestClk.

nTRST Not test reset 17 -

EXTERN1 External input 1 16 -

EXTERN0 External input 0 15 -

DBGRQ Debug request 14 -
3-38 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

ARM7TDMI AHB Wrapper
The test data output multiplexor is found in the A7TWrapCtrl block, but is controlled
by the test outputs of this block. It is used to select between:

• core data output during ST_DATA_OUT

• core address output during ST_ADDR_OUT

• core status outputs during ST_STAT_OUT.

BREAKPT Breakpoint 13 -

DBGEN Debug enable 12 -

ISYNC Synchronous
interrupts

11 -

BIGEND Big-endian
configuration

10 -

CPA Coprocessor absent 9 -

CPB Coprocessor busy 8 -

ABE Address bus enable 7 This should normally be set HIGH, as if
the address bus is tristated (ABE
LOW), then it will not be possible to
read address values.

ALE Address latch enable 6 -

DBE Data bus enable 5

nFIQ Not fast interrupt
request

4 -

nIRQ Not interrupt request 3 -

ABORT Memory abort 2 This should normally be driven when
HRESP indicates ERROR, and the
wrapper has control of the AHB data
bus.

nWAIT Not wait 1 ANDed with TestClk, so that the core
state can only change during the data
access cycle.

nRESET Not reset 0 -

Table 3-3 ARM7TDMI control input bit position (continued)

Signal Description
Bit
position

Comments
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 3-39

ARM7TDMI AHB Wrapper
The selected output is driven onto the HRDATAout output data bus.

Table 3-4 shows the bit positions of the status output signals when driven on the data
bus.

Table 3-4 ARM7TDMI status bit positions

Signal Description
Bit
position

Comment

BUSDIS Bus disable 31 -

SCREG[3:0] Scan chain register 30:27 These signals are not important
to the normal functioning of the
core, but are included in this test
vector to give a slight
improvement in fault coverage
during scan and debug testing.

HIGHZ HIGHZ instruction in
TAP controller

26 -

nTDOEN Not TDO enable 25 -

DBGRQ1 Internal debug request 24 -

RANGEOUT0 ICEbreaker Rangeout0 23 -

RANGEOUT1 ICEbreaker Rangeout1 22 -

COMMRX Communications
channel receive

21 -

COMMTX Communications
channel transmit

20 -

DBGACK Debug acknowledge 19 -

TDO Test data out 18 This value is often tristate (as
indicated by nTDOEN), so will
usually be masked out.

nENOUT Not enable output 17 nENOUT is only valid during
the data access cycle, so
TestClk is used to clock a
register that will capture the
correct state.
3-40 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

ARM7TDMI AHB Wrapper
This test interface block may be removed if not required, by removing the
A7TWrapTest block from the A7TWrap top level wrapper HDL file. It is then necessary
to tie the outputs which were originally generated from this block to fixed values, and
these are described in the A7TWrap HDL code.

Removing this block means that the test inputs to the A7TWrapCtrl block will be static,
allowing the test multiplexors to be removed during synthesis, or manually removed
from the HDL code.

The AHB slave outputs are only used during TIC testing mode. HREADYout is always
driven HIGH, as the wrapper will never generate wait states. HRESPout is always
driven to OKAY, as the wrapper will never assert split, retry or error responses.

HRDATAout is generated according to the current test control signal outputs, and is
driven to either DOUT from the core, TestData from the test block (which is comprised
of the core control outputs), or LOW.

nENOUTI Not enable output 16 nENOUTI is only valid during
the data access cycle, so
TestClk is used to clock a
register that will capture the
correct state.

TBIT Thumb state 15 -

nCPI Not coprocessor
instruction

14 -

nM[4:0] Not processor mode 13:9 -

nTRANS Not memory translate 8 -

nEXEC Not executed 7 -

LOCK Locked operation 6 -

MAS[1:0] Memory access size 5:4 -

nOPC Not opcode fetch 3 -

nRW Not read/write 2 -

nMREQ Not memory request 1 -

SEQ Sequential address 0 -

Table 3-4 ARM7TDMI status bit positions (continued)

Signal Description
Bit
position

Comment
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 3-41

ARM7TDMI AHB Wrapper
If an OR bus interconnection scheme is used, then all three of these slave outputs must
be driven LOW when the test wrapper has been removed or when the wrapper is not in
test mode, so that they do not clash with other slaves on the bus.

3.7.7 Non-standard design practices

This section contains all the non-standard design practices that are used in the
ARM7TDMI AHB wrapper.

Signal delays

In some cases delays have been added to some of the wrapper signals. This is necessary
to ensure that in a zero delay RTL system simulation using a core model that requires
setup and hold times, no timing violations are created on the core inputs. When a full
netlist system simulation is run, then these delays are not required, as they will be
provided by the cell and interconnect delays of the system.

These delays can be found in the A7TWrap top-level HDL file. They are used to create
hold times on the data input to the core DIN, the external abort input ABORT, the BL
and nWAIT core inputs, and the two interrupt sources nFIQ and nIRQ.

Transparent latches

Two of the wrapper blocks use transparent latches rather than registers to hold data
values.

In the A7TWrapMaster block a transparent LOW latch is used to hold the clock enable
value. This removes the chance of generating a glitch on the clock output, which is
generated if the system clock is gated with a rising edge registered version of the clock
enable.

In the A7TWrapBurst block, it may be necessary to use transparent HIGH latches to
generate the HSIZE and HPROT outputs directly from the core outputs MAS,
nTRANS and nOPC. The timing of these core outputs in the default system allows the
use of registers, but if the clock speed of the system relative to the maximum clock
speed of the core is increased, then latches may be required to sample these core output
signals if they become valid after the rising edge of the clock.

Gated clock

The enabled clock output to the core is a gated version of the main system clock. This
method of controlling the timing of the core has been chosen as due to the timing of the
core and the AHB, it is not possible to use the nWAIT core input. This means that wait
states must be passed to the core via the clock, so clock enabling and gating must be
3-42 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

ARM7TDMI AHB Wrapper
used. This clock control logic has been constructed to eliminate the generation of
glitches on the clock output, and only adds a single AND gate into the path between the
system clock and the core clock.
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 3-43

ARM7TDMI AHB Wrapper
3-44 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

Chapter 4
AHB Modules

This chapter describes the data sheets for the modules that are connected to the
Advanced High Performance Bus (AHB). It contains the following sections:

• APB bridge on page 4-2

• Arbiter on page 4-14

• Decoder on page 4-25

• Default slave on page 4-29

• Master to slave multiplexor on page 4-32

• Slave to master multiplexor on page 4-36

• Reset controller on page 4-40

• Retry slave on page 4-46

• Static memory interface on page 4-53

• Test interface controller on page 4-64.
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 4-1

AHB Modules
4.1 APB bridge

The AHB to APB bridge is an AHB slave, providing an interface between the high-
speed AHB and the low-power APB. Read and write transfers on the AHB are converted
into equivalent transfers on the APB. As the APB is not pipelined, then wait states are
added during transfers to and from the APB when the AHB is required to wait for the
APB. Figure 4-1 shows the block diagram of the APB bridge module.

Figure 4-1 Block diagram of bridge module

The main sections of this module are:

• AHB slave bus interface

• APB transfer state machine, which is independent of the device memory map

• APB output signal generation.

To add new APB peripherals, or alter the system memory map, only the address decode
sections need to be modified.

Address
decode

State
machine

HRESP

HREADYout

HWRITE

HTRANS

HRESETn

HCLK

PWRITE

PSELx
signals

PADDRHADDR

HWDATA PWDATA

PENABLE

DFF

HRDATA PRDATA

HREADYin

A
H

B
B

u
s A

P
B

B
u

s

DFF

DFF

DFF

DFF

HSELAPBif
4-2 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

AHB Modules
4.1.1 Signal descriptions

The APB bridge module signals are described in Table 4-1.

Table 4-1 Signal descriptions for bridge module

Signal Type Direction Description

HCLK Bus clock Input This clock times all bus transfers.

HRESETn Reset Input The bus reset signal is active LOW, and is used to reset the
system and the bus.

HADDR[31:0] Address bus Input The 32-bit system address bus.

HTRANS[1:0] Transfer type Input This indicates the type of the current transfer, which can be
NONSEQUENTIAL, SEQUENTIAL, IDLE or BUSY.

HWRITE Transfer direction Input When HIGH this signal indicates a write transfer, and when
LOW, a read transfer.

HWDATA[31:0] Write data bus Input The write data bus is used to transfer data from the master to
the bus slaves during write operations. A minimum data bus
width of 32 bits is recommended. However, this may easily be
extended to allow for higher bandwidth operation.

HSELAPBif Slave select Input Each APB slave has its own slave select signal, and this signal
indicates that the current transfer is intended for the selected
slave. This signal is a combinatorial decode of the address bus.

HRDATA[31:0] Read data bus Output The read data bus is used to transfer data from bus slaves to the
bus master during read operations. A minimum data bus width
of 32 bits is recommended. However, this may easily be
extended to allow for higher bandwidth operation.

HREADYin
HREADYout

Transfer done Input/output When HIGH the HREADY signal indicates that a transfer has
finished on the bus. This signal may be driven LOW to extend
a transfer.

HRESP[1:0] Transfer response Output The transfer response provides additional information on the
status of a transfer. This module will always generate the
OKAY response.

PRDATA[31:0] Peripheral read
data bus

Input The peripheral read data bus is driven by the selected
peripheral bus slave during read cycles (when PWRITE is
LOW).
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 4-3

AHB Modules
Timing diagrams showing the relationship between AHB and APB transfers can be
found in the APB Specification.

PWDATA[31:0] Peripheral write
data bus

Output The peripheral write data bus is continuously driven by this
module, changing during write cycles (when PWRITE is
HIGH).

PENABLE Peripheral enable Output This enable signal is used to time all accesses on the peripheral
bus. PENABLE goes HIGH on the second clock rising edge
of the transfer, and LOW on the third (last) rising clock edge
of the transfer.

PSELx Peripheral slave
select

Output There is one of these signals for each APB peripheral present
in the system. The signal indicates that the slave device is
selected, and that a data transfer is required. It has the same
timing as the peripheral address bus. It becomes HIGH at the
same time as PADDR, but will be set LOW at the end of the
transfer.

PADDR[31:0] Peripheral
address bus

Output This is the APB address bus, which may be up to 32 bits wide
and is used by individual peripherals for decoding register
accesses to that peripheral. The address becomes valid after
the first rising edge of the clock at the start of the transfer. If
there is a following APB transfer, then the address will change
to the new value, otherwise it will hold its current value until
the start of the next APB transfer.

PWRITE Peripheral
transfer
direction

Output This signal indicates a write to a peripheral when HIGH, and
a read from a peripheral when LOW.

It has the same timing as the peripheral address bus.

Table 4-1 Signal descriptions for bridge module (continued)

Signal Type Direction Description
4-4 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

AHB Modules
4.1.2 Peripheral memory map

The APB bridge controls the memory map for the peripherals, and generates a select
signal for each peripheral. The default system memory map is shown in Figure 4-2.

Figure 4-2 Peripheral memory map

4.1.3 Function and operation of module

The APB bridge responds to transaction requests from the currently granted AHB
master. The AHB transactions are then converted into APB transactions. The state
machine, shown in Figure 4-3 on page 4-6, controls:

• the AHB transactions with the HREADYout signal

• the generation of all APB output signals.

The individual PSELx signals are decoded from HADDR, using the state machine to
enable the outputs while the APB transaction is being performed.

If an undefined location is accessed, operation of the system continues as normal, but
no peripherals are selected.

Peripheral memory map

Undefined

Interrupt controller

Counter timers

Remap & pause

0x8000 0000

0x8400 0000

0x8800 0000

0x8C00 0000

0xBFFF FFFF

Address
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 4-5

AHB Modules
Figure 4-3 State machine for AHB to APB interface

The individual states of the state machine operation are described in the following
sections:

• ST_IDLE on page 4-7

• ST_READ on page 4-7

• ST_WWAIT on page 4-7

• ST_WRITE on page 4-8

• ST_WRITEP on page 4-8

• ST_RENABLE on page 4-9

• ST_WENABLE on page 4-9

• ST_WENABLEP on page 4-9.

Valid = 1

Valid = 1

Valid = 0 and
HwriteReg = 1

Valid = 1 and
HWRITE = 1

HwriteReg = 0

ST_IDLE

ST_WENABLE

ST_WRITEST_READ

ST_WENABLEP

Valid = 1 and
HWRITE = 0

Valid = 0

Valid = 0
Valid = 0

Valid = 1 and
HwriteReg = 1

ST_RENABLE

Valid = 1 and
HWRITE = 0 Valid = 1 and

HWRITE = 0

Valid = 1 and
HWRITE = 1

Valid = 1 and
HWRITE = 1

ST_WWAIT

ST_WRITEP

Valid = 0

HRESETn = 0

Valid = 0
4-6 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

AHB Modules
ST_IDLE

During this state the APB buses and PWRITE are driven with the last values they had,
and PSEL and PENABLE lines are driven LOW.

The ST_IDLE state is entered from:

• reset, when the system is initialized

• ST_RENABLE, ST_WENABLE, or ST_IDLE, when there are no peripheral
transfers to perform.

The next state is:

• ST_READ, for a read transfer, when the AHB contains a valid APB read transfer

• ST_WWAIT, for a write transfer, when the AHB contains a valid APB write
transfer.

ST_READ

During this state the address is decoded and driven onto PADDR, the relevant PSEL
line is driven HIGH, and PWRITE is driven LOW. A wait state is always inserted to
ensure that the data phase of the current AHB transfer does not complete until the APB
read data has been driven onto HRDATA.

The ST_READ state is entered from ST_IDLE, ST_RENABLE, ST_WENABLE, or
ST_WENABLEP during a valid read transfer.

The next state will always be ST_RENABLE.

ST_WWAIT

This state is needed due to the pipelined structure of AHB transfers, to allow the AHB
side of the write transfer to complete so that the write data becomes available on
HWDATA. The APB write transfer is then started in the next clock cycle.

The ST_WWAIT state is entered from ST_IDLE, ST_RENABLE, or ST_WENABLE,
during a valid write transfer.

The next state will always be ST_WRITE.
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 4-7

AHB Modules
ST_WRITE

During this state the address is decoded and driven onto PADDR, the relevant PSEL
line is driven HIGH, and PWRITE is driven HIGH.

A wait state is not inserted, as a single write transfer can complete without affecting the
AHB.

The ST_WRITE state is entered from:

• ST_WWAIT, when there are no further peripheral transfers to perform

• ST_WENABLEP, when the currently pending peripheral transfer is a write, and
there are no further transfers to perform.

The next state is:

• ST_WENABLE, when there are no further peripheral transfers to perform

• ST_WENABLEP, when there is one further peripheral write transfer to perform.

ST_WRITEP

During this state the address is decoded and driven onto PADDR, the relevant PSEL
line is driven HIGH, and PWRITE is driven HIGH. A wait state is always inserted, as
there must only ever be one pending transfer between the currently performed APB
transfer and the currently driven AHB transfer. See the write transfer timing diagrams
in the AMBA Specification (Rev 2.0) for more details.

The ST_WRITEP state is entered from:

• ST_WWAIT, when there is a further peripheral transfer to perform.

• ST_WENABLEP, when the currently pending peripheral transfer is a write, and
there is a further transfer to perform.

The next state will always be ST_WENABLEP.
4-8 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

AHB Modules
ST_RENABLE

During this state the PENABLE output is driven HIGH, enabling the current APB
transfer. All other APB outputs remain the same as the previous cycle.

The ST_RENABLE state is always entered from ST_READ.

The next state is:

• ST_READ, when there is a further peripheral read transfer to perform

• ST_WWAIT, when there is a further peripheral write transfer to perform

• ST_IDLE, when there are no further peripheral transfers to perform.

ST_WENABLE

During this state the PENABLE output is driven HIGH, enabling the current APB
transfer. All other APB outputs remain the same as the previous cycle.

The ST_WENABLE state is always entered from ST_WRITE.

The next state is:

• ST_READ, when there is a further peripheral read transfer to perform

• ST_WWAIT, when there is a further peripheral write transfer to perform

• ST_IDLE, when there are no further peripheral transfers to perform.

ST_WENABLEP

A wait state is inserted if the pending transfer is a read because, when a read follows a
write, an extra wait state must be inserted to allow the write transfer to complete on the
APB before the read is started.

The ST_WENABLEP state is entered from:

• ST_WRITE, when the currently driven AHB transfer is a peripheral transfer

• ST_WRITEP, when there is a pending peripheral transfer following the current
write.

The next state is:

• ST_READ, when the pending transfer is a read

• ST_WRITE, when the pending transfer is a write, and there are no further
transfers to perform

• ST_WRITEP, when the pending transfer is a write, and there is a further transfer
to perform.
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 4-9

AHB Modules
4.1.4 System description

This section describes how the HDL code for the APB bridge is set out. A simple system
block diagram, with information about the main parts of the HDL code, is followed by
details of the registers, inputs, and outputs used in the module. This should be read in
conjunction with the HDL code.

Figure 4-4 shows the APB bridge module block diagram.

Figure 4-4 APB bridge module block diagram

The AHB to APB bridge comprises a state machine, which is used to control the
generation of the APB and AHB output signals, and the address decoding logic which
is used to generate the APB peripheral select lines.

All registers used in the system are clocked from the rising edge of the system clock
HCLK, and use the asynchronous reset HRESETn.

Figure 4-5 on page 4-11 shows the APB bridge HDL file.

Output data
and address
bus drivers

APB
bridge
module

State
machine

APB output
drivers

AHB slave
output drivers

Standard AHB
slave interface

APB address
decoder
4-10 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

AHB Modules
Figure 4-5 APB bridge module system diagram

PSELxInt

PSELx

Hready
next

Next
state

Current
state

Penable
next

PENABLE

Haddr
reg

Hwrite
reg

iPADDR

PWDATA

HADDR

PADDR

PWDATAHWDATA

PENABLE

HREADYout

PSELx

HWRITE

PRDATA HRDATA

HRESP

iHREADY
out

Pwrite
next

iPWRITE

PWRITE
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 4-11

AHB Modules
The main sections in this module are explained in the following paragraphs:

• Constant definitions

• AHB slave bus interface

• APB transfer state machine

• APB output signal generation on page 4-13

• AHB output signal generation on page 4-13.

Constant definitions

The constant PADDRWIDTH sets the width of the peripheral address bus that is used,
up to a maximum of 32 bits. This size depends on the size of address that is needed by
the peripherals in the system. The default value is a 16-bit address bus.

The next two constants define the state machine states, and the top four address bits that
are used to decode the peripheral select outputs. If the peripheral address map is
changed from the default, then these constants must be modified to match the changes.

AHB slave bus interface

This module uses the standard AHB slave bus interface, which comprises:

• the valid transfer detection logic which is used to determine when a valid transfer
is accessing the slave

• the address and control registers, which are used to store the information from the
address phase of the transfer for use in the data phase.

Due to the different AHB to APB timing of read and write transfers, either the current
or the previous address input value is needed to correctly generate the APB transfer. A
multiplexor is therefore used to select between the current address input or the
registered address, for read and write transfers respectively.

APB transfer state machine

The transfer state machine is used to control the application of APB transfers based on
the AHB inputs. The state diagram in Figure 4-3 on page 4-6 shows the operation of the
state machine, which is controlled by its current state and the AHB slave interface
signals.
4-12 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

AHB Modules
APB output signal generation

The generation of all APB output signals is based on the status of the transfer state
machine:

• PWDATA is a registered version of the HWDATA input, which is only enabled
during a write transfer. As the bridge is the only bus master on the APB, then it
can drive PWDATA continuously.

• PENABLE is only set HIGH during one of three enable states, in the last cycle
of an APB transfer. A register is used to generate this output from the next state
of the transfer state machine.

• The PSELx outputs are decoded from the current transfer address. They are only
valid during the read, write and enable states, and are all driven LOW at all other
times so that no peripherals are selected when no transfers are being performed.

• PADDR is a registered version of the currently selected address input (HADDR
or the address register) and only changes when the read and write states are
entered at the start of the APB transfer.

• PWRITE is set HIGH during a write transfer, and only changes when a new APB
transfer is started. A register is used to generate this output from the next state of
the transfer state machine.

• The APBen signal is used as an enable on the PSEL, PWRITE and PADDR
output registers, ensuring that these signals only change when a new APB transfer
is started, when the next state is ST_READ, ST_WRITE, or ST_WRITEP.

AHB output signal generation

A standard AHB slave interface consists of the following three outputs:

• HRDATA is directly driven with the current value of PRDATA. APB slaves only
drive read data during the enable phase of the APB transfer, with PRDATA set
LOW at all other times, so bus clash is avoided on HRDATA (assuming OR bus
connections for both the AHB and APB read data buses).

• HREADYout is driven with a registered signal to improve the output timing. Wait
states are inserted by the APB bridge during the ST_READ and ST_WRITEP
states, and during the ST_WENABLEP state when the next transfer to be
performed is a read.

• HRESP is continuously held LOW, as the APB bridge does not generate SPLIT,
RETRY or ERROR responses.
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 4-13

AHB Modules
4.2 Arbiter

The AMBA bus specification is a multi-master bus standard. As a result, a bus arbiter
is needed to ensure that only one bus master has access to the bus at any particular point
in time. Each bus master requests control of the bus, and the arbiter decides which has
the highest priority and issues a grant signal accordingly.

Every system must have a default bus master which is granted use of the bus when no
other bus master requires control. Figure 4-6 shows the arbiter block diagram.

Figure 4-6 Arbiter block diagram

The default arbiter included in the EASY design can support up to four bus masters,
although only two are used. It is expandable up to a maximum of fifteen bus masters,
excluding the default master.

The main sections of this module are:

• the split transfer control logic

• the locked transfer control logic

• the arbitration scheme

• the grant output signal generation.

Arbiter

HBUSREQx
HRESP

HREADY

HRESETn
HCLK

Pause

HMASTER

HGRANTx

HLOCKx
HSPLIT

HMASTLOCK

HBURST
HTRANS
4-14 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

AHB Modules
4.2.1 Signal descriptions

Table 4-2 contains a list of signals used by the arbiter.

Table 4-2 Signal descriptions

Signal Type Direction Description

HCLK Bus clock Input This clock times all bus transfers.

HRESETn Reset Input The bus reset signal is active LOW and is used to reset the
system and the bus.

HTRANS[1:0] Transfer type Input Indicates the type of the current transfer, which can be
NONSEQUENTIAL, SEQUENTIAL or BUSY.

HBURST[2:0] Burst type Input Indicates if the transfer forms part of a burst. Both 4-beat and
8-beat bursts are supported and the burst can be either
incrementing or wrapping.

HREADY Transfer done Input When HIGH the HREADY signal indicates that a transfer
has finished on the bus. This signal may be driven LOW to
extend a transfer.

HRESP Transfer response Input The transfer response provides additional information on the
status of a transfer. This input is used to detect Split or Retry
transfers.

HBUSREQx Bus request Input A signal from the bus master to the bus arbiter which
indicates that the master requires the bus.

HLOCKarm Locked transfers Input When HIGH this signal indicates that the master requires
locked access to the bus and no other master should be
granted the bus until this signal is LOW.

HLOCKx Locked transfers Input Lock signal from the bus master.

HSPLITx[15:0] Split completion
request

Input The 16-bit split bus is used by a split-capable slave to
indicate to the arbiter which bus masters should be allowed
to re-attempt a split transaction. Each bit of this split bus
corresponds to a single bus master.

Pause Pause mode Input This signal allows the processor system to enter a low-power,
wait for interrupt state, when the system does not require the
processors to be active.
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 4-15

AHB Modules
4.2.2 Function and operation of arbiter module

The arbiter is used to ensure that, at any point in time, only one master has access to the
bus. The arbiter performs this function by observing all of the bus master requests to use
the bus, and deciding which is currently the highest priority. The arbiter also receives
requests from slaves that wish to complete split transfers, which are used to modify the
priority of the master request inputs.

The arbiter has a standard interface to all bus masters and split-capable slaves in the
system.

A bus master may request the bus during any cycle by setting its HBUSREQ output
HIGH. This is then sampled by the arbiter on the rising edge of the clock, and passed
through the priority algorithm to decide which master will have access to the bus during
the next cycle. The HGRANT outputs then change to indicate which master currently
is granted control of the bus.

The HLOCK signals may be used to ensure that, during an indivisible transfer, the
current grant outputs do not change. HLOCK must be asserted at least one cycle before
the locked transfer to prevent the arbiter from changing the grant signals.

The following arbitration priorities (from highest to lowest) are implemented in the
default system:

• TIC (highest)

• bus master 3

• bus master 4

• ARM processor (lowest and default).

HGRANTx Bus grant Output This signal indicates that the bus master is currently the
highest priority master. Ownership of the address/control
signals changes at the end of a transfer when HREADY is
HIGH, so the master gets access to the bus when both
HREADY and HGRANTx are HIGH.

HMASTER[3:0] Master number Output These signals from the arbiter indicate which bus master is
currently performing a transfer. This is used by slaves which
support split transfers to determine which bus master is
attempting an access.

HMASTLOCK Locked sequence Output Indicates that the current master is performing a locked
sequence of transfers. This signal has the same timing as the
HMASTER signals.

Table 4-2 Signal descriptions (continued)

Signal Type Direction Description
4-16 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

AHB Modules
During split transfers the above priorities will be changed to allow other masters access
to the bus. When a split transfer is indicated by a split-capable slave that cannot
complete the current transfer immediately, the bus request input for the current master
is masked out. This has the effect of changing the priorities of the bus request inputs,
allowing a lower priority master to be granted control of the bus. When the slave is ready
to complete the split transfer, it drives the HSPLIT bus with the number of the bus
master that was performing the transfer. This number was sampled by the slave, from
the HMASTER arbiter output, when it started the split transfer. The arbiter then uses
this input to unmask the bus request of the master, allowing it to be regranted the bus so
that the transfer can complete.

During reset, and when no other masters are requesting control of the bus, the ARM
core is selected as the currently granted master. This minimizes the delay required for
the core to perform a transfer on the bus, as it does not have to wait to be granted control
of the bus before it can start a new transfer.

The system also requires a default master, which is selected when no masters are
granted control of the bus, for example, when all system bus masters are waiting for split
transfers to complete. The default master performs IDLE transfers while it is granted
control of the bus.

The default master is also selected during pause mode when the Pause input is set
HIGH, indicating that the system has entered a low-power mode, and no transfers will
be started on the bus.

The bus grant outputs may change while HREADY is LOW, but the newly granted
master may only drive the bus when the current transfer has completed. This requires
that bus masters only drive the bus after they detect that both their HGRANT and
HREADY inputs are set HIGH.
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 4-17

AHB Modules
4.2.3 System description

This section describes how the HDL code for the system arbiter is set out. A simple
system block diagram, with information about the main parts of the HDL code, is
followed by details of the registers, inputs, and outputs used in the module. This part
should be read in conjunction with the HDL code.

Figure 4-7 Arbiter module block diagram

The arbiter comprises:

• split grant masking logic

• locked transfer control

• arbitration scheme logic

• HGRANT output drivers

• HMASTER output generation.

All registers used in the system are clocked from the rising edge of the system clock
HCLK, and use the asynchronous reset HRESETn.

Figure 4-8 on page 4-19 shows the arbiter HDL file.

Arbiter
module

Split masking
logic

Grant input
arbitration

Lock
control

HMASTER
number

generation

HGRANT
output
drivers
4-18 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

AHB Modules
Figure 4-8 Arbiter module system diagram

The main sections in this module are explained in:

• Split grant masking on page 4-20

• Locked state machine on page 4-20

• Arbitration scheme on page 4-24

• Output registers on page 4-24.

HSPLITx

Hreq
mask
reg

HBUSREQx

Pause
iHgrantx

HgrantEn Hmaster
gen

HMASTER

HGRANTx

HREADY

HRESP

iHmaster

Hmaster
prev

SplitEnd

Hmaster
dec

Hreq
mask

Hmaskx

HmasterPrev

Current
burst

Next
burst

Hgrantx
new

Grant
lock

Split
last

Current
lock

Hlock
reg

iHmast
lock

Hlock
comb

HMASTLOCK

HBURST

HTRANS

HLOCKx Next
lock
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 4-19

AHB Modules
Split grant masking

The split grant masking logic is comprised of a set of registers which hold the current
mask value, and a combinational logic that is used to control the setting of the registers.

When a split transfer is detected, a single bit in the mask register is cleared, which
blocks the bus request input of the split master from reaching the arbitration logic. This
allows lower priority masters access, if they are requesting use of the bus. A decoded
16-bit version of the previous 4-bit HMASTER output is used to determine which bit
of the mask to clear, when a split response is detected.

When a split transfer is resumed, the 16-bit HSPLIT input is used to set the bit in the
mask register, allowing the bus request line to be used to generate the bus grant outputs.
The split master will then be regranted the bus as normal and will be able to complete
the split transfer.

The encoding of the HSPLIT input allows multiple bits of the grant mask to be set at
the same time.

The grant mask value is ANDed with the HGRANTx inputs to generate the internal
Hmaskx signals, which are then fed to the arbitration logic.

Locked state machine

A state machine is used to control the operation of the arbiter during a locked transfer.

First, the HLOCKx inputs from the system bus masters are masked with the current
grant outputs, generating an internal lock signal. This shows when the currently granted
master is requesting a locked transfer, and ignores the lock status of the other system
bus masters. This signal is then passed to the locked state machine, which is shown in
Figure 4-9 on page 4-21.
4-20 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

AHB Modules
Figure 4-9 Locked state machine

The four states are described in:

• ST_NORMAL on page 4-22

• ST_LOCKED on page 4-22

• ST_LAST_LOCK on page 4-23

• ST_SPLIT on page 4-23.

HREADY = 1 and
HlockComb = 1

HREADY = 0 and
HRESP != SPLIT

(HREADY = 1 and
(HlockComb = 1 or
HRESP = RETRY))

HRESETn = 0

ST_SPLIT

ST_NORMAL

ST_LOCKED

ST_LAST_LOCK

HREADY = 1 and
HlockComb = 0 and
HRESP != RETRY

HREADY = 1 and
HlockComb = 0 and
(HlockReg = 0 or
SplitLast = 0)

HREADY = 0 and
HRESP = SPLIT

HREADY = 1 and
HmasterGen = HmasterPrev

HREADY = 0 and
HRESP = SPLIT

HREADY = 0 or
HlockComb = 0

HREADY = 0 or
HmasterGen != HmasterPrev

(HREADY = 1 and
(HlockComb = 1 or
(HlockReg = 1 and
SplitLast = 1))) or
(HREADY = 0 and
HRESP != SPLIT)
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 4-21

AHB Modules
• ST_NORMAL

During this state, the arbiter is operating normally and no locked transfers are
being performed. The HMASTLOCK output is set LOW.

The ST_NORMAL state is entered from:

— reset, when the system is initialized

— ST_LAST_LOCK, when the data phase of the last locked transfer has
completed

— ST_NORMAL, when no locked transfers are being performed.

The next state is:

— ST_LOCKED, when the currently granted master sets its HLOCK output
HIGH

— ST_NORMAL, when no locked transfers are being performed.

• ST_LOCKED

During this state, the currently performed transfer is locked, and the grant outputs
will not change. The HMASTLOCK output is set HIGH to indicate that the
current transfer is locked.

The ST_LOCKED state is entered from:

— ST_NORMAL, when the currently granted master sets its HLOCK output
HIGH

— ST_SPLIT, when a split locked transfer has been restarted

— ST_LOCKED, when there is another locked transfer to perform

— ST_LAST_LOCK, during the second locked transfer in a
locked-unlocked-locked sequence, or when the last locked transfer
(HLOCK is LOW) has received a RETRY response.

The next state is:

— ST_SPLIT, when the current locked transfer receives a SPLIT response

— ST_LAST_LOCK, when the currently granted master sets its HLOCK
output LOW

— ST_LOCKED, when there is another locked transfer to perform.
4-22 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

AHB Modules
• ST_LAST_LOCK

This state is used to add an extra locked transfer after the currently granted master
has set its HLOCK output LOW, ensuring that the grant outputs do not change
until the data phase of the last locked transfer has completed, even if it has
received a SPLIT or RETRY response. The HMASTLOCK output is set LOW.

The ST_LAST_LOCK state is always entered from ST_LOCKED when the
currently granted master sets its HLOCK output LOW.

The next state is:

— ST_NORMAL, when the data phase of the last locked transfer has
completed

— ST_LOCKED, during the second locked transfer in a
locked-unlocked-locked sequence, or when the last locked transfer
(HLOCK is LOW) has received a RETRY response

— ST_SPLIT, when the last locked transfer receives a SPLIT response

— ST_LAST_LOCK, when the bus is waited and the last locked transfer has
not received a SPLIT response.

• ST_SPLIT

This state is used when a locked transfer receives a SPLIT response. As the
transfer is locked, no new masters may be granted control of the bus, but as it has
been split the currently granted master may not have control of the bus until the
slave indicates that it is ready to resume the transfer. So, the default master is
granted while in this state. The HMASTLOCK output is set LOW.

The ST_SPLIT state is entered from:

— ST_LOCKED, when a locked transfer receives a SPLIT response

— ST_LAST_LOCK, when the last locked transfer receives a SPLIT response

— ST_SPLIT, when the slave is not ready to resume the transfer.

The next state is:

— ST_LOCKED, when the split locked transfer has been restarted

— ST_SPLIT, when the slave is not ready to resume the transfer.
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 4-23

AHB Modules
Arbitration scheme

This section of the code defines the arbitration scheme that is used by the system, the
default being a priority-based system. The order that the inputs are checked in the if
statement defines the priority order of the system. This section should be modified if the
arbitration scheme of the system is to be changed from the default. The HgrantxNew
signals are generated by this section, which are then registered to generate the
HGRANT outputs.

Output registers

The HGRANT registers sample the outputs from the arbitration scheme logic when the
HgrantEn enable signal is set HIGH. This is used to control the loading of the grant
output registers during locked, split and burst transfers.

The grant outputs do not change:

• during locked transfers

• during the first n-1 transfers of a fixed length burst of n transfers.

The grant outputs only change:

• when the system is not performing a locked transfer

• when a locked transfer receives a SPLIT response, to allow the default master to
be selected

• during a locked split transfer, when the slave indicates that the transfer may
resume, to allow the locked master to be selected

• during the last transfer of a fixed-length burst.

HMASTER is generated from the current HGRANT outputs, encoding the 16 possible
master grant signals into a 4-bit number. This is registered, and is valid during the
address phase of the transfer it relates to. A previous value is also generated, which is
used to control the operation of the system during split transfers, and is valid during the
data phase of the transfer.

HMASTLOCK is directly generated from the current state of the locked state machine,
and is valid during the address phase of the locked transfer.
4-24 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

AHB Modules
4.3 Decoder

The system decoder is used to decode the address bus and generate select lines to each
of the system bus slaves, indicating that a read or write access to that slave is required.
Figure 4-10 shows the decoder module interface block diagram.

Figure 4-10 Decoder module interface diagram

This module only contains a combinatorial decode of the system address bus, using the
Remap input to control the selection of the internal and external memory.

4.3.1 Signal description

Table 4-3 shows the signal descriptions for the decoder module

.

Decoder

HRESETn

HADDR HSELx

Remap

Table 4-3 Decoder module signal descriptions

Signal Type Direction Description

HRESETn Reset Input The bus reset signal is active LOW, and is used to reset the
system and the bus.

HADDR[31:0] Address bus Input The 32-bit system address bus.

Remap Reset memory map Input When LOW, the internal memory is not part of the system
memory map, and external memory is mapped from address
0x0000 0000 which normally contains the system startup
code. In normal operation this signal is HIGH, allowing use
of the internal memory.

HSELx Slave select Output Slave select to each system bus slave.
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 4-25

AHB Modules
4.3.2 System memory map

The decoder controls the memory map of the system, and generates a slave select signal
for each memory region.

The Remap signal is used to provide a different memory map at reset, when ROM is
required at address 0x0000 0000, and during normal operation, when internal RAM may
be used at address 0x0000 0000.

The Remap signal is typically provided by a remap and pause peripheral, which drives
Remap LOW at reset. The signal is driven HIGH only after a particular address in the
remap and pause peripheral is accessed.

Figure 4-11 shows both the normal and reset memory maps.

Figure 4-11 System memory map

Undefined

Normal Memory Map

Internal memory

External ROM

0x0000 0000

0x0000 0400

0x8000 0000

0xC000 0000

0xE000 0000

Address Reset Memory Map

External RAM

ARM test

Advanced Peripheral Bus

0x3000 0000

0x4000 0000

0x6000 0000

Retry slave

Undefined

0xFFFF FFFF

Undefined

External ROM

External RAM

ARM test

Advanced Peripheral Bus

Retry slave

Undefined
4-26 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

AHB Modules
4.3.3 Function and operation of the decoder module

The decoder continuously performs a combinatorial decode of the system address bus,
updating the slave select outputs whenever the address or system Remap inputs change
value.

The default slave is used to control the operation of the system when a transfer is made
to an undefined area of memory, and is selected when an invalid address is generated.

4.3.4 System description

The following paragraphs give a description of how the HDL code for the decoder is set
out. A simple system block diagram, with information about the main parts of the HDL
code, is followed by details of the inputs, and outputs used in the module. This part
should be read together with the HDL code.

Figure 4-12 shows the decoder module block diagram.

Figure 4-12 Decoder module block diagram

The decoder comprises a simple block of combinational logic, which is used to decode
the address and system remap inputs to directly generate the slave select outputs.

Figure 4-13 shows the decoder HDL file.

Figure 4-13 Decoder module system diagram

The whole of the decode logic is contained in one if statement. During reset, the default
slave is selected, and at all other times, the HADDR and Remap inputs are decoded and
used to generate the HSELx outputs.

The minimum number of address bits needed to select a slave are used, keeping the
combinational logic as small as possible.

Decoder module

Slave select
output drivers

Address
decode

HADDR

Remap

HSELx

HRESETn
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 4-27

AHB Modules
This section of code is used to define the memory map for the whole system, and if
modules are added, removed, or moved to new locations, the code must be modified to
match these system changes, ensuring that the correct slave is selected for each address
used.
4-28 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

AHB Modules
4.4 Default slave

The default slave is used to respond to transfers that are made to undefined regions of
memory, where no AHB system slaves are mapped. A zero wait OKAY response is
made to IDLE or BUSY transfers, with an ERROR response being generated if a
NONSEQUENTIAL or SEQUENTIAL transfer is performed. Figure 4-14 shows the
default slave module interface diagram.

Figure 4-14 Default slave module interface diagram

This module contains a standard AHB slave response interface, using the HREADY
and HRESP outputs to respond to transfers.

4.4.1 Signal descriptions

Table 4-4 shows the signal descriptions for the default slave module

Default
slave

HRESETn

HTRANS

HREADY

HSELDefault

HCLK

HRESP

Table 4-4 Default slave module signal descriptions

Signal Type Direction Description

HCLK Bus clock Input This clock times all bus transfers.

HRESETn Reset Input The bus reset signal is active LOW, and is used to reset the
system and the bus.

HTRANS[1:0] Transfer type Input Indicated the type of the current transfer, which can be
NONSEQUENTIAL, SEQUENTIAL, IDLE or BUSY.
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 4-29

AHB Modules
.

4.4.2 Function and operation of module

The default slave only responds to transfers when it is selected by the decoder with the
HSEL input when an undefined region of memory is accessed. The response generated
depends on the type of transfer that is performed.

If an IDLE or BUSY transfer is performed, then the default slave must provide a zero
wait OKAY response as the master will not expect to receive any data back from these
transfers.

If a NONSEQUENTIAL or SEQUENTIAL transfer is performed, then an ERROR
response is generated, as there is nothing at the current location that can be written to or
read from. The standard two-cycle ERROR response is provided with one wait state.

4.4.3 System description

This section describes how the HDL code for the default slave is set out. A simple
system block diagram, with information about the main parts of the HDL code, is
followed by details of the registers, inputs, and outputs used in the module. This should
be read together with the HDL code.

HSEL Default slave select Input Each AHB slave has its own slave select signal and this signal
indicates that the current transfer is intended for the selected
slave. This signal is simply a combinatorial decode of the
address bus.

HREADYout Transfer done Output When HIGH the HREADY signal indicates that a transfer
has finished on the bus. This signal is only driven LOW to
generate a two cycle error response.

HRESP[1:0] Transfer response Output The transfer response provides additional information on the
status of a transfer. This module will only generate the OKAY
and ERROR responses.

Table 4-4 Default slave module signal descriptions (continued)

Signal Type Direction Description
4-30 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

AHB Modules
Figure 4-15 shows the default slave module block diagram.

Figure 4-15 Default slave module block diagram

The default slave comprises the invalid transfer detection logic and two simple sets of
combinational logic and registers, which are used to generate the HREADY and
HRESP outputs.

Figure 4-16 shows the decoder HDL file.

Figure 4-16 Default slave module system diagram

The internal signal Invalid is set HIGH during the final cycle of the address phase of an
invalid transfer (when HREADYin is set HIGH, a NONSEQUENTIAL or
SEQUENTIAL transfer is performed, and the default slave is selected), and is set LOW
at all other times.

This signal is then passed to the response generation logic, which is split into two
sections for the HREADYout and HRESP outputs. This logic generates the response
values for the output registers. HREADYout is set LOW during the first cycle of the
data phase, as is required for the two cycle ERROR response, and HRESP is set to
ERROR for the two-cycles of the data phase.

At all other times, the default slave generates a zero wait OKAY response.

Default slave module
AHB slave

output drivers

Invalid
transfer

detection

HRESP

HTRANS

HSELDefault

Hready
Next HREADYout

HRESP
Hresp

Next

HREADYin

Invalid

iHREADY
out
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 4-31

AHB Modules
4.5 Master to slave multiplexor

The master to slave multiplexor is used to connect all of the system bus masters to the
bus slaves, using the current HMASTER number to select the bus master outputs to
use. It is also used to generate the default master outputs when no other masters are
selected. Figure 4-17 shows an interface diagram of the master to slave multiplexor
module.

Figure 4-17 Master to slave multiplexor module interface diagram

The module has the address, control and data outputs of all system bus masters as its
inputs, and has a single set of these signals as its outputs, which are connected to the
inputs of all system slaves. When masters are added to, or removed from the system, the
input connections to this module must be altered to account for the changes.

MuxM2S

HRESETn

HMASTER

HWRITE

HREADY

HCLK

HADDR

HTRANS

HSIZE

HBURST

HPROT

HWDATA

HADDRx

HWRITEx

HTRANSx

HSIZEx

HBURSTx

HPROTx

HWDATAx
4-32 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

AHB Modules
4.5.1 Signal descriptions

Table 4-5 lists signal descriptions for the master to slave multiplexor module.

Table 4-5 Master to slave multiplexor signal descriptions

Signal Type Direction Description

HCLK Bus clock Input This clock times all bus transfers.

HRESETn Reset Input The bus reset signal is active LOW, and is used to reset the
system and the bus.

HMASTER[3:0] Master number Input These signals from the arbiter indicate which bus master is
currently performing a transfer, and is used by slaves which
support split transfers to determine which master is attempting
an access.

HREADY Transfer done Input When HIGH the HREADY signal indicates that a transfer has
finished on the bus. This signal may be driven LOW to extend
a transfer.

HADDRx[31:0]

HADDR[31:0]

Address bus Input/
output

The 32-bit system address bus.

HTRANSx[1:0]
HTRANS[1:0]

Transfer type Input/
output

These signals indicate the type of the current transfer, which
can be NONSEQUENTIAL, SEQUENTIAL, IDLE or BUSY.

HWRITEx

HWRITE

Transfer direction Input/
output

When HIGH this signal indicates a write transfer, and when
LOW, a read transfer.

HSIZEx[2:0]

HSIZE[2:0]

Transfer size Input/
output

These signals indicate the size of the transfer, which is
typically byte (8-bit), halfword (16-bit) or word (32-bit). The
protocol allows for larger transfer sizes up to a maximum of
1024 bits.

HBURSTx[2:0]

HBURST[2:0]

Burst type Input/
output

These signals indicate if the transfer forms part of a burst. Both
four beat and eight beat bursts are supported and the burst may
be either incrementing or wrapping.

HPROTx[3:0]

HPROT[3:0]

Protection control Input/
output

The protection control signals provide additional information
about a bus access and are primarily intended for use by any
module that wishes to implement some level of protection.

HWDATAx[31:0]
HWDATA[31:0]

Write data bus Input/
output

The write data bus is used to transfer data from the master to
the bus slaves during write operations. A minimum data bus
width of 32 bits is recommended, however this can easily be
extended to allow for higher bandwidth operation.
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 4-33

AHB Modules
4.5.2 Function and operation of module

The master to slave multiplexor controls the routing of address, control and data signals
from the system bus masters to the bus slaves. The arbiter determines which master
currently has control of the bus, and the multiplexor is used to connect the outputs of
the selected master to the inputs of the bus slaves.

The address and control signals are switched during the address phase of a transfer
using the HMASTER arbiter output.

The write data signals are switched during the data phase of a transfer using a registered
version of HMASTER.

When no masters are selected, the default master signals are selected and the module
drives all outputs LOW, performing IDLE transfers until another master is granted
control of the bus.

4.5.3 System description

This section describes how the HDL code for the master to slave multiplexor is set out.
A simple system block diagram, with information about the main parts of the HDL
code, is followed by details of the registers, inputs, and outputs used in the module. This
should be read together with the HDL code.

Figure 4-18 shows the master to slave module block diagram.

Figure 4-18 Master to slave multiplexor module block diagram

The master to slave multiplexor module comprises a set of multiplexors for each
address, control and data output from the system bus masters. A set of registers is also
used to hold the previous value of the HMASTER input.

Write data
multiplexors

Address and
control

multiplexors

Master to slave
multiplexor
module

HMASTER
registers
4-34 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

AHB Modules
Figure 4-19 shows the master to slave multiplexor HDL file.

Figure 4-19 Master to slave multiplexor module system diagram

The multiplexor for each master signal has an input for each system bus master, and a
ground connection for the default master signal values. The master number is decoded,
and used to select the correct input signal.

The multiplexors are constructed using case statements, ensuring that there is no
priority to the master selection logic.

An HREADY enabled register is used to hold the previous value of HMASTER,
because the HWDATA master outputs are always running one cycle behind the other
address and control signals, due to the pipelined bus. The enable is used to ensure that
the value is only updated when the previous transfer has completed.

Multiple master
address and

control inputs Address and
control

Multiple master
write data inputs

Write data

HMASTER

HREADY
Hmaster

prev
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 4-35

AHB Modules
4.6 Slave to master multiplexor

The slave to master multiplexor is used to connect the read data and response signals of
the system bus slaves to the bus masters, using the current decoder HSELx outputs to
select the bus slave outputs to use. Figure 4-20 shows the slave to master multiplexor
module.

Figure 4-20 Slave to master multiplexor module interface diagram

This module has the read data and response outputs of all system bus slaves as its inputs,
and has a single set of these signals as its outputs, which are connected to the inputs of
all system masters. When slaves are added to the system or removed, the input
connections to this module must be altered to account for the changes.

4.6.1 Signal descriptions

Table 4-6 shows the signal descriptions for the slave to master multiplexor module.

MuxS2M

HRESETn

HREADY
HSELx

HCLK

HRDATA

HRESP
HREADYx

HRDATAx

HRESPx

Table 4-6 Slave to master multiplexor signal descriptions

Signal Type Direction Description

HCLK Bus clock Input This clock times all bus transfers.

HRESETn Reset Input The bus reset signal is active LOW, and is used to reset the
system and the bus.

HSELx Slave select Input Each AHB slave has its own slave select signal and this
signal indicates that the current transfer is intended for the
selected slave.
4-36 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

AHB Modules
4.6.2 Function and operation of module

The slave to master multiplexor controls the routing of read data and response signals
from the system bus slaves to the bus masters. The decoder determines which is the
currently selected slave, and the multiplexor is used to connect the outputs of the
selected slave to the inputs of the bus masters.

The read data and response signals are switched during the data phase of a transfer, so
a registered version of the slave select signals is used.

The default slave inputs are used when no other slaves are selected.

4.6.3 System description

This section describes how the HDL code for the slave to master multiplexor is set out.
A simple system block diagram, with information about the main parts of the HDL
code, is followed by details of the registers, inputs, and outputs used in the module. This
part should be read together with the HDL code.

Figure 4-21 on page 4-38 shows the slave to master module block diagram.

HRDATAx[31:0]
HRDATA[31:0]

Read data bus Input/
output

The read data bus is used to transfer data from bus slaves to
the bus master during read operations.

HREADYx

HREADY

Transfer done Input/
output

When HIGH the HREADY signal indicates that a transfer
has finished on the bus. This signal may be driven LOW to
extend a transfer.

HRESPx[1:0]

HRESP[1:0]

Transfer response Input/
output

The transfer response provides additional information on the
status of a transfer.

Table 4-6 Slave to master multiplexor signal descriptions (continued)

Signal Type Direction Description
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 4-37

AHB Modules
Figure 4-21 Slave to master multiplexor module block diagram

The slave to master multiplexor module comprises a set of registers to store the previous
slave select values, and a set of multiplexors for the read data and slave response signals.

Figure 4-22 shows the slave to master multiplexor HDL file.

Figure 4-22 Slave to master multiplexor module system diagram

Slave to master
multiplexor
module

Slave select
registers

Response
multiplexors

Read data
multiplexors

Multiple slave
HRDATA inputs

Slave
select
inputs

Multiple slave
HREADY inputs

Multiple slave
HRESP inputs

iHREADY

HselNext

HselReg

HRDATA

HREADY

HRESP
4-38 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

AHB Modules
To allow the use of case statements for the multiplexors, the HSEL slave select inputs
are combined to create a multi-bit bus signal. This bus is then registered, and used as the
select control on the three multiplexors, one each for the read data and two response
signals. The select register is enabled with the internal HREADY signal, ensuring that
the outputs only change when the previous transfer has finished.

As the default slave does not generate any read data, one input to the HRDATA
multiplexor is tied LOW, so that when the default slave is selected, no read data appears
on HRDATA.
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 4-39

AHB Modules
4.7 Reset controller

The reset controller is used to generate the system reset signal from an external reset
input as shown in Figure 4-23.

Figure 4-23 Reset controller module interface diagram

This module is based around a state machine, which is used to detect the external reset
being asserted, and is used to generate the system reset output.

4.7.1 Signal descriptions

Table 4-7 shows the signal descriptions for the reset controller.

The source of the POReset signal is implementation-dependent.

4.7.2 Function and operation of module

HRESETn is asserted LOW, and is used to indicate a reset condition where all bus and
system states should be initialized. This signal is suitable as an asynchronous clear into
state machine flip-flops, and for resetting any peripheral registers that require
initialization.

During reset, the arbiter grants the bus to the default reset bus master, and the decoder
selects the default slave.

Reset
controller

HCLK

POReset
HRESETn

Table 4-7 Reset controller signal descriptions

Signal Type Direction Description

HCLK Bus clock Input This clock times all bus transfers.

POReset Power-on reset Input Power-on reset input. This active LOW signal causes a cold reset
when LOW. May be asserted asynchronously to HCLK.

HRESETn Reset Output The bus reset signal is active LOW, and is used to reset the system
and the bus.
4-40 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

AHB Modules
Assertion (the falling edge) of HRESETn is asynchronous to HCLK. De-assertion (the
rising edge) of HRESETn is synchronous to the rising edge of HCLK. HRESETn is
only asserted during a power-on reset condition, caused by the assertion of the POReset
signal. The POReset input is an asynchronous input, so a synchronizing register is
required to eliminate propagation of metastable values. Figure 4-24 shows the operation
of the HRESETn signal with respect to an example POReset input signal and the
system clock.

Figure 4-24 Reset signal timing

The reset controller contains a state machine running from the rising edge of HCLK.
The HRESETn signal directly reflects a single bit of the current state, minimizing the
combinational logic applied to the reset output.

HRESETn

POReset

HCLK
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 4-41

AHB Modules
Figure 4-25 shows the state machine for the reset controller.

Figure 4-25 State machine for reset controller

The four states are described in:

• ST_POR on page 4-43

• ST_INI1 on page 4-43

• ST_INI2 on page 4-43

• ST_RUN on page 4-43.

ST_INI1

ST_INI2

ST_RUN

HRESETn = 1

ST_POR

POReset = 0

POReset = 1
4-42 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

AHB Modules
ST_POR

During this state, the system is initialized when the reset line is asserted. This state
should be preserved by a power on reset cell or controller, until the system bus clock is
running and stable, and the system power supply has reached its correct operating
voltage (within its allowed limits).

The ST_POR state is entered from:

• reset, when the external reset input is first asserted LOW

• ST_POR when the external reset input is still asserted and the system clock is
running.

The next state is:

• ST_INI1 when the external reset input is de-asserted

• ST_POR when the external reset input is still asserted and the system clock is
running.

If there is a clock valid signal in the system, this should be used to prevent the ST_POR
state from being exited until the clock is valid.

ST_INI1

This state is used to hold the HRESETn output LOW for an extra cycle after the
external reset is de-asserted.

This state is always entered from ST_POR on the first rising edge of the clock that the
external reset is HIGH.

The next state is always ST_INI2.

ST_INI2

This state is used in the same manner as ST_INI1.

This state is always entered from ST_INI1.

The next state is always ST_RUN.

ST_RUN

This state is used during normal system operation when the HRESETn output is set
HIGH.

This state is held until the external reset is re-asserted.
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 4-43

AHB Modules
The default reset controller implementation asserts HRESETn for two cycles after the
external reset is de-asserted, but this may be altered by adding extra ST_INI states to the
state machine, so that it takes more cycles to reach the final ST_RUN state.

4.7.3 System description

The following paragraphs give a description of how the HDL code for the reset
controller is set out. A simple system block diagram, with information about the main
parts of the HDL code, is followed by details of the registers, inputs, and outputs used
in the module. This part should be read together with the HDL code.

Figure 4-26 shows the reset controller module block diagram.

Figure 4-26 Reset controller module block diagram

The reset controller is comprised of a register used to synchronize the external reset
input, and a state machine used to control the generation of the system reset output.

All registers used in the system are clocked from the rising edge of the system clock
HCLK.

Figure 4-27 shows the reset controller HDL file.

Figure 4-27 Reset controller module system diagram

Reset controller
module

State machine
HRESETn

output driver

External reset
synchronisation

POReset

HRESETn

Next
state

Sync
POR

Current
state

Current
state (0)
4-44 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

AHB Modules
The main sections in this module are explained in the following paragraphs:

• Asynchronous reset input synchronization

• Reset state machine

• Reset output generation.

Asynchronous reset input synchronization

The asynchronous external reset is first passed through a rising-edge-triggered register.
This is to avoid metastability, due to the arrival time of the input relative to the system
clock when used in the state machine.

Reset state machine

The state machine shown in Figure 4-25 on page 4-42 is used to control the generation
of the system reset output, based on the status of the synchronized external reset input
and the system clock.

The number of cycles the module holds HRESETn asserted after the de-assertion of
the external reset may be changed by altering the number of initialization states between
the first and last states.

Reset output generation

The reset output is generated directly from bit 0 of the state machine registers, gated
with the external reset input. This allows asynchronous assertion of the reset output
when the external reset input is set LOW and the system clock is not running, but
ensures that de-assertion is synchronous to the rising edge of the clock.
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 4-45

AHB Modules
4.8 Retry slave

The retry slave is a rudimentary module that is used to demonstrate how to build an
AHB slave. The example contains very little functionality and consists of four 32-bit
wide registers. The slave generates various logic functions of these registers, which can
be read from different locations.

One of the most important features of the slave is that the response that it gives can be
varied according to the high order address lines. Figure 4-28 shows the retry slave block
diagram.

Figure 4-28 Retry slave block diagram

The main sections of this module are:

• the AHB slave bus interface

• the internal read/write registers

• the wait state and retry cycle generation logic

• the read data value generation.

Retry
slave

HCLK

HRESETn

HWRITE

HADDR

HTRANS

HSIZE

HWDATA

HREADYin

HRDATA

HREADYout

HRESP

HSELRetry
4-46 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

AHB Modules
4.8.1 Signal descriptions

Table 4-8 contains a list of signals used by the retry slave.

Table 4-8 Signal descriptions

Signal Type Direction Description

HCLK Bus clock Input This clock times all bus transfers.

HRESETn Reset Input The bus reset signal is active LOW, and is used to reset the
system and the bus.

HADDR[31:0] Address bus Input The 32-bit system address bus.

HTRANS[1:0] Transfer type Input Indicated the type of the current transfer, which can be
NONSEQUENTIAL, SEQUENTIAL, IDLE or BUSY.

HWRITE Transfer direction Input When HIGH this signal indicates a write transfer, and when
LOW, a read transfer.

HWDATA[31:0] Write data bus Input The write data bus is used to transfer data from the master to
the bus slaves during write operations. A minimum data bus
width of 32 bits is recommended, however, this may easily be
extended to allow for higher bandwidth operation.

HSELRetry Slave select Input Each AHB slave has its own slave select signal, and this
signal indicates that the current transfer is intended for the
selected slave. This signal is a combinatorial decode of the
address bus.

HRDATA[31:0] Read data bus Output The read data bus is used to transfer data from bus slaves to
the bus master during read operations. A minimum data bus
width of 32 bits is recommended, however this may easily be
extended to allow for higher bandwidth operation.

HREADYin

HREADYout

Transfer done Input/output When HIGH the HREADY signal indicates that a transfer
has finished on the bus. This signal may be driven LOW to
extend a transfer.

HRESP[1:0] Transfer response Output The transfer response provides additional information on the
status of a transfer. This module only generates OKAY and
RETRY responses.
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 4-47

AHB Modules
4.8.2 Function and operation of module

This example module contains four 32-bit wide registers, which can be accessed using
byte, halfword or word, read or write transfers. Extra read only locations are provided
that generate logical combinations of these four registers. The module memory map in
Table 4-9 shows the logical functions that the slave can provide, and the addresses at
which the functions and four read/write registers are accessed.

All addresses shown in the memory map are offsets from the module base address. In
the default system the retry slave module occupies memory locations 0x4000 0000 to
0x5FFF FFFF.

When any of the memory locations are accessed, the high order address lines are used
to determine the response that the slave will provide, inserting wait states or retry cycles.

The address lines that are used are:

• HADDR[11:8], number of wait states to be inserted

• HADDR[13:12], number of times a retry response will be generated.

Table 4-9 Memory map of the example AHB retry slave

Address
Read
location

Write
location

0x00 R0 R0

0x04 R1 R1

0x08 R2 R2

0x0C R3 R3

0x10 Not R0 -

0x14 R0 and R1 -

0x18 R1 or R2 -

0x1C R2 xor R3 -

0x20 R0 and R1

and R2 and R3

-

0x24 R0 or R1

or R2 or R3

-

0x28 R0 xor R1

xor R2 xor R3

-

4-48 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

AHB Modules
The number of wait states inserted for each read or write module access can be varied
from 0 to 15, and the number of times the slave provides a retry response can be varied
from 0 to 3.

When the slave is programmed to provide a retry response, the number of wait states to
insert must be set to a value greater than zero, as all retry responses require two cycles,
with a wait state inserted during the first cycle.

4.8.3 System description

The following paragraphs give a description of how the HDL code for the example retry
slave is set out. A basic block diagram, with information about the main parts of the
HDL code, is followed by details of the registers, inputs and outputs used in the system.
This part should be read together with the HDL code.

Figure 4-29 shows a basic block diagram of the retry slave module system.

Figure 4-29 Retry slave module block diagram

The retry slave comprises a set of read/write registers, and programmable wait/retry
generation logic.

All registers used in the system are clocked from the rising edge of the system clock
HCLK, and use the asynchronous reset HRESETn.

Wait/retry
response

generation

Retry
slave
module

AHB slave
output drivers

Standard AHB
slave interface

Read/write
registers

Combinational
output data
generation
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 4-49

AHB Modules
Figure 4-30 shows the retry slave HDL file.

Figure 4-30 Retry slave module system diagram

HADDR

HWRITE

HTRANS

Current
wait

Current
retry

Hready
next

Hresp
next

R0-R3

HWDATA

Combin-
ational read

data

HRDATA

HADDR[11:8]

HADDR[13:12]

HSIZE

Mask

Htrans
reg

Haddr
reg

Hwrite
reg

Hsize
reg

NextWait

NextRetr

HREADYout

HRESP

iHREADY
out

iHRESP

HSELRetry

Hsel
reg

Masked
write data

Write
enables

HREADYin
4-50 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

AHB Modules
The main sections in this module are explained in the following paragraphs:

• AHB slave bus interface

• Write data mask

• Read/write registers

• Response generation logic on page 4-52

• Read data generation on page 4-52.

AHB slave bus interface

This module uses the standard AHB slave bus interface, which comprises the valid
transfer detection logic, and the address and control registers, which are used to store
the information from the address phase of the transfer for use in the data phase.

Write data mask

The amount of data written to the four internal registers depends on the transfer size
setting. The mask is used to control which bytes of data are written to the 32-bit
registers, and which bytes are left unchanged. A single mask value is used to allow one
set of size decoding logic to be used for all registers in the module, rather than having
a set of decoding logic for each register.

The bytes of data that will change are set LOW in the mask, and all other bits are set
HIGH.

Read/write registers

Four 32-bit registers are used to store user data, all initializing to zero. They are only
enabled when addressed during a write transfer, and when any wait states or retry cycles
have ended. The data mask is used to control writes of byte, halfword and word, by
masking out the bits of the current write data that are not needed, and ORing it with a
masked version of the current register data. This ensures that only the required bytes of
the read data are used, and the unchanged register bytes are reloaded with the previous
register value.
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 4-51

AHB Modules
Response generation logic

This logic is used to control the generation of wait states and retry cycles.

Wait states are inserted when the address of the current transfer has a nonzero value in
bits [11:8]. This value, from zero to fifteen, is loaded into the CurrentWait register, and
then decremented each clock cycle until zero is reached. This counter value is used to
hold the HREADYout output LOW until zero is reached, when HREADYout is set
HIGH and the transfer can complete.

Retry cycles are inserted when the address of the current transfer has a nonzero value in
bits [13:12] and [11:8], as all retry cycles require at least one wait state. This value is
loaded into the CurrentRetry register, and is decremented each time the transfer is
retried until zero is reached. The input to the iHRESP register is set according to the
state of the retry logic and the wait logic, so that if more than one wait state is inserted,
the HRESP output only changes during the last HREADY LOW cycle. Retry responses
are generated until the counter reaches zero, when the HRESP output indicates that the
transfer may complete normally.

Read data generation

Different read data values must be generated according to the address of the current
transfer, selecting output data from one of the four registers or one of the seven
combinational outputs. This section of the code selects a data source during the data
phase of a valid transfer, and then directly drives the output data bus HRDATA with this
selected data value.

This combinational output path allows a zero wait state response to be possible, as data
written to a register can be read the following cycle with a zero wait state transfer. If a
registered output data path is used, then reads from registers that were written to in the
previous cycle must have at least one wait state inserted, to allow for the internal data
register to sample the write data, and then for the data register output to be sampled by
the output read data register, before being driven onto the output read data bus.
4-52 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

AHB Modules
4.9 Static memory interface

The AMBA Static Memory Interface (SMI) is an example design which shows the basic
requirements of an External Bus Interface (EBI) in an AMBA system. It is not intended
to be a ready-made EBI for a real system. Such an EBI design would have to take
process, package, and varying external delays into account.

The SMI connects the AMBA AHB to the external memory bus of an AMBA
microcontroller. This allows the connection of up to three 256MB banks of 32-bit wide
static memory (for example, SRAM and ROM) and also provides 32-bit test access to
the AMBA system in conjunction with the TIC. Figure 4-31 shows the block diagram
of the SMI.

Figure 4-31 Static memory interface block diagram

The main sections of this module are:

• the AHB slave bus interface

• the data and address bus registers and drivers

• the external memory access control logic.

Static memory
interface

XOEN

XCSN

XWEN

XD

HCLK

HREADYout

HRESPout

Remap

HWRITE

HTRANS

HWDATAin

HADDR

HRESETn

HSIZE

HREADYin

HRDATAout

HRDATAin

TICRead

A
H

B
B

u
s

E
x
te

rn
a
l
B

u
s

XA

HSELExtMem
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 4-53

AHB Modules
4.9.1 Signal descriptions

Table 4-10 describes the signals used by the SMI.

Table 4-10 Signal descriptions

Signal Type Direction Description

HCLK Bus clock Input This clock times all bus transfers.

HRESETn Reset Input The bus reset signal is active LOW, and is used to reset the
system and the bus.

HADDR[31:0] Address bus Input The 32-bit system address bus.

HTRANS[1:0] Transfer type Input This indicates the type of the current transfer, which can be
NONSEQUENTIAL, SEQUENTIAL, IDLE or BUSY.

HWRITE Transfer direction Input When HIGH this signal indicates a write transfer, and
when LOW, a read transfer.

HSIZE[2:0] Transfer size Input Indicates the size of the transfer, which is typically byte
(8-bit), halfword (16-bit) or word (32-bit). The protocol
allows for larger transfer sizes up to a maximum of 1024
bits.

HWDATAin[31:0 Write data bus Input The write data bus is used to transfer data from the master
to the bus slaves during write operations. A minimum data
bus width of 32 bits is recommended, however, this can
easily be extended to allow for higher bandwidth
operation.

HSELExtMem Slave select Input Each AHB slave has its own slave select signal and this
signal indicates that the current transfer is intended for the
selected slave. This signal is a combinatorial decode of the
address bus.

HRDATAin[31:0]
HRDATAout[31:0]

Read data bus Input/output The read data bus is used to transfer data from bus slaves
to the bus master during read operations. A minimum data
bus width of 32 bits is recommended, however this can
easily be extended to allow for higher bandwidth
operation.

HREADYin

HREADYout

Transfer done Input/output When HIGH the HREADY signal indicates that a transfer
has finished on the bus. This signal may be driven LOW to
extend a transfer.

HRESP[1:0] Transfer response Output The transfer response provides additional information on
the status of a transfer. This module will always generate
the OKAY response.
4-54 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

AHB Modules
Remap Reset memory
map

Input When LOW, the internal memory is not part of the system
memory map, and external memory is mapped from
address 0x0000 0000, which normally contains the system
startup code. In normal operation this signal is HIGH,
allowing use of the internal memory.

TicRead Drive out read data Input This signal controls the SMI to drive the current read data
from HRDATA to XD.

XD[31:0] External data bus Input/output This is the bidirectional external data bus. In normal
operation it is driven by the external bus when XOEN is
LOW, and by this module when XOEN is HIGH. During
system test this becomes the test bus TESTBUS and its
direction is controlled by the TIC control signals.

XA[30:0] External address
bus

Output The external address bus becomes valid during the HCLK
LOW phase of the transfer and remains valid throughout
the rest of the transfer.

XCSN[3:0] External chip
select

Output These signals are active LOW chip enables for each of the
three banks (0-1, 3) of static memory. XCSN[3] should be
connected to the memory containing the startup program
(boot ROM/BIOS) for the system.

XOEN External output
enable

Output This is the output enable for devices on the external bus.
This is LOW during reads from external memory, during
which time the selected bank should drive the XD bus.

XWEN[3:0] External write
enable

Output This is the active LOW memory write enable. For
little-endian systems, XWEN[0] controls writes to the
least significant byte and XWEN[3], the most significant.
The example system is configured to be little-endian. The
SMI is configured to have a minimum of two wait states
when writing to memory. XWEN is only valid during the
second cycle of the write transfer.

Table 4-10 Signal descriptions (continued)

Signal Type Direction Description
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 4-55

AHB Modules
4.9.2 Functional description of the SMI

The SMI has five functions in the example system described in the following
paragraphs:

• External bus control

• Memory bank select on page 4-57

• Memory write control on page 4-58

• Configurable memory access wait states on page 4-59

• System test access on page 4-59.

External bus control

To perform a read from external memory, XOEN must be LOW and the XD output is
tristated, allowing it to be driven with read data by the external memory.

Figure 4-32 shows the timing of a read from memory with zero wait states.

Figure 4-32 Zero wait memory read

Note
 The data must be valid on the XD bus in time for the signal to propagate on-chip so that
the HRDATA bus becomes valid before the next rising edge of HCLK. If this setup
time cannot be achieved, the access will require wait states.

TSetup

HCLK

HADDR

XA[30:0]

XD[31:0]

HRDATA

A

A

D(A)

D(A)

XOEN
4-56 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

AHB Modules
To perform a write to the external memory, XOEN must be HIGH, to allow XD to be
driven by the SMI with a registered version of HWDATA.

The SMI requires at least two wait states to be added for a write to memory, to allow for
the timing of the XWEN write enable signal relative to the XA and XD buses. When
XWEN is LOW XA must be stable and, on the rising edge of XWEN, XD must be
valid.

Figure 4-33 shows the timing of a write to memory with two wait states.

Figure 4-33 Memory write with two wait states

Memory bank select

The XCSN chip select lines are controlled by the address of a valid transfer, and the
system memory map mode. Before the system memory is remapped, the boot ROM at
0x3000 0000 is also mapped to the base address of 0x0000 0000.

HADDR

XA

D(A)

A

A

HREADY

HWRITE

XCSN

XWEN

XD

HCLK

D(A)

HWDATA
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 4-57

AHB Modules
Table 4-11 shows the relationship between the inputs and the generated value of XCSN.

XCSN is also held in the 1111 state asynchronously during reset.

Memory write control

The 4-bit XWEN write enable signal allows the four bytes in the 32-bit wide word to
be written independently. The byte assignments are:

• XWEN[0] controls XD[7:0]
• XWEN[1] controls XD[15:8]
• XWEN[2] controls XD[23:16]
• XWEN[3] controls XD[31:24].

The SMI controls XWEN for writes in word (32-bit), halfword (16-bit) and byte (8-bit)
quantities. The SMI uses HSIZE[1:0] and HADDR[1:0] to select the width and order
of each write to memory. This information must be valid before XWEN is asserted.

Table 4-11 XCSN coding

Input
HSELExtMem

Input Remap
Input
HADDR[29:28]

Output
XCSN[3:0]

0 X XX 1111

1 0 00 0111

1 0 01 1101

1 0 10 1011

1 0 11 0111

1 1 00 1110

1 1 01 1101

1 1 10 1011

1 1 11 0111
4-58 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

AHB Modules
Table 4-12 shows the bytes selected according to the HSIZE and HADDR[1:0] inputs.

Configurable memory access wait states

The SMI only supports global (the same for every bank) wait states for read and write
accesses. This is configurable (in the HDL model, not in synthesized hardware) between
zero and three waits for reads, and between two and three for writes. Figure 4-33 on
page 4-57 shows a memory transfer with two wait states. A transfer with more wait
states causes further wait cycles to be added. The external address and data information
remains valid until the memory access cycle is completed. For writes, the XWEN signal
is extended, going LOW during the first wait, and not going HIGH until the final cycle
of the transfer. Before synthesis, the wait states can be configured by altering the 2-bit
wide constants READWAIT and WRITEWAIT. WRITEWAIT must be value 2 or
greater.

System test access

During system TIC testing, the external bus output of the SMI is controlled by the active
HIGH TicRead signal from the TIC. This is used to pass read data from the HRDATAin
bus onto the external test bus XD During normal operation this signal is held LOW.

Table 4-12 XWEN coding

HSIZE[1:0] HADDR[1:0] XWEN[3:0]

10 (word) XX 0000

01 (half word) 0X 1100

01 (half word) 1X 0011

00 (byte) 00 1110

00 (byte) 01 1101

00 (byte) 10 1011

00 (byte) 11 0111
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 4-59

AHB Modules
4.9.3 System description

The following paragraphs give a description of how the HDL code for the module is set
out. A basic system block diagram, with information about the main parts of the HDL
code, is followed by details of the registers, inputs and outputs used in the module. This
part should be read together with the HDL code.

A basic block diagram of the static memory interface system is shown in Figure 4-34.

Figure 4-34 Static memory interface module block diagram

The static memory interface module comprises the input bus registers, the wait state
counter used to insert wait states, and the external memory control signal generation.

All registers used in the system are clocked from the rising edge of the system clock
HCLK, and use the asynchronous reset HRESETn.

Static memory interface

Wait state
counter

Memory
control signals

External bus
drivers

Input bus
registers

AHB bus
drivers

Standard AHB
slave interface
4-60 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

AHB Modules
Figure 4-34 on page 4-60 shows the static memory interface HDL file.

Figure 4-35 Static memory interface module system diagram

Htrans
reg

Hwrite
reg

Hsize
reg

NextWait

Current
wait

Xwen

Hready
next

iHREADY
out

XCSN

HWDATAin

HRDATAin

XdEn

Xwen
next

XWEN

XCSN

HREADYout

HRDATAout

HRESP

XD

XOEN

XAHADDR

HWRITE

HTRANS

HSIZE

XD

Remap

HADDR
Xcsn
next

Haddr
reg

iXOEN

TicRead

Hsel
reg

HSELExtMem

iXOEN
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 4-61

AHB Modules
The main sections in the SMI module are explained in more detail in the following
paragraphs:

• Constant definitions

• AHB slave bus interface

• Wait state generation

• AHB output data bus generation on page 4-63

• External bus output generation on page 4-63.

Constant definitions

The constants READWAIT and WRITEWAIT are used to set the number of wait states
that are inserted when a read and write transfer is performed. The value of zero to three
for reads, and two to three for writes, is set for all transfers to all memory banks, and
although configurable in the HDL code, it is permanently set when synthesized.

AHB slave bus interface

This module uses the standard AHB slave bus interface, which comprises:

• the valid transfer detection logic

• the address and control registers, which are used to store the information from the
address phase of the transfer for use in the data phase.

The default address setting of the module is external RAM from 0x0000 0000 to
0x1FFF FFFF, and external boot ROM from 0x3000 0000 to 0x3FFF FFFF. When the
Remap signal is HIGH, indicating that remapped memory is in use, external RAM is
mapped from 0x0000 0400 to 0x1FFF FFFF, with internal memory being mapped in the
first 0x000 to 0x400 region.

Wait state generation

The counter register is used to insert wait states according to the values set in the
READWAIT and WRITEWAIT constants. The counter is loaded with the relevant value
when a read or write transfer begins, and decrements the value until no more wait states
need to be added. The counter value is used to generate the input to the HREADYout
register, which is set LOW while the counter is not zero.
4-62 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

AHB Modules
AHB output data bus generation

The HRDATAout output is driven to XD during a normal external memory read
transfer, to propagate the read data value from the external bus onto the AHB.
HRDATAout is driven LOW at all other times.

The registered HREADYout output is driven LOW while the current value of the wait
state counter is not zero.

The HRESP output is held LOW, because the SMI will always generate an OKAY
response to all transfers.

External bus output generation

This section contains the signals that are driven onto the external bus:

• XD is generated from either the AHB read or write data buses, depending on the
current system mode of operation. HWDATAin is used during a normal external
memory write transfer, and HRDATAin is used during a TIC testing read cycle.
As XD is a tristate bus, then it is only driven by the SMI when the current transfer
is a standard write or a TIC testing read, allowing XD to be driven by any external
modules at all other times.

• XA is driven with a registered version of bits [30:0] of HADDR, as the full
system address range is not required on the external bus.

• XCSN is generated from the input address during a valid read or write transfer.
Bits [29:28] of the address are decoded as shown in Table 4-11 on page 4-58.
When Remap is LOW, the boot ROM is mapped at the base address, as well as
its standard address. External RAM access is not dependant on the Remap input.
During reset, or when the memory is not addressed, all XCSN output bits are set
HIGH to deselect all banks of external memory.

• XOEN is set LOW during a valid read transfer, and is set HIGH at all other times.

• XWEN is generated from the size and address settings for a write transfer,
selecting the transfer size and byte lane to use, as shown in Table 4-11 on
page 4-58. A registered output is used to avoid the generation of glitches, which
can cause incorrect values to be written to the external ROM.
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 4-63

AHB Modules
4.10 Test interface controller

The Test Interface Controller (TIC) is a state machine that provides an AMBA AHB bus
master for system test. It reads test write and address data from the external data bus
TESTBUS (XD), and uses the External Bus Interface (EBI) to drive the external bus
with test read data, allowing the use of only one set of output tristate buffers onto
TESTBUS.

The TIC is used to convert externally applied test vectors into internal transfers on the
AHB bus. A three-wire external handshake protocol is used, with two inputs controlling
the type of vector that is applied and a single output that indicates when the next vector
can be applied.

Typically the TIC is the highest priority AMBA bus master, which ensures test access
under all conditions.

The TIC model supports address incrementing and control vectors. This means that the
address for burst transfers can automatically be generated by the TIC.

Figure 4-36 shows the TIC module interface diagram.

Figure 4-36 TIC module interface diagram

Test Interface
Controller

(TIC)

HCLK

HRESETn

HRDATAin

HRESP

HREADY

HGRANTtic

HADDR

HTRANS

HWRITE

HSIZE

HBURST

HPROT

HBUSREQtic

HLOCKtic

TESTREQA

TESTREQB

TESTACK

External Bus Interface
(EBI)TESTBUS

TicRead

A
H

B
b

u
s

E
x
te

rn
a

l
te

s
t

in
te

rf
a

c
e

HWDATA
4-64 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

AHB Modules
Figure 4-36 on page 4-64 represents a TIC module in a system where the external data
bus becomes the test bus when performing test mode accesses. 16-bit and 8-bit data bus
systems require, for example, 16 or 24 address lines to be reconfigured as bidirectional
test port signals for the test mode access.

4.10.1 Signal descriptions

The TIC has three primary interfaces:

• the AHB bus master interface, to control the operation of the system during test

• the external test interface, to read the type of vector being applied and control the
application of new vectors

• the datapath interface, to control the operation of the EBI to drive the external
data bus.

Table 4-13 shows the TIC module signal descriptions for an AHB-based system.

Table 4-13 TIC signal descriptions for AHB

Signal Type Direction Description

HCLK Bus clock Input This clock times all bus transfers. All signal timings are related
to the rising edge of HCLK.

HRESETn Reset Input The bus reset signal is active LOW and is used to reset the
system and the bus. This is the only active LOW signal.

HADDR[31:0] Address bus Output The 32-bit system address bus.

HTRANS[1:0] Transfer type Output Indicates the type of the current transfer, which can be
NONSEQUENTIAL, SEQUENTIAL or IDLE. The TIC does
not use the BUSY transfer type.

HWRITE Transfer direction Output When HIGH this signal indicates a write transfer and when
LOW a read transfer.

HSIZE[2:0] Transfer size Output Indicates the size of the transfer, which is typically byte
(8-bit), halfword (16-bit) or word (32-bit). The TIC does not
support larger transfer sizes.

HBURST[2:0] Burst type Output Indicates if the transfer forms part of a burst. The TIC always
performs incrementing bursts of unspecified length.
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 4-65

AHB Modules
HPROT[3:0] Protection control Output The protection control signals indicate if the transfer is an
opcode fetch or data access, as well as if the transfer is a
supervisor mode access or user mode access. These signals
can also indicate whether the current access is cacheable or
bufferable.

HWDATA[31:0] Write data bus Output The write data bus is used to transfer data from the master to
bus slaves during write operations. A minimum data bus width
of 32 bits is recommended, however this can easily be
extended to allow for higher bandwidth operation.

HREADY Transfer done Input When HIGH the HREADY signal indicates that a transfer has
finished on the bus. This signal may be driven LOW to extend
a transfer.

HRESP[1:0] Transfer response Input The transfer response provides additional information on the
status of a transfer. Four different responses are provided,
OKAY, ERROR, RETRY and SPLIT.

HBUSREQtic Bus request Output A signal from the TIC to the bus arbiter which indicates that it
requires the bus.

HLOCKtic Locked transfers Output When HIGH this signal indicates that the master requires
locked access to the bus and no other master should be granted
the bus until this signal is LOW.

HGRANTtic Bus grant Input This signal indicates that the TIC is currently the highest
priority master. Ownership of the address and control signals
changes at the end of a transfer when HREADY is HIGH, so
a master gains access to the bus when both HREADY and
HGRANTx are HIGH.

TESTBUS Test data bus Input This is the bidirectional external data bus. In normal operation
it is driven by the external bus interface. During system test it
becomes the test data bus and its direction is controlled by the
test bus request A and B signals.

TESTREQA Test bus request A Input This is the test bus request A input signal and is required as a
dedicated device pin. During normal system operation the
TESTREQA signal is used to request entry into the test mode.
During test TESTREQA is used, in combination with
TESTREQB, to indicate the type of test vector that will be
applied in the following cycle.

Table 4-13 TIC signal descriptions for AHB (continued)

Signal Type Direction Description
4-66 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

AHB Modules
4.10.2 Function and operation of module

The TIC operates as a standard AHB bus master during system test when the external
test pins show that the system is required to enter test mode. In this mode, the TIC
requests control of the AHB, and when granted uses the AHB to perform system tests.

Table 4-14 shows the operation of the external test pins to change the TIC mode from
normal operation into test mode.

TESTREQB Test bus request B Input During test this signal is used, in combination with
TESTREQA, to indicate the type of test vector that will be
applied in the following cycle.

TESTACK Test acknowledge Output The test bus acknowledge signal gives external indication that
the test bus has been granted and also indicates when a test
access has completed. When TESTACK is LOW the current
test vector must be extended until TESTACK becomes HIGH.

TicRead Drive out read
data

Output This signal controls the EBI to drive the current read data from
HRDATA to TESTBUS.

Table 4-13 TIC signal descriptions for AHB (continued)

Signal Type Direction Description

Table 4-14 Test control signals during normal operation

TESTREQA TESTREQB TESTACK Description

0 - 0 Normal operation

1 - 0 Enter test mode request

- - 1 Test mode entered
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 4-67

AHB Modules
During system test the external test pins are used to control the operation of the TIC.
The operation of these pins is shown in Table 4-15.

In test mode, the internal HCLK is driven from the external TESTCLK source. This
pin may be the normal clock oscillator source input or a port replacement signal. The
system bus clock must not glitch when switching between normal and test mode.

On entry into test mode the TIC indicates that it has switched to the test clock input by
asserting the TESTACK signal.

Test vector types

There are five types of test vector associated with the test interface:

Address vector The address for all subsequent read and write transfers is sampled
by the TIC.

Write vector The TIC performs an AHB write cycle, using the write data
currently driven onto the external data bus.

Read vector The TIC performs an AHB read cycle, driving the read data onto
the external data bus when it becomes valid.

Control vector Internal TIC registers are set, which control the types of read and
write transfers that are performed.

Turnaround vector Used between a read cycle and a write cycle to avoid clashes on
the external data bus.

Table 4-15 Test control signals during test mode

TESTREQA TESTREQB TESTACK Description

- - 0 Current access incomplete

1 1 1 Address vector or
control vector or
turnaround vector

1 0 1 Write vector

0 1 1 Read vector

0 0 1 Exit test mode
4-68 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

AHB Modules
The address, control and turnaround vectors are all indicated by the same value on the
TESTREQA and TESTREQB signals. The following rules may be used to determine
which type of vector is being applied:

• a read vector, or burst of read vectors, is followed by two turnaround vectors

• when a single address or control vector is applied it is an address vector

• when multiple address and control vectors are applied they are all address vectors,
apart from the last which is a control vector.

Control vectors

The control vector is used to determine the types of transfer the TIC can perform, by
setting the values of the HSIZE, HPROT and HLOCK AHB master outputs.

The default TIC bus master transfer type is:

• 32-bit transfer width, HSIZE[2:0] signifies word transfer

• privileged system access, HPROT[3:0] signifies supervisor data access,
uncacheable and unbufferable.

Bit 0 of the control vector is used to indicate if the control vector is valid. Thus, if a
control vector is applied with bit 0 LOW, the vector will be ignored and will not update
the control information. This mechanism allows address vectors which have bit 0 LOW
to be applied for many cycles without updating the control information.

Although the default settings will be sufficient for testing many embedded system
designs, the control vector can be used to change the control signals of the transfer, and
can also be used to determine whether the TIC should generate fixed addresses or
incrementing addresses.

Table 4-16 defines the bit positions of the control vector. The control vector bit
definitions are designed to be backwards compatible with earlier versions of the TIC
and therefore not all of the control bits are in obvious positions.

Table 4-16 Control vector bit definitions

Bit position Description

0 Control vector valid

1 Reserved

2 HSIZE[0]

3 HSIZE[1]
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 4-69

AHB Modules
There is no mechanism to control the types of burst that the TIC can perform and only
incrementing bursts of an undefined length are supported. The TIC only supports 8-bit,
16-bit and 32-bit transfers and therefore HSIZE[2] cannot be altered and will always
be LOW.

In order to support burst accesses using the test interface the TIC may support
incrementing of the bus address. The TIC increments eight address bits and the address
range that can be covered by this incrementer is dependent on the size of the transfers
being performed.

The control vector provides a mechanism to enable and disable the address incrementer
within the TIC. This allows burst accesses to incremental addresses, as would be used
for testing internal RAM. Alternatively the address increment can be disabled, such that
successive accesses of a burst occur to the same address, as would be required to
continually read from a single peripheral register.

The address incrementer is disabled by default and must be enabled using a control
vector prior to use.

Note
 The control vector is primarily used to change signals which have the same timing as
the address bus. However the control vector also allows the lock signal to be changed,
which is actually required before the locked transfer commences. If the HLOCK signal
is used during testing it should be set a transfer before it is required. This difference in
timing on the HLOCK signal may in some cases cause an additional transfer to be
locked both before and after the sequence intended to be locked.

4 HLOCK

5 HPROT[0]

6 HPROT[1]

7 Address increment enable

8 Reserved

9 HPROT[2]

10 HPROT[3]

Table 4-16 Control vector bit definitions (continued)

Bit position Description
4-70 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

AHB Modules
4.10.3 Test vector sequences

The following test vector sequences are described:

• Entering test mode

• Write vectors on page 4-72

• Read vectors on page 4-73

• Control vector on page 4-74

• Burst vector on page 4-75

• Read-to-write and write-to-read transfers on page 4-76

• Exiting test mode on page 4-77.

Entering test mode

In normal operating mode TESTREQA will be LOW, indicating that test access is not
required and the test bus will be used as required for normal operation, which will
usually be part of the external bus interface. Entering test mode allows test vectors to be
applied externally that will cause transfers on the internal bus.

The following sequence, required in order to enter test mode, is illustrated in
Figure 4-37 on page 4-72:

1. TESTREQA is asserted to request test bus access.

2. Test mode is entered when the TIC has been granted the internal bus and this is
indicated by the assertion of the TESTACK signal.

3. At this point TESTCLK will become the source of the internal HCLK signal.

4. When test mode has been entered TESTREQB is asserted to initiate an address
vector.

5. The TIC will not perform any internal transfers until a valid address vector has
been applied.

A synchronous tester would not be expected to poll TESTACK for the bus. Normally
the TESTREQA signal would be asserted for a minimum number of cycles guaranteed
to gain access to the bus (completion of the longest wait-state peripheral access or the
maximum number of cycles for all bus masters to have completed their current
instruction).
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 4-71

AHB Modules
Figure 4-37 Test start sequence

Write vectors

Figure 4-38 shows the sequence of events when applying a set of write test vectors.
Initially an address vector is applied and this is followed by a write test vector.

Figure 4-38 Write test vectors

The TESTREQA and TESTREQB signals are pipelined and are used to indicate what
type of vector will be applied in the following cycle.

T1 T2 T3 T4 T5 T6

TESTCLK

TESTACK

TESTBUS[31:0]

TESTREQA

TESTREQB

Test bus
requested

Address
vector

Test bus
available

Address

T1 T2 T3 T4 T5 T7

HCLK

Control

TESTBUS[31:0]

TESTACK

HBURST[2:0]

HWRITE

HSIZE[2:0]

HPROT[3:0]

HWDATA[31:0]

HREADY

TESTREQA

TESTREQB

HADDR[31:0] A

Addr Write1 Write2 Addr

HTRANS[31:0] IDLE NONSEQ SEQ IDLE

A+4

Data2Data1

Address
vector

Write
vector

Write
vector

Address
vector

Write3

Write
vector

SEQ

A+8

Data3

T6 T8
4-72 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

AHB Modules
Figure 4-38 on page 4-72 shows an example of a number of write transfers being
performed.

The TIC samples the address, TESTREQA, and TESTREQB signals at time T3, and
following this it can initiate the appropriate transfer on the AHB. In the following cycle
the write data is driven onto TESTBUS and it is then sampled on the following clock
edge, T4, and driven onto the internal bus.

If the internal transfer is not able to complete then the TESTACK signal is driven LOW
and this indicates that the external test vector must be applied for another cycle.

Read vectors

Read transfers are more complex because they require TESTBUS to be driven in the
opposite direction, and therefore additional cycles are required to prevent bus clash
when changing between different drivers of TESTBUS. Figure 4-39 shows a typical
test sequence for reads.

Figure 4-39 Read test vectors

HCLK

Control

TESTBUS[31:0]

TESTACK

HBURST[2:0]

HSIZE[2:0]

HPROT[3:0]

HRDATA[31:0]

HREADY

TESTREQA

TESTREQB

HADDR[31:0] A

Addr

HTRANS[31:0] IDLE NONSEQ SEQ

A+4

Read1

Address
vector

Read
Write
vector

AddressRead1

SEQ

A+8

HWRITE

Read2 Read3 Write

Read Read
Address
vector

NONSEQ

A

Control

Read3Read2

T1 T2 T3 T4 T5 T7T6 T8 T10T9 T11
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 4-73

AHB Modules
The TESTREQA and TESTREQB signals are used in the same way as for write
transfer. Initially TESTREQA and TESTREQB are used to apply an address vector
and then in the following cycle they are used to indicate that a read transfer is required.
For the first cycle of a read TESTBUS must be tristated, which ensures that the external
equipment driving TESTBUS has an entire cycle to tristate its buffers before the TIC
will enable the on-chip buffers to drive out the read data.

At the end of a burst of reads it is also necessary to allow time for bus turnaround. In
this case the TIC must turn off the internal buffers and an entire cycle is allowed before
the external test equipment starts to drive TESTBUS.

The end of a burst of reads is indicated by both TESTREQA and TESTREQB being
HIGH, as for an address vector. In fact they must indicate an address vector for two
cycles, which allows for the turnaround cycle at the start of the burst and also the
turnaround cycle at the end of the burst.

Control vector

The operation of the TIC may be modified by the use of a control vector. Whenever
more than one address vector is applied in succession then the last vector is considered
to be a control vector and is not latched as the address. Bit 0 of the control vector is used
to determine whether or not the control vector should be considered valid, which allows
multiple address vectors to be applied without changing the control information.

Figure 4-40 on page 4-75 shows the process of inserting a control vector.
4-74 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

AHB Modules
Figure 4-40 Control vector

At time T4 the TIC can determine that TESTBUS contains a control vector. This is
because the previous cycle was an address vector, and TESTREQA and TESTREQB
are indicating that the following cycle is either a read or a write and therefore the current
cycle must be a control vector.

Burst vector

The examples of read and write transfers shown in Figure 4-40 also show how
additional transfers can be used to form burst transfers on the bus. The TIC has limited
capabilities for burst transfers and can only perform undefined length incrementing
bursts.

The TIC contains an 8-bit incrementer and if an attempt is made to perform a burst
which crosses the incrementer boundary then the address will simply wrap and the TIC
will signal the transfer as NONSEQUENTIAL. The exact boundary at which this will
occur is dependent on the size of the transfer. For word transfers the incrementer will
overflow at 1KB boundaries, for halfword transfers it will overflow at 512-byte
boundaries and for byte transfers the overflow will occur at 256-byte boundaries.

T1 T2 T3 T4 T5 T6

HCLK

Control

TESTBUS[31:0]

TESTACK

HBURST[2:0]

HWRITE

HSIZE[2:0]

HPROT[3:0]

HWDATA[31:0]

HREADY

TESTREQA

TESTREQB

HADDR[31:0] A

Addr Control Write1 Write2 Write3

HTRANS[31:0] IDLE IDLE NONSEQ SEQ SEQ

A+4

Data2Data1

Address
vector

Control
vector

Write
vector

Write
vector

Write
vector

T7

A+8
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 4-75

AHB Modules
Read-to-write and write-to-read transfers

It is possible to switch between read transfers and write transfers without applying a
new address vector. Usually this is done with the address incrementer disabled, so that
both the read transfers and the write transfers are to the same address. It is also possible
to do this with the incrementer enabled if the test circumstances require it.

When moving from a read transfer to a write transfer it is also necessary to allow two
cycles for bus handover and therefore TESTREQA and TESTREQB should signal an
address vector for two cycles after the read. This will not cause the address to be
changed unless it is followed by a third address vector.

Figure 4-41 illustrates the sequence of events.

Figure 4-41 Read vector followed by write vector

HCLK

Control

TESTBUS[31:0]

TESTACK

HBURST[2:0]

HSIZE[2:0]

HPROT[3:0]

HRDATA[31:0]

HREADY

TESTREQA

TESTREQB

HADDR[31:0] A

Addr

HTRANS[31:0] IDLE NONSEQ IDLE

A+4

Read data

Address
vector

Read Write

WriteRead

NONSEQIDLE

HWDATA[31:0] Write data

HWRITE

T1 T2 T3 T4 T5 T6 T7 T8

Bus
handover
4-76 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

AHB Modules
Exiting test mode

Test mode is exited using the following sequence:

1. Apply a single cycle of address vector, which causes an IDLE cycle internally.
This ensures any internal transfers have been completed and an
ADDRESS-ONLY transfer is performed on the internal bus.

2. TESTREQA and TESTREQB are both driven LOW to indicate that test mode
is to be exited.

3. When the test interface has been configured for normal system operation,
TESTACK will go LOW to indicate that test mode has been exited.

It is important that test mode can be entered and exited cleanly so that the TIC can be
used for diagnostic test during system operation, as well as during production testing.

4.10.4 System description

This describes how the HDL code for the TIC is set out. A simple system block diagram,
with information about the main parts of the HDL code, is followed by details of the
registers, inputs, and outputs used in the module. This should be read together with the
HDL code.

Figure 4-42 shows the TIC module block diagram.

Figure 4-42 TIC module block diagram

The TIC comprises two state machines, which are used to control the access to the AHB
of the master interface, and the application of test vectors from the external bus to the
system.

EBI control

TIC module

AHB output
drivers

AHB address
generation

Granted
state machine

TIC vector
state machine

Control vector
detection
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 4-77

AHB Modules
All registers in the system are clocked from the rising edge of the system clock HCLK,
and use the asynchronous reset HRESETn.

A diagram of the TIC HDL file is shown in Figure 4-43.

Figure 4-43 TIC module system diagram

Next

Grant
Current

Grant

iTESTACK TESTACK

Sync

Test

ReqA

TESTREQA

NextVect

Current

Vect

Last

Vect

iHADDR

+ 1

TESTBUS

Bound

Bound

Reg

Control

Sel

TESTBUS
IncrmReg
iHPROT
iHLOCK
HsizeInt

SR1

SR2

TicRead TicRead

Haddr

Prev

HaddrEn

iHWDATAHwdata

En

TESTBUS

iHTRANS HTRANS

iHWRITE HWRITE

HWDATA

HPROT

HLOCKtic

HSIZE

HADDR

HBUSREQ
tic

HBUSREQtic

HBURST001

SRNext

Split

Retry
4-78 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

AHB Modules
The main sections of the code are explained in the following paragraphs:

• Granted state machine

• TIC vector state machine

• AHB address generation on page 4-82

• Control vector detection on page 4-83

• Read data control on page 4-83

• Split or retry detection on page 4-83

• AHB bus master output signal generation on page 4-84.

Granted state machine

This is part of the standard AHB bus master interface, and is used to determine when
the TIC is granted the bus, and when it can drive the address, control and data outputs.

The state machine is shown in Figure 4-44, and only advances when the HREADY
input is set HIGH.

Figure 4-44 TIC module granted state machine

TIC vector state machine

This section of the code is used to control the application of test vectors from the
external tester onto the AHB.

ST_GAIN_GRANT

AddrDrive = 1

DataDrive = 0

ST_LOSE_GRANT

AddrDrive = 0

DataDrive = 1

HGRANT = 1

HGRANT = 1

HGRANT = 0

HGRANT = 0

HGRANT = 0

HGRANT = 1

HGRANT = 0

ST_NOT_GRANT

AddrDrive = 0

DataDrive = 0

HGRANT = 1
ST_GRANT

AddrDrive = 1

DataDrive = 1

HRESETn = 0
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 4-79

AHB Modules
Figure 4-45 illustrates the operation of the TIC vector state machine.

Figure 4-45 TIC vector state machine

SyncTestreqA != 1

SyncTestreqA = 1

STV_IDLE

STV_START

TESTREQA/B = ADDR

STV_ADDRVEC

TESTREQA/B != ADDR
TESTREQA/B =

EXIT

TESTREQA/B =

WRITE

STV_READVEC

STV_LASTREAD

TESTREQA/B = !READ

STV_TURNAROUND

STV_WRITEVEC

TESTREQA/B = ADDR or

TESTREQA/B = EXIT

TESTREQA/B = READ

TESTREQA/B = READTESTREQA/B = WRITE

TESTREQA/B = WRITE

TESTREQA/B = ADDR or

TESTREQA/B = EXITTESTREQA/B = !READ

TESTREQA/B = READ

TESTREQA/B = ADDR

HRESETN = 0
4-80 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

AHB Modules
At reset the TIC is in the IDLE state and will not be requesting use of the AHB. When
in the IDLE state TESTACK is driven LOW to indicate that the test interface cannot be
used.

The TESTACK signal controls all transactions around the state machine, except for the
transition from IDLE to START. In all other cases the state machine remains in the same
state if the TESTACK signal is low.

The TESTREQA signal moves from the IDLE state to the START state. The state of
TESTREQB is not checked when moving from normal operation to test mode.

In some system implementations it will be necessary to switch from an internal clock
source to an external clock TESTCLK which is used during test mode. When
TESTREQA first goes HIGH this can be used as an indication that the clock source
should be changed. A return signal that indicates when the clock switch has occurred
successfully can be used to prevent the move into the START state until the test clock
is in use.

If clock switching is being used then it is possible that TESTREQA is asynchronous to
the on-chip clock before test mode is entered. Therefore a synchronizer is used to
generate a synchronized version of TESTREQA to control the movement from the
IDLE state to the START state.

The START state ensures that the first vector applied is an address vector to prevent read
and write vectors occurring before the address has been initialized. The START state is
only exited when TESTREQA and TESTREQB indicate an address vector and the
following state is ADDRVEC.

In the ADDRVEC state the TIC registers the address on the TESTBUS. The
ADDRVEC state is used for both address and control vectors, so additional logic is
required to determine whether the value on TESTBUS should be considered as an
address or as a control vector. If the previous cycle was an address vector and the
following cycle (as indicated by TESTREQA and TESTREQB) is not an address
vector then the current cycle is a control vector.

It is possible to stay in the ADDRVEC state for a number of cycles, but usually an
address vector will be followed by either read or write transfers.

If a write transfer is being performed, the TIC moves into the WRITEVEC state at the
same time that it initiates the transfer on the bus. Multiple write transfers can be
performed by remaining in the WRITEVEC state. Usually the WRITEVEC will be
followed by an address vector. However, it is also possible to move directly to a read
transfer by moving to the READVEC state.
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 4-81

AHB Modules
When a read, or a burst of reads is performed, the TIC enters the READVEC state. This
state indicates that the TIC is starting a read transfer on the bus and it is not until the
following cycle that the read data will appear. When the READVEC state is first entered
the TESTBUS will be tristated, but will become driven during additional cycles in the
READVEC state.

All read vectors must be followed by two turnaround vectors. For the first of these
cycles the TIC will move into the LASTREAD state, during which the last read of the
transfer will complete and will be driven out on to the external TESTBUS. During the
LASTREAD state no internal transfers will be started and the TIC will perform IDLE
transfers on the bus.

Following the LASTREAD state the TIC moves into the TURNAROUND state, during
which time the external TESTBUS will be tristated. The TURNAROUND state will
usually be followed by an address vector, but it is also possible to go immediately to a
write vector or another read.

The usual method to exit from test is to return to the ADDRVEC state and then set both
TESTREQA and TESTREQB LOW to return to IDLE and effectively exit from test.
In fact, at any point the test mode can be exited by setting both TESTREQA and
TESTREQB LOW, and eventually this will cause the TIC to exit from test.

Note
 When applying TIC vectors it is theoretically possible to assert the HLOCK output and
then exit from the test. If this happens and then the TIC is granted the bus under normal
operation it will effectively lock up the bus. No protection is provided within the TIC to
prevent this occurrence.

AHB address generation

There are four main sources of the HADDR output in the TIC:

• current address registers

• previous address registers

• external data bus

• incrementer.

The current address is held during a standard read or write cycle, as the address loaded
during the previous address vector is used for all subsequent read and write transfers.

The previous address is only used when a split or retry response has been generated by
the currently selected slave, and the TIC is set in incrementing mode. When the transfer
is regenerated, the incremented address will have moved on for the next transfer, so the
previous address must be stored for use.
4-82 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

AHB Modules
When an address vector is applied, the TIC must read in the new address from the
external data bus TESTBUS. This new value is stored in the iHADDR registers, and
used for the following read and write transfers.

If address incrementing is enabled, then sequential read and write vectors will
increment the address according to the transfer size that has been set. The first read or
write transfer after an address vector will be to that address, then subsequent transfers
will have their address incremented. This continues until a control vector is used to
disable address incrementing.

Sequential incrementing read and write vectors are signalled as SEQUENTIAL
transfers on the AHB, but a NONSEQUENTIAL transfer is added when the address
incrementer crosses an 8-bit boundary, set by the current transfer size.

Control vector detection

This part is used to detect a control vector, and contains the control registers. A control
vector is the last address vector in a burst of addresses, so is only detected when
TESTREQA and TESTREQB indicate that the next transfer is a read or write vector,
and there have been two or more address vectors. The TIC vector state machine is used
to detect this, when LastVect and CurrentVect are set to address vector, and NextVect is
either a read or a write vector. Also, bit 0 of the control vector (on TESTBUS) must be
set HIGH for it to be valid, allowing for bursts of addresses.

Once it has been detected, the control vector is written to the registers used to hold the
transfer settings for HSIZE, HLOCK, HPROT, and if address incrementing is
enabled. These values are then held until the next control vector is detected and stored.

Read data control

TicRead is used to enable the EBI to drive the current read data value from HRDATA
onto TESTBUS. It is set HIGH when the last vector was a read, allowing time for the
read data to be driven onto the AHB. This output is disabled when the TIC is not granted
control of the bus, allowing the EBI to function normally.

Split or retry detection

The TIC must know when the currently selected slave has generated a split or retry, and
this section is used to detect that response. If the TIC loses grant before the transfer has
been regenerated, then the value of the SplitRetry signal is held until the TIC has
gained control of the bus again.

SR1 and SR2 are also used to indicate the first and second cycles of a SPLIT/RETRY
response. SR2 is registered to remove a combinational path from HRESP to HTRANS.
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 4-83

AHB Modules
AHB bus master output signal generation

As the TIC is an AHB bus master, it must drive all of the output signals needed to
control the operation of AHB slaves on the bus, and also the bus grant request output.
This section generates these outputs, and controls when they can be driven out.

HTRANS is generated according to the granted state machine, the TIC vector state
machine, the split or retry status, and the incrementer boundary condition.

NONSEQUENTIAL transfers are generated:

• during a read or write following an address

• during a read or write when the TIC has just gained control of the bus

• during a regenerated read or write that has been split or retried

• when the address incrementer has crossed an 8-bit boundary during a sequential
read or write.

SEQUENTIAL transfers are generated in incrementing mode:

• when a read follows a read or a write

• when a write follows a write.

IDLE transfers are generated at all other times, as no bus transfers need to be performed.

HWRITE is set HIGH when the current transfer is a write, and is set LOW at all other
times. During a regenerated split/retry transfer, the last vector is used.

HBUSREQtic is set LOW when the TIC vector state machine is in the IDLE state, and
is set HIGH at all other times, as the bus is only requested when test mode has been
entered.
4-84 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

Chapter 5
APB Modules

This chapter describes the modules that comprise the Advanced Peripheral Bus (APB).
It contains the following sections:

• Interrupt controller on page 5-2

• Remap and pause controller on page 5-12

• Timers on page 5-20

• Peripheral to bridge multiplexor on page 5-35.
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 5-1

APB Modules
5.1 Interrupt controller

The interrupt controller is an APB slave, providing a simple software interface to the
interrupt system. It consists of:

• source status and interrupt request status

• separate enable set and enable clear registers to allow independent bit enable
control of interrupt sources

• level-sensitive interrupts

• programmable interrupt source.

Figure 5-1 shows the interrupt controller module block diagram.

Figure 5-1 Interrupt controller module block diagram

Interrupt
controllerPWRITE

PRESETn

PCLK

IRQESource0

FIQESource

IRQESource[7:2]

nIRQ

nFIQ

PENABLE

PSELIC

PADDR[8:2]

PWDATA[7:0] PRDATA[7:0]
5-2 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

APB Modules
5.1.1 Hardware interface and signal description

The interrupt controller module is connected to the APB bus. Table 5-1 shows the signal
descriptions for the interrupt controller.

Table 5-1 APB signal descriptions for interrupt controller

Signal Type Direction Description

PCLK Peripheral clock Input This clock times all bus transfers. Both the LOW phase and
HIGH phase of PCLK are used to control transfers.

PRESETn Peripheral reset Input The bus reset signal is active LOW and is used to reset the
system.

PENABLE Peripheral enable Input This enable signal is used to time all accesses on the
peripheral bus.

PSELIC Peripheral slave
select

Input When HIGH, this signal indicates that this module has been
selected by the APB bridge. This selection is a decode of the
system address bus.

PADDR[8:2] Peripheral address Input This is the peripheral address bus, which is used for decoding
register accesses. The addresses become valid before
PENABLE goes HIGH and remains valid after PENABLE
goes LOW.

PWRITE Peripheral transfer
direction

Input This signal indicates a write when HIGH and a read when
LOW. It has the same timing as the peripheral address bus.

PWDATA[5:0] Peripheral write
data bus

Input The write peripheral data bus is driven by the bridge at all
times.

PRDATA[7:0] Peripheral read
data bus

Output The read peripheral data bus is driven by this block during
read cycles (when PWRITE is LOW and PSELIC is HIGH).

FIQESource FIQ interrupt
source

Input FIQ interrupt signal into the interrupt module. This active
HIGH signal indicates that a fast interrupt request has been
generated.

IRQESource[0]

IRQESource[7:2]

IRQ interrupt
sources

Input IRQ interrupt signals into the interrupt module. These active
HIGH signals indicate that interrupt requests have been
generated. (IRQESource[1] is internally generated in the
interrupt controller module and is used to provide a software
triggered IRQ.)

nFIQ FIQ output Output Active LOW fast interrupt request input to the ARM core.

nIRQ IRQ output Output Active LOW interrupt request input to the ARM core.
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 5-3

APB Modules
5.1.2 Function and operation of the interrupt controller module

The interrupt controller provides a simple software interface to the interrupt system.
Certain interrupt bits are defined for the basic functionality required in any system. The
remaining bits are available for use by other devices in any particular implementation.
In an ARM system, two levels of interrupt are available:

• fast interrupt request (FIQ) for fast, low latency interrupt handling

• interrupt request (IRQ) for more general interrupts.

Ideally, in an ARM system, only a single FIQ source is in use at any particular time.
This provides a true low-latency interrupt, because a single source ensures that the
interrupt service routine may be executed directly without the need to determine the
source of the interrupt. It also reduces the interrupt latency because the extra banked
registers, which are available for FIQ interrupts, may be used to maximum efficiency by
preventing the need for a context save.

Separate interrupt controllers are used for FIQ and IRQ. Only a single bit position is
defined for FIQ, which is intended for use by a single interrupt source, while up to 32
bits are available in the IRQ controller. The standard configuration only makes eight
interrupt request lines available. This can be extended to up to 32 sources by altering the
IRQSize constant setting and increasing the width of the PWDATA and PRDATA lines
to the interrupt controller.

The IRQ interrupt controller uses a bit position for each different interrupt source. Bit
positions are defined for a software-programmed interrupt, a communications channel,
and counter-timers. Bit 0 is unassigned in the IRQ controller so that it may share the
same interrupt source as the FIQ controller.

All interrupt source inputs must be active HIGH and level-sensitive. Any inversion or
latching required to provide edge sensitivity must be provided at the generating source
of the interrupt.

No hardware priority scheme nor any form of interrupt vectoring is provided, because
these functions can be provided in software.

A programmed interrupt register is also provided to generate an interrupt under software
control. Typically this may be used to downgrade an FIQ interrupt to an IRQ interrupt.

Interrupt control

The interrupt controller provides:

• interrupt status

• raw interrupt status

• an enable register.
5-4 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

APB Modules
The enable register is used to determine whether or not an active interrupt source should
generate an interrupt request to the processor.

The raw interrupt status indicates whether or not the appropriate interrupt source is
active prior to masking and the interrupt status indicates whether or not the interrupt
source is causing a processor interrupt.

The enable register has a dual mechanism for setting and clearing the enable bits. This
allows enable bits to be set or cleared independently, with no knowledge of the other
bits in the enable register.

When writing to the enable set location, each data bit that is HIGH sets the
corresponding bit in the enable register. All other bits of the enable register are
unaffected. Conversely, the enable clear location is used to clear bits in the enable
register while leaving other bits unaffected.

Figure 5-2 shows the structure for a single segment of the interrupt controller.

Figure 5-2 Single bit slice of the interrupt controller

The IRQ controller will usually have a larger number of bit slices, where the exact size
is dependent on the system implementation.

The FIQ interrupt controller consists of a single bit slice, located on bit 0.

Set

Clear

Enable set

External interrupt

Test interrupt

Source select

Enable clear

Enable

Status

Raw status

Active LOW
interrupt output

Other interrupt
bit slices
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 5-5

APB Modules
5.1.3 Register memory map

The base address of the interrupt controller is not fixed and may be different for any
particular system implementation. However, the offset of any particular register from
the base address is fixed. Table 5-2 shows the register memory map.

5.1.4 Register descriptions

The following registers are provided for both FIQ and IRQ interrupt controllers:

Enable Read-only. The enable register is used to mask the interrupt input
sources and defines which active sources will generate an
interrupt request to the processor. This register is read-only, and its
value can only be changed by the enable set and enable clear
locations. If certain bits within the interrupt controller are not
implemented, the corresponding bits in the enable register must be
read as undefined.

Table 5-2 Register memory map of the interrupt controller APB peripheral

Address Read location Write location

IntBase + 0x000 IRQStatus -

IntBase + 0x004 IRQRawStatus -

IntBase + 0x008 IRQEnable IRQEnableSet

IntBase + 0x00C - IRQEnableClear

IntBase + 0x010 - IRQSoft

IntBase + 0x100 FIQStatus -

IntBase + 0x104 FIQRawStatus -

IntBase + 0x108 FIQEnable FIQEnableSet

IntBase + 0x10C - FIQEnableClear

IntBase + 0x014 IRQTestSource IRQTestSource

IntBase + 0x018 IRQSourceSel IRQSourceSel

IntBase + 0x114 FIQTestSource FIQTestSource

IntBase + 0x118 FIQSourceSel FIQSourceSel
5-6 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

APB Modules
An enable bit value of 1 indicates that the interrupt is enabled and
will allow an interrupt request to reach the processor. An enable
bit value of 0 indicates that the interrupt is disabled. On reset, all
interrupts are disabled.

EnableSet Write-only. This location is used to set bits in the interrupt enable
register. When writing to this location, each data bit that is HIGH
causes the corresponding bit in the enable register to be set. Data
bits that are LOW have no effect on the corresponding bit in the
enable register.

EnableClear Write-only. This location is used to clear bits in the interrupt
enable register. When writing to this register, each data bit that is
HIGH causes the corresponding bit in the enable register to be
cleared. Data bits that are LOW have no effect on the
corresponding bit in the interrupt enable register.

RawStatus Read-only. This location provides the status of the interrupt
sources to the interrupt controller. A HIGH bit indicates that the
appropriate interrupt request is active prior to masking.

Status Read-only. This location provides the status of the interrupt
sources after masking. A HIGH bit indicates that the interrupt is
active and will generate an interrupt to the processor.

Soft Write only. A write to bit 1 of this register sets or clears a
programmed interrupt. Writing to this register with bit 1 set HIGH
generates a programmed interrupt, while writing to it with bit 1 set
LOW clears the programmed interrupt. The value of this register
may be determined by reading bit 1 of the source Status register.
Bit 0 of this register is not used.

Two extra read/write registers are defined for both FIQ and IRQ to allow testing of the
interrupt controller module using the AMBA test methodology. They must not be
accessed during normal operation.

TestSource Same size as RawStatus, and used to load RawStatus with test
data.

SourceSel 1-bit wide (bit 0). When set, the value in TestSource is
multiplexed into RawStatus.
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 5-7

APB Modules
5.1.5 Standard configuration of registers

The FIQ interrupt controller is one bit wide and is located on bit 0. The source of this
interrupt is implementation-dependent.

The interrupt controller will be customized to fit into each application. The following is
an example minimum set of interrupt bits assigned in a system:

• Bits 1 to 5 in the IRQ interrupt controller are defined in the standard EASY world.

• Bit 0 and Bits 6 up to 31 are available for use as required. Bit 0 is left available so
that the FIQ source may also be routed to the IRQ controller in an identical bit
position.

Table 5-3 gives a typical example allocation of IRQ sources.

5.1.6 System description

This section describes how the HDL code for the interrupt controller is set out. A simple
system block diagram, with information about the main parts of the HDL code, is
followed by details of all the registers, inputs and outputs used in the system. This
section should be read together with the HDL code.

Figure 5-3 on page 5-9 shows the interrupt controller module block diagram.

Table 5-3 Example of IRQ sources

Bit Interrupt source

0 Undefined

1 Programmed Interrupt

2 Comms Rx

3 Comms Tx

4 Timer 1

5 Timer 2
5-8 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

APB Modules
Figure 5-3 Interrupt controller module block diagram

The interrupt controller comprises sets of interrupt registers and test registers that are
used to control the generation of the two interrupt outputs to the ARM core, based on
the interrupt inputs.

All registers used in the system are clocked from the rising edge of the system clock
PCLK, and use the asynchronous reset PRESETn.

Two diagrams are used to show the interrupt controller HDL file. Figure 5-4 shows the
layout of the bit slices that are used for bit 0 of the FIQ and bits 0 and [5:2] of the IRQ.

Figure 5-4 Interrupt controller slice system diagram

Interrupt controller module

Programmed
IRQ register

IRQ enable
registers

FIQ enable
registers

Interrupt
output

Read data
output

IRQ test
registers

FIQ test
registers

Fast interrupt
output

Test
source

Raw
status

Interrupt ESource

Source
sel

Enable

PADDR

PWDATA

Status
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 5-9

APB Modules
Figure 5-5 shows the layout of the whole system.

Figure 5-5 Interrupt controller module system diagram

The main sections in this module are explained in more detail in the following
paragraphs:

• Constant definitions on page 5-11

• IRQ generation on page 5-11

• FIQ generation on page 5-11

• Output data generation on page 5-11.

IRQ
enable

(1)

IRQ
soft

FIQESource

IRQESource0

IRQESource(5:2)

IRQStatus

IRQRawStatus

IRQEnable

FIQStatus

FIQRawStatus

FIQEnable

IRQTestSource0

IRQTestSource

IRQSourceSel

FIQTestSource

FIQSourceSel

PADDR

nFIQ

nIRQ

PRDATA

FIQ

IRQ(0)

IRQ(5:2)

PSELIC

PWRITE

iPRDATA

IRQ raw
status (1)

PADDR

PWDATA
5-10 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

APB Modules
Constant definitions

The first two constants that are specified (IRQSIZE and FIQSIZE), are used to set the
number of IRQ and FIQ lines that are used in the system. The defaults are for eight IRQ
lines and one FIQ line. These constants should only be changed when the number of
interrupt input sources are changed.

The other constants are used to set the relative addresses of the interrupt controller
registers from the base address.

IRQ generation

Figure 5-4 on page 5-9 shows the structure of the IRQ generation logic from the
external interrupt sources.

The read/write TestSource register is used to hold the test value. This is passed through
a multiplexor, and then used to switch between the external and internal test interrupt
sources. This is the read-only RawStatus value, which is gated with the output of the
enable register, and used to generate the Status output.

All of the IRQ sources are then combined to generate the active LOW nIRQ output,
which is set LOW when any of the IRQ lines are set HIGH.

FIQ generation

The FIQ logic is similar to the IRQ logic, but in the default system is only one bit wide,
and does not have a software programmable source. The nFIQ output is directly
generated from the single interrupt source bit, using an inverter.

Output data generation

This section is used to decode the current address during a read, and generate the correct
data to be driven onto the APB data bus. The address is compared with all of the register
addresses, and the value of PRDATANext is set accordingly. This is then stored in the
iPRDATA register to help decrease the output propagation time by using a registered
output, rather than an output with the combinational delay of the large multiplexor. This
register also synchronizes the reading of all raw interrupt inputs to the rising edge of the
clock. The PRDATA output is then driven by the register.
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 5-11

APB Modules
5.2 Remap and pause controller

The remap and pause controller is an APB slave, providing control of the system boot
behavior and low-power wait for interrupt mode.

The main sections of this module are:

• defined boot behavior with power-on reset detection

• a wait for interrupt pause mode

• an identification register.

A block diagram of the remap and pause module is shown in Figure 5-6.

Figure 5-6 Remap and pause module block diagram

5.2.1 Signal descriptions

Table 5-4 describes the APB signals used and produced by the remap and pause
controller.

Remap
and pause

PWRITE

PRESETn

PCLK

nIRQ

nFIQ

Remap

PausePENABLE

PSELRPC

PADDR[5:2]

PWDATA[7:0]

PRDATA[7:0]

Table 5-4 APB signal descriptions for remap and pause controller

Signal Type Direction Description

PCLK Peripheral clock Input This clock times all bus transfers. Both the LOW phase and HIGH
phase of PCLK are used to control transfers.

PRESETn Peripheral reset Input The bus reset signal is active LOW and is used to reset the system.

PENABLE Peripheral enable Input This enable signal is used to time all accesses on the peripheral
bus.
5-12 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

APB Modules
5.2.2 Functions and operations of the remap and pause module

The remap and pause control is the combination of four separate functions:

Pause Defines a method of allowing the processor system to enter a
low-power, wait for interrupt state, when the system does not
require the processor to be active.

Identification Provides an indication of the system configuration.

Reset memory map Provides a method of overlaying the system base memory at reset.

Reset status Provides an indication of the cause of the most recent reset
condition. A minimum implementation is defined.

PSELRPC Peripheral slave
select

Input When HIGH, this signal indicates that this module has been
selected by the APB bridge. This selection is a decode of the
system address bus.

PADDR[5:2] Peripheral address
bus

Input This is the peripheral address bus, which is used for decoding
register accesses. The addresses become valid before PENABLE
goes HIGH and remains valid after PENABLE goes LOW.

PWRITE Peripheral
transfer direction

Input This signal indicates a write when HIGH and a read when LOW.

It has the same timing as the peripheral address bus.

PWDATA[7:0] Peripheral write
data bus

Input The write peripheral data bus is driven by the bridge at all times.

PRDATA[7:0] Peripheral read
data bus

Output The read peripheral data bus is driven by this block during read
cycles (when PWRITE is LOW and PSELRPC is HIGH).

nFIQ FIQ output Input FIQ interrupt input from the interrupt controller.

nIRQ IRQ output Input IRQ interrupt input from the interrupt controller.

Pause Pause mode Output HIGH when in the wait for interrupt pause mode, and LOW at all
other times.

Remap Reset memory
map

Output LOW when the reset memory map is in use, and HIGH when the
normal memory map is in use.

Table 5-4 APB signal descriptions for remap and pause controller (continued)

Signal Type Direction Description
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 5-13

APB Modules
5.2.3 Register memory map

The base address of the remap and pause controller memory is not fixed and may be
different for any particular system implementation. However, the offset of any particular
register from the base address is fixed. Table 5-5 shows the remap and pause controller
memory map.

5.2.4 Remap and pause register descriptions

Pause Write-only. Writing to the pause location causes the system to
enter a wait for interrupt state, by setting the Pause output HIGH.

The exact effect of writing to this location is not defined, but
typically this would prevent the processor from fetching further
instructions until the receipt of an interrupt or a power-on reset.
Further registers may be added to provide more sophisticated
power-saving modes.

Identification Read-only. The identification location provides identification
information about the system. Only a single-bit implementation
(bit 0) is required, which is used to indicate if there is further ID
information:

0 = no further ID information

1 = further ID information is available.

If bit zero of the identification register is set, further bits are
required to provide more detailed system identification
information.

Table 5-5 Memory map of the remap and pause controller APB peripheral

Address Read location Write location

RemapBase + 0x00 - Pause

RemapBase + 0x10 Identification -

RemapBase + 0x20 - ClearResetMap

RemapBase + 0x30 ResetStatus ResetStatusSet

RemapBase + 0x34 - ResetStatusClear
5-14 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

APB Modules
ClearResetMap Write-only. Writing to the clear reset memory map location
changes the system memory map. It changes from that required
during boot-up to that required during normal operation. This is
done by setting the Remap output to HIGH. Once the reset
memory map has been cleared and the normal memory map is in
use, there is no method of resuming the reset memory map, other
than undergoing a power-on reset condition. A typical system
implementation is to map the system ROM to location
0x0000 0000 at reset, but to change the memory map after reset,
such that RAM is located at location 0x0000 0000 for normal
operation. In a system where such remapping does not occur,
writing to this register has no effect.

ResetStatus Read-only. The reset status location provides the reset status. Only
one bit of this register is defined in this specification and this is bit
0, which provides the power-on reset status. Further bits in the
ResetStatus register may be implemented to provide more detailed
reset information. The ResetStatus register has a dual mechanism
for setting and clearing bits, allowing independent bits to be
altered with no knowledge of the other bits in the register. This is
done by using the ResetStatusClear and the ResetStatusSet
registers.

The single bit defined in this specification is the power-on reset
bit, which may be used to determine if the most recent reset was
caused by initial power-on, or if a warm reset has occurred:

0 = no POR since flag was last cleared

1 = POR.

ResetStatusClear Write-only. This location is used to clear reset status flags. When
writing to this register each data bit that is HIGH causes the
corresponding bit in the ResetStatus register to be cleared. Data
bits that are LOW have no effect on the corresponding bit in the
ResetStatus register.

ResetStatusSet Write-only. This location is used to set reset status flags. When
writing to this register each data bit that is HIGH causes the
corresponding bit in the ResetStatus register to be set. Data bits
that are LOW have no effect on the corresponding bit in the
ResetStatus register. The power-on reset status bit (bit 0) cannot
be set by software, as it can only be set during a system reset. The
extra bits of the register are included in the specification to ensure
the reset status functionality can easily be expanded.
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 5-15

APB Modules
5.2.5 System description

The following paragraphs describe how the HDL code for the remap and pause
controller module is set out. A simple system block diagram, with information about the
main parts of the HDL code, is followed by details of all the registers, inputs and outputs
used in the system. This section should be read together with the HDL code.

A basic block diagram of the remap and pause controller module is shown in Figure 5-7.

Figure 5-7 Remap and pause module block diagram

The remap and pause controller comprises registers to generate the Remap and Pause
outputs, and logic to allow the reading of the identification and reset status values.

All registers used in the system are clocked from the rising edge of the system clock
PCLK, and use the asynchronous reset PRESETn. The Pause register also uses the two
interrupt inputs as asynchronous resets, allowing the value to be cleared while the
system is not clocked.

Reset status
set and clear

Read data
output

Identification
register

Reset status
register

Pause
enable

Remap
clear

Pause output

Remap output

Remap
and
pause
module
5-16 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

APB Modules
A diagram of the remap and pause HDL file is shown in Figure 5-8.

Figure 5-8 Remap and pause module system diagram

The main sections in this module are explained in more detail in the following sections:

• Constant definitions on page 5-18

• ResetStatus value generation on page 5-18

• Pause output generation on page 5-18

• Remap output generation on page 5-19

• Output data generation on page 5-19.

Pause

Reset
status

Remap

Identification
information

iPRDATA

Pause

PRDATA

Remap

PADDR

PWDATA

PSELRPC

PADDR

PWRITE

nFIQ

nIRQ

PRESETn

PADDR

PWDATA

PADDR

PWDATA
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 5-17

APB Modules
Constant definitions

The constant IDENTIFICATION holds the identification information about the system.
The default setting for this value is all zero. The maximum size for this value is the
width of the read and write data buses of the module.

ResetStatus value generation

This register is modified through the ResetStatusSet and ResetStatusClear addresses.
When writing to the set location, each data bit that is HIGH sets the corresponding bit
in the ResetStatus register. All other bits of the register are unaffected. Each data bit that
is set HIGH when writing to the clear location will clear the corresponding bit in the
ResetStatus register, leaving all other bits unaffected.

The power-on-reset bit (bit 0) cannot be set by writing to the set location, as it is only
set HIGH during system reset. It can be cleared in the same manner as the other register
bits.

Pause output generation

A register is used to hold the wait for interrupt state value. The Pause output is
synchronously set HIGH (on the rising edge of PCLK) when the Pause location is
written to, with any value, and is asynchronously set LOW by PRESETn, nFIQ or
nIRQ. Once set HIGH, it can only be set LOW with a reset or an interrupt.

Figure 5-9 on page 5-19 shows the operation of setting and clearing the Pause registered
output.
5-18 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

APB Modules
Figure 5-9 Pause signal timing

Remap output generation

This register is used to hold the system memory map state value. The Remap output is
set LOW on reset, indicating that the reset memory map is in use. It is set HIGH when
the ClearResetMap location is written to with any value, indicating that the normal
system memory map is in use. Once set HIGH, it can only be set LOW by a system reset.

Output data generation

This section is used to decode the current address during a read, and generate the correct
data to be driven onto the APB read data bus. The address is compared with all of the
register addresses, and the value of PRDATANext is set accordingly. This is then stored
in the iPRDATA register to help decrease the output propagation time by using a
registered output, rather than an output with the combinational delay of the large
multiplexor. The PRDATA output is then driven by the register.

Pause

PCLK

PSELRPC

PADDR

PWRITE

PENABLE

nFIQ/

nIRQ

Pause
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 5-19

APB Modules
5.3 Timers

The timers module is an APB slave, providing access to two interrupt generating
programmable 16-bit Free-Running decrementing Counters (FRCs).

The main sections of the timers module are:

• two identical instantiations of a programmable 16-bit free-running counter

• prescale for each counter clock

• interrupt generation based on counter value.

The timers module is shown in Figure 5-10.

Figure 5-10 Timer module block diagram

5.3.1 Signal descriptions

The two sets of signals associated with the timers module are:

• the external connections to the rest of the EASY world

• the internal connections between the timers module and the two FRC modules.

The signal descriptions for the timers module are listed in Table 5-6 on page 5-21.

Timer

PWRITE

PRESETn

PCLK

INTCT2

INTCT1PENABLE

PSELCT

PADDR[5:2]

PWDATA[15:0]

PRDATA[5:0]

FRC1

FRC2
5-20 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

APB Modules
Table 5-6 APB signal descriptions for timer

Signal Type Direction Description

PCLK Peripheral clock Input This clock times all bus transfers. Both the LOW phase and
HIGH phase of PCLK are used to control transfers.

PRESETn Peripheral reset Input The bus reset signal is active LOW and is used to reset the
system.

PENABLE Peripheral
enable

Input This enable signal is used to time all accesses on the peripheral
bus.

PSELCT Peripheral slave
select

Input When HIGH, this signal indicates that this module has been
selected by the APB bridge. This selection is a decode of the
system address bus.

PADDR[5:2] Peripheral
address bus

Input This is the peripheral address bus, which is used for decoding
register accesses. The addresses become valid before
PENABLE goes HIGH and remains valid after PENABLE
goes LOW.

PWRITE Peripheral
transfer direction

Input This signal indicates a write when HIGH and a read when LOW.
It has the same timing as the peripheral address bus.

PWDATA[15:0] Peripheral write
data bus

Input The write peripheral data bus is driven by the bridge at all times.

PRDATA[15:0] Peripheral read
data bus

Output The read peripheral data bus is driven by this block during read
cycles (when PWRITE is LOW and PSELCT is HIGH).

INTCT Counter 1
interrupt

Output Active HIGH interrupt signal to the interrupt controller module.
This signal indicates an interrupt has been generated by counter
1 having been decremented to zero.

INTCT2 Counter 2
interrupt

Output Active HIGH interrupt signal to the interrupt controller module.
This signal indicates an interrupt has been generated by counter
2 having been decremented to zero.
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 5-21

APB Modules
5.3.2 Function and operation of module

Two counters are defined as the minimum provided within a system, although this may
easily be expanded. The same principle of simple expansion has been applied to the
register configuration, allowing more complex counters to be used.

Two modes of operation are available:

Free-running mode

The counter wraps after reaching its zero value, and continues to
count down from the maximum value. This is the default mode.

Periodic timer mode

The counter generates an interrupt at a constant interval, reloading
the original value after wrapping past zero.

5.3.3 Timer operation

The timer is loaded by writing to the Load register and, if enabled, counts down to zero.
When zero is reached, an interrupt is generated. The interrupt may be cleared by writing
to the Clear register.

After reaching a zero count, if the timer is operating in free-running mode it continues
to decrement from its maximum value. If periodic timer mode is selected, the timer
reloads the count value from the Load register and continues to decrement. In this mode
the counter effectively generates a periodic interrupt. The mode is selected by a bit in
the Control register.

At any point, the current counter value may be read from the Value register.

The counter is enabled by a bit in the Control register. At reset, the counter is disabled,
the interrupt is cleared, and the Load register is set to zero. The mode and prescale
values are set to free-running, and clock divide of one respectively.

Figure 5-11 on page 5-23 is a block diagram showing timer operation.
5-22 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

APB Modules
Figure 5-11 Timer operation

The timer clock enable is generated by a prescale unit. The enable is then used by the
counter to create a clock with a timing of one of the following:

• the system clock

• the system clock divided by 16, generated by 4 bits of prescale

• the system clock divided by 256, generated by a total of 8 bits of prescale.

Figure 5-12 shows how the timer clock frequency is selected in the prescale unit.

Figure 5-12 Prescale clock enable generation

Control
Timer

clock enable
Load

16-bit down counter

Value
Interrupt

generation

Divide
by 16

Control
Prescale select

System
clock

Timer
clock

Divide
by 16
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 5-23

APB Modules
5.3.4 Register memory map

The base address of the timers module is not fixed and may be different for any
particular system implementation. However, the offset of any particular register from
the base address is fixed.

5.3.5 Timer register descriptions

TimerXLoad Read/write. This register contains the initial value to be loaded
into the counter and is also used as the reload value in periodic
mode. This register is the same width as the counter (default is 16
bits).

TimerXValue Read-only. This location gives the current value of the counter.

TimerXClear Write-only. Writing to this location clears an interrupt generated
by the counter.

TimerXControl Read/write. This register provides enable/disable, mode and
prescale configurations for the counter.

Table 5-7 Memory map of the time APB peripheral

Address Read location Write location

TimerBase + 0x00 Timer1Load Timer1Load

TimerBase + 0x04 Timer1Value -

TimerBase + 0x08 Timer1Control Timer1Control

TimerBase + 0x0C - Timer1Clear

TimerBase + 0x20 Timer2Load Timer2Load

TimerBase + 0x24 Timer2Value -

TimerBase + 0x28 Timer2Control Timer2Control

TimerBase + 0x2C - Timer2Clear

TimerBase + 0x10 Timer1Test Timer1Test

TimerBase + 0x30 Timer2Test Timer2Test
5-24 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

APB Modules
Figure 5-13 shows the control register.

Figure 5-13 The control register

TimerXTest Two special registers are provided for validation purposes,
Timer1Test and Timer2Test. These locations should not be
accessed during normal system operation.

Both registers are read/write and are 2 bits wide, as shown in
Table 5-8.

The counter test mode bit is stored in a register in both FRCs. The test clock select bit
is stored in a single register in the top-level timers module, but can be accessed from
either test address.

0 00

Prescale

00

Mode

Enable

31 8 7 6 5 4 1 023

Undefined

Must be written as zero

Read as Undefined

Prescale bits

Mode Bit

0 - free running mode

1 - periodic timer mode

Enable Bit

0 - timer disabled

1 - timer enabled

0 0 0

Undefined

Clock
divided by

Stages of
prescale

0

4

8

Undefined

Bit 2

0

1

0

1

Bit 3

0

0

1

1

1

16

256

Undefined

...

UndefinedUndefined

Table 5-8 Test register bit functions

Bit Name Function

0 Test Counter test mode

1 TestClkSel Test clock select
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 5-25

APB Modules
When the counter test mode bit is set, the selected 16-bit counter is divided into four
separate 4-bit counters that continually loop round from 15 to 0. This reduces the testing
time needed to ensure that the correct counting sequence is performed. Clearing this bit
(default) brings the selected timer back to normal operation.

When the test clock select bit is set in either of the two test registers, a special test clock
(NOT PENABLE ANDed with PSELCT) is fed into the prescale unit instead of the
system clock (therefore both counters have to be using the same clock source, either
normal or test). Clearing this bit (default) selects the system clock as the prescale clock
input (normal operation).

5.3.6 System description

This section describes how the HDL code for the timers module is set out. A basic
system block diagram, with information about the main parts of the HDL code, is
followed by details of all the registers, inputs and outputs used in this module. This
should be read together with the HDL code.

A basic block diagram of the timers module is shown in Figure 5-14.

Figure 5-14 Timers module block diagram

Free-running
counter 1

Timers
module

Counter
control
register

4x4-bit linked
decrementing

counters

Load
new value

register

Counter
test mode
register

Counter
interrupt

generation

Free-running
counter 2

Counter
control
register

4x4-bit linked
decrementing

counters

Load
new value

register

Counter
test mode
register

Counter
interrupt

generation

Output
data

drivers

Counter test
clock select

register

Counter
enable

generation
with divide
by 16 and

divide by 256
prescale
5-26 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

APB Modules
The timers module comprises two 16-bit programmable free-running counters, and
clock prescale enable generation logic. The free-running counters comprise four linked
4-bit counters, interrupt generation logic and counter control registers.

All registers used in the system are clocked from the rising edge of the system clock
PCLK and use the asynchronous reset PRESETN.

5.3.7 Timer system description

A diagram of the timers module HDL file is shown in Figure 5-15.

Figure 5-15 Timers module system diagram

The main sections in this module are explained in the following paragraphs:

• Address decoder

• Test clock select generation on page 5-28

• Clock prescaler on page 5-28

• Output clock enable generation on page 5-28

• Output data generation on page 5-29.

Address decoder

This section is used to generate the TestSel signal, which is used to indicate an access
to either of the test registers, and the Frcsel select lines to the FRCs based on the current
address. As there are two instantiations (in the default system) of an identical FRC
module, then part of the address decoding must be done at the previous system level.

- 1

PENABLE

PSELCT

FRC0

FRC1

Prescale
7:0

Test
ClkSel

PRDATA

PSELCT

PADDR

PWRITE

iPRDATA

PreScale
En

Enable1

Enable2

Enable0
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 5-27

APB Modules
Test clock select generation

This register is used to store the current value of bit 1 of all counter test registers. A read
or write to any of the test register addresses will access this single register.

Clock prescaler

The 8-bit prescale registers are used to generate the two prescale signals of divide by 16
and divide by 256, by decrementing the current value of the registers. The enable signal
PreScaleEn is used to control the operation of the registers, which by default is always
set, but in test clock mode is a combination of PENABLE and PSELCT, allowing an
output clock pulse to be generated for each read or write access to the timers module.

Output clock enable generation

The three different clock enable signals (equivalent to the system clock, the system
clock divided by 16, and the system clock divided by 256) enable the timer clocks in the
two FRC modules, based on the amount of prescale that is required.

Figure 5-16 and Figure 5-17 on page 5-29 show the timing of these enable signals.

Figure 5-16 Timer module counter enable timing - system clock selected

PCLK

Enable 1/2

Enable 0
5-28 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

APB Modules
Figure 5-17 Timer module counter enable timing - test clock selected

Output data generation

This section is used to decode the current address during a read, and generate the correct
data to be driven onto the APB read data bus. The address is compared with all of the
register addresses, and the value of PRDATANext is set accordingly. This is then stored
in the iPRDATA register to help decrease the output propagation time by using a
registered output, rather than an output with the combinational delay of the large
multiplexor. The PRDATA output is then driven by the register.

The read data is based on the FRC data outputs, with the local Test Clock Select register
output also used when reading from a test location.

5.3.8 FRC system description

Two identical instances of the free-running counter block are included in the timers
module.

PCLK

PENABLE

PSELCT

Enable0

Enable1/2
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 5-29

APB Modules
The basic block diagram of the free-running counter block is shown in Figure 5-18.

Figure 5-18 FRC module block diagram

5.3.9 FRC signal descriptions

Table 5-9 shows descriptions for the FRC signals.

Free-
running
counter

PWRITE

PRESETn

PCLK

Enable0

Frcsel

Enable1

Intfrc

PENABLE

PADDR[4:2]

PWDATA[15:0] Dataout[15:0]

Enable2

Table 5-9 Signal descriptions for FRC

Signal Type Direction Description

PCLK Peripheral clock Input Direct connection from timers module.

PRESETn Peripheral reset Input Direct connection from timers module.

PENABLE Peripheral enable Input Direct connection from timers module.

PADDR[4:2] Peripheral address Input Direct connection from timers module.

PWRITE Peripheral transfer

direction

Input Direct connection from timers module.

PWDATA[15:0] Peripheral write

data bus

Input Direct connection from timers module.

Frcsel FRC register select Input FRC register select, driven HIGH when a register in this
FRC is addressed. There is a select line for each counter in
the timers module.

Enable0 Enable prescale 0 Input Counter clock enable, divide by 1.

Enable1 Enable prescale 4 Input Counter clock enable, divide by 16.
5-30 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

APB Modules
Figure 5-19 shows the FRC HDL file.

Figure 5-19 FRC module system diagram

Enable2 Enable prescale 8 Output Counter clock enable, divide by 256.

Intfrc Interrupt output Output Interrupt output from the counter, generated when 16-bit
counter reaches zero. There is an interrupt output for each
counter in the timers module.

Dataout Read data output Output Read data output used to generate PRDATA for register
reads. There is a read data output for each counter in the
timers module.

Table 5-9 Signal descriptions for FRC (continued)

Signal Type Direction Description

Load
15:0

Count
15:0

iIntfrc

Test

Ctrl
7:0

Enable0

Enable1

Enable2

PreEnable

IntfrcCarry(4)

DataOut

Ctrl(6)

Ctrl(7, 3:2)

- 1

CountCtrl

CountEn

Load
pulse
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 5-31

APB Modules
The main sections in this module are described in:

• Control, Test and Load registers

• Counter enable selection

• 16-bit counter

• Interrupt generation on page 5-33

• Output data generation on page 5-34.

Control, Test and Load registers

The Control, Test (bit zero only) and Load registers only change when written to, and
hold their values at all other times.

Counter enable selection

The enable input to use is selected according to the prescale mode setting in the control
registers. The selected input is then used to generate an internal enable, which is also
gated with the enable bit of the control registers. An additional signal ensures that the
load data value is clocked into the counters when a load operation is performed.

16-bit counter

The counter is split up into four 4-bit parts (nibbles) to allow efficient testing. Each
nibble is used to generate a carry signal (when the 4-bit counter overflows), which is
passed to the next nibble as an enable. When Counter Test Mode is selected, all carry
enable signals are set HIGH, forcing all four nibbles to count at the same time.

The 16-bit counter value is stored in registers, which are enabled using the externally
generated counter enable. The input to the registers is normally the output from the four
4-bit decrementers, but when a new value is written to the Load registers, or when the
counter reaches zero and periodic mode is set, the current value of the Load registers is
stored in the counter registers.

The operation of the counter is shown in Figure 5-20 on page 5-33.
5-32 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

APB Modules
Figure 5-20 FRC module count down diagram

Interrupt generation

An interrupt is generated when the full 16-bit counter reaches zero, and is only cleared
when the TimerClear location is written to. A register is used to hold the value until the
interrupt is cleared. The most significant carry bit of the counter is used to detect the
counter reaching zero.

Count
3:0

- 1

Count
7:4- 1

Carry(1)

Carry(2)

Count
11:8- 1

Carry(3)

Count
15:12- 1

Carry(4)

Test
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 5-33

APB Modules
Output data generation

The current address is used to generate the internal read data value for the Test, Load,
Value and Control locations. As the Test and Control registers are not 16-bits, then the
read values are padded out with the Load register value, minimizing the number of
output changes when different registers are read.

This read data value is then passed to the timers module, and then driven onto the APB
read data bus.
5-34 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

APB Modules
5.4 Peripheral to bridge multiplexor

The peripheral to bridge multiplexor module is used to connect the read data outputs of
the peripheral bus slaves to the peripheral bus bridge module, using the PSELx select
signals to select the bus slave outputs to use. Figure 5-21 shows an interface diagram for
the peripheral to bridge multiplexor module.

Figure 5-21 Peripheral to bridge multiplexor module interface diagram

This module is a simple multiplexor, with the read data buses from all peripheral bus
slaves as the inputs, using the slave select bridge outputs as the select inputs, with a
single read data bus as the output to the bridge module. When slaves are added to the
system or removed, the input connections to this module must be altered to account for
the changes.

5.4.1 Signal descriptions

Table 5-10 shows the signal descriptions for the peripheral to bridge multiplexor
module.

5.4.2 Function and operation of module

The peripheral to bridge multiplexor controls the routing of read data from the
peripheral bus slaves to the bridge. The bridge determines which is the currently
selected slave, and the multiplexor is used to connect the output of the selected slave to
the input of the bridge.

The read data is switched for the duration of an APB transfer, when the PSELx signal
is valid.

MuxP2B

PSELx

PRDATA

PRDATAx

Table 5-10 Signal descriptions for peripheral to bridge multiplexor module

Signal Type Direction Description

PSELx Slave select Input Each APB slave has its own slave select signal, and this signal
indicates that the current transfer is intended for the selected
slave.

PRDATAx[31:0]

PRDATA[31:0]

Read data bus Input/
output

The read data bus is used to transfer data from bus slaves to the
bridge during read operations.
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 5-35

APB Modules
A default value of zero is used when no slaves are selected.

5.4.3 System description

The following paragraphs give a description of how the HDL code for the peripheral to
bridge multiplexor is set out. A simple system block diagram, with information about
the main parts of the HDL code, is followed by details of the registers, inputs, and
outputs used in the module. This part should be read together with the HDL code.

Figure 5-22 shows the peripheral to bridge module block diagram.

Figure 5-22 Peripheral to bridge multiplexor module block diagram

The peripheral to bridge multiplexor module is comprised of a set of multiplexors for
the slave read data.

A diagram of the peripheral to bridge multiplexor HDL file is shown in Figure 5-23.

Figure 5-23 Peripheral to bridge multiplexor module system diagram

To allow the use of case statements for the multiplexors, the PSEL slave select inputs
are combined to create a multi-bit bus signal. This bus is then used as the select control
on the read data multiplexor.

One input to the PRDATA multiplexor is tied LOW, so that when no peripheral slaves
are selected, no read data appears on PRDATA.

Peripheral to bridge
multiplexor module

Read data
multiplexers

Multiple slave
PRDATA inputs

PRDATA

Slave
select
inputs

PselBus
5-36 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

Chapter 6
Behavioral Modules

This chapter describes the behavioral modules found in the Example AMBA SYstem
(EASY). The behavioral modules are only available for use during system simulation,
as they all read in or generate locally stored data files. This chapter contains the
following sections:

• External RAM on page 6-2

• External ROM on page 6-5

• Internal RAM on page 6-8

• Test interface driver on page 6-12

• Tube on page 6-24.
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 6-1

Behavioral Modules
6.1 External RAM

The external RAM module is a simple model of a 32K x 8 off-chip SRAM, which can
be initialized with data from a local file.

Figure 6-1 shows the external RAM module interface.

Figure 6-1 External RAM module interface diagram

The main sections of this module are:

• memory initialization from local data file

• memory read and write from external bus.

6.1.1 Signal descriptions

Table 6-1 shows the signal descriptions for the external RAM module.

ExtRAM

A

CSn

WEn

OEn

DQ

Table 6-1 Signal descriptions for the external RAM module

Signal Type Direction Description

A[14:0] External address Input The external address input.

DQ[7:0] External data I/O Input/
output

The external data bus, sampled during write transfers and driven
during read transfers.

CSn Chip enable Input When LOW this signal indicates that the chip has been selected
and should respond to the current transfer.

WEn Write enable Input When LOW this signal indicates a write transfer.

OEn Output enable Input When LOW this signal indicates a read transfer, and enables the
module to drive data onto DQ.
6-2 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

Behavioral Modules
6.1.2 User-defined settings

Table 6-2 shows the user-defined settings for the external RAM module.

6.1.3 Function and operation of module

Operations described are:

• Memory initialization from local data file

• Memory read and write from external bus.

Memory initialization from local data file

On simulation initialization, the external RAM module loads in data from the file
specified in the instantiating top-level memory module. This must be stored as a
two-hex character per line data file, which cannot contain more data than the model will
support. An example file ram.dat is shown in Example 6-1.

Example 6-1

00
01
0F
F7

The default configuration for the external RAM modules is in groups of four, which are
used to allow memory accesses of full 32-bit words, with a byte stored in each memory
module.

Memory read and write from external bus

The external RAM is accessed by transfers through the static memory interface module,
allowing both reads from memory and writes to memory. These are performed as 32-bit
word transfers, with each byte connected to one of the four memory models.

Table 6-2 User-defined settings for the external RAM module

Signal Type
Default
setting

Description

RAMDEPTH Memory depth 32 This sets the memory depth in KB. If the value is increased from the
default setting, then the address input bus A must also be increased to
allow all memory to be addressed.
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 6-3

Behavioral Modules
Refer to Static memory interface on page 4-53 in Chapter 4 AHB Modules, for timing
diagrams showing read and write transfers to external memory.
6-4 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

Behavioral Modules
6.2 External ROM

The external ROM module is a simple model of a 16K x 8 off-chip EPROM, which can
be initialized with data from a local file.

Figure 6-2 shows the external ROM module interface.

Figure 6-2 External ROM module interface diagram

The main sections of this module are:

• memory initialization from local data file

• memory read from external bus.

6.2.1 Signal descriptions

Table 6-3 shows signal descriptions for the external ROM module.

ExtROM

A

CEn

OEn

Q

Table 6-3 Signal descriptions for the external ROM module

Signal Type Direction Description

A[13:0] External address Input The external address input.

Q[7:0] External data out Output The external data bus, driven during read transfers.

CEn Chip enable Input When LOW this signal indicates that the chip has been selected
and should respond to the current transfer.

OEn Output enable Input When LOW this signal indicates a read transfer, and enables the
module to drive data onto Q.
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 6-5

Behavioral Modules
6.2.2 User-defined settings

Table 6-4 shows user-defined settings for the external ROM module

6.2.3 Function and operation of module

Operations described are:

• Memory initialization from local data file

• Memory read from external bus.

Memory initialization from local data file

On simulation initialization, the external ROM module loads in data from the file
specified in the instantiating top-level memory module. This must be stored as a
two-hex character per line data file, which cannot contain more data than the model will
support. An example file rom.dat is shown in Example 6-2.

Example 6-2

00
01
0F
F7

The default configuration for the external ROM modules is in groups of four, which are
used to allow memory accesses of full 32-bit words, with a byte stored in each memory
module.

Memory read from external bus

The external ROM is accessed by transfers through the static memory interface module,
allowing reads from memory. These are performed as 32-bit word transfers, with each
byte connected to one of the four memory models.

Table 6-4 User-defined settings for the external ROM module

Signal Type
Default
setting

Description

ROMDEPTH Memory depth 16 This sets the memory depth in KB. If the value is increased from the
default setting, then the address input bus A must also be increased to
allow all memory to be addressed.
6-6 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

Behavioral Modules
Refer to Static memory interface on page 4-53 in Chapter 4 AHB Modules, for timing
diagrams showing read and write transfers from external memory.
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 6-7

Behavioral Modules
6.3 Internal RAM

The internal RAM is a simple little-endian model of a 1KB x 32 on-chip SRAM, which
can be initialized with data from a local file. As this module is connected to the main
system bus, there are AHB and ASB versions available. The AHB version is shown in
Figure 6-3.

Figure 6-3 AHB internal RAM module interface diagram

The main sections of this module are:

• memory initialization from local data file

• memory read and write from system bus.

6.3.1 AHB signal descriptions

Table 6-5 shows signal descriptions for the AHB internal RAM module.

IntMem

HRDATA

HREADYout

HRESP

HCLK

HRESETn

HADDR

HTRANS

HWRITE

HSIZE

HWDATA

HSELIntMem

HREADYin

Table 6-5 Signal descriptions for the AHB internal RAM module

Signal Type Direction Description

HCLK Bus clock Input This clock times all bus transfers.

HRESETn Reset Input The bus reset signal is active LOW, and is used to reset the
system and the bus.

HADDR[31:0] Address bus Input The 32-bit system address bus.

HTRANS[1:0] Transfer type Input Indicated the type of the current transfer, which can be
NONSEQUENTIAL, SEQUENTIAL, IDLE or BUSY.

HWRITE Transfer direction Input When HIGH this signal indicates a write transfer, and when
LOW, a read transfer.
6-8 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

Behavioral Modules
6.3.2 User-defined settings

Table 6-6 shows user-defined settings for the external RAM module

.

HSIZE[2:0] Transfer size Input Indicates the size of the transfer, which is typically byte
(8-bit), halfword (16-bit) or word (32-bit). The protocol
allows for larger transfer sizes up to a maximum of 1024 bits.

HWDATA[31:0] Write data bus Input The write data bus is used to transfer data from the master to
the bus slaves during write operations. A minimum data bus
width of 32 bits is recommended. However, this may easily
be extended to allow for higher bandwidth operation.

HSELIntMem Slave select Input Each AHB slave has its own slave select signal and this
signal indicates that the current transfer is intended for the
selected slave. This signal is simply a combinatorial decode
of the address bus.

HRDATA[31:0] Read data bus Output The read data bus is used to transfer data from bus slaves to
the bus master during read operations. A minimum data bus
width of 32 bits is recommended. However this may easily
be extended to allow for higher bandwidth operation.

HREADYin

HREADYout

Transfer done Input /
output

When HIGH the HREADY signal indicates that a transfer
has finished on the bus. This signal may be driven LOW to
extend a transfer.

HRESP[1:0] Transfer response Output The transfer response provides additional information on the
status of a transfer. This module will always generate the
OKAY response.

Table 6-5 Signal descriptions for the AHB internal RAM module (continued)

Signal Type Direction Description

Table 6-6 User-defined settings for the external RAM module

Signal Type
Default
setting

Description

MemSize Memory size 1 This sets the memory size in KB.

FileName Input filename intram.dat This points to the local input data file that is read in after reset.
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 6-9

Behavioral Modules
6.3.3 Function and operation of module

Operations described are:

• Memory initialization from local data file

• Memory read and write from system bus on page 6-11.

Memory initialization from local data file

On simulation initialization, the internal RAM module loads in data from the file
specified in the FileName setting. This must be stored as an 8-character Verilog
$readmemh format data file (for both VHDL and Verilog format models), which cannot
contain more data than the model will support. Address lines (starting with @) and single
line comments (starting with //) are valid, but all other non-value characters are not
allowed. Loading starts from address zero, and continues incrementing on word
boundaries until an address line is found in the file. Loading then continues from that
address. All values are initialized to zero before loading is started. An example
intram.dat file is shown in Example 6-3.

Example 6-3

ea00000b
ea000005
// Data values stored at 0x00000200
@00000200
01234567
89ABCDEF

The internal RAM module stores data as 32-bit words, and in default configuration is
256 words deep, which is equivalent to 1KB. This is only accessible once the normal
memory map is in use (Remap set HIGH), and occupies the address range from
0x0000 0000 to 0x0000 03FF. If the size of the internal memory is modified, then the
address range that it occupies will also change. This will require the system decoder to
be updated so that it only selects the internal RAM module over the correct address
range.
6-10 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

Behavioral Modules
Memory read and write from system bus

The internal RAM module is accessed by standard system bus transfers, allowing both
reads from memory and writes to memory. These can be performed as 32-bit word,
16-bit halfword or 8-bit byte transfers. Each byte lane of the transfer is treated
separately, so a byte write to byte zero will not alter the values stored in the other three
bytes at that word address. Data reads are all treated the same, and the full 32-bit word
at the selected word address will be driven out onto the system data bus.

All transfers are performed with zero wait states. An ERROR response is never
generated.
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 6-11

Behavioral Modules
6.4 Test interface driver

The test interface driver (Ticbox) is an external module which drives the test interface
lines to gain access to the AHB bus, and then applies test vectors from a test input file.
This test input file is the output from a C program written with the TICTalk command
language.

Before reading this section, you should be familiar with AMBA and its test interface
protocol. If not, refer to the AMBA Specification for further information. Figure 6-4
shows an interface diagram of the ticbox module.

Figure 6-4 Ticbox module interface diagram

The main sections of this module are:

• the input file reader

• output vector generation

• read data expected value checking.

TIF

C

Ticbox

nResetTESTCLK

TESTREQA

TESTREQB

TESTBUS

TESTACK

TIC

EBI

AMBA AHB system

AHB busAHB modules

TICTalk
source file

'C' compiler

Test input
file
6-12 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

Behavioral Modules
6.4.1 Signal descriptions

Table 6-7 shows signal descriptions for the Ticbox module

.

Table 6-7 Signal descriptions for the Ticbox module

Signal Type Direction Description

TESTCLK Test mode clock Input This is the system clock HCLK in test mode. All the test
interface transactions are timed using this signal.

nReset External reset Input Active LOW external reset input. Used to control the operation
of the Ticbox module.

TESTREQA Test request A Output Indicates test vector mode. Refer to the test interface chapter in
the AMBA Specification for further information about the test
protocol. It is driven early in the LOW phase of TESTCLK
and held to the falling edge of TESTCLK.

TESTREQB Test request B Output Indicates test vector mode. Refer to the test interface chapter of
the AMBA Specification for further information about the test
protocol. It is driven early in the LOW phase of TESTCLK
and held to the falling edge of TESTCLK.

TESTACK Test acknowledge Input Indicates that the test bus has been granted and also that a test
access has been completed.

TESTBUS[31:0] Test data bus Input/
output

32-bit bidirectional test port.
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 6-13

Behavioral Modules
6.4.2 User-defined settings

Table 6-8 shows user-defined settings for the Ticbox module.

6.4.3 Function and operation of module

The AHB and ASB versions of the Ticbox are internally different, even though the
external ports are identical. Due to the pipelined nature of the AHB, the read data
becomes available one cycle later than the ASB read data relative to the generation of
the read test vector, so the AHB Ticbox includes an extra delay stage in the read data
checking logic.

Once the external system reset input has been de-asserted, the Ticbox requests access to
the system. This is done by asserting TESTREQA HIGH and TESTREQB LOW. The
Test Interface Controller (TIC) then indicates when test mode has been entered by
asserting TESTACK HIGH. Once in test mode, the test input file is then read and
translated by the Ticbox into AMBA test interface transactions, using the TESTREQA
and TESTREQB signals.

The Ticbox applies test vectors to the system every time the TESTACK line indicates
the system is ready. On read cycles the value is masked and then compared with the
masked expected value given in the test vector file. An error message is given if the
comparison fails. System testing ends once the end of the input vector file is reached,
and the Ticbox indicates this by asserting both TESTREQA and TESTREQB LOW to
end the simulation.

A typical simulation output display while running a TIC program is shown in
Example 6-4 on page 6-15.

Table 6-8 User-defined settings for the Ticbox module

Name Type Default setting Description

FileName Input
filename

infile.tif (VHDL)

infile.sim (Verilog)

This points to the local input vector file that is read in
a line at a time as each vector is performed.

HaltOnMismatch Read error
setting

FALSE This is used to control the operation of the module
when a read error is detected. When set FALSE, a
warning message will be displayed showing the read
error, and if set TRUE, the simulation will be halted
when a read error is detected.

Verbosity Comment
display

TRUE Controls the displaying of input vector file comments.
When set TRUE, comments are displayed, and when
set FALSE, comments are not displayed. This does
not affect the displaying of other system messages.
6-14 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

Behavioral Modules
Example 6-4

Time: 2603 ns Iteration: 0 Instance:/u_ticbox
** Note: ; Addressing location 80000614

Time: 2703 ns Iteration: 0 Instance:/u_ticbox
** Note: ; Writing data 00000005

Time: 3003 ns Iteration: 0 Instance:/u_ticbox
** Note: ; Addressing location 80000618

Time: 3103 ns Iteration: 0 Instance:/u_ticbox
** Note: ; Reading. Expected: 00000010. Mask 0000003F

Time: 3403 ns Iteration: 0 Instance:/u_ticbox
** Note: ; Addressing location 8000061c

Time: 3703 ns Iteration: 0 Instance:/u_ticbox
** Warning: Error on vector read. Expected: 00000010 Actual: 00000011 Mask:
0000003F
Time: 3753 ns Iteration: 0 Instance:/u_ticbox

Time: 4003 ns Iteration: 0 Instance:/u_ticbox
** Note: ; Addressing location 80000584

Time: 4303 ns Iteration: 0 Instance:/u_ticbox
** Note: ; Writing data 00000000

Time: 4603 ns Iteration: 0 Instance:/u_ticbox
** Note: ; Addressing cycle at end

Time: 4903 ns Iteration: 0 Instance:/u_ticbox
** Note: ; Exiting Test Mode

Time: 5203 ns Iteration: 0 Instance:/u_ticbox
** Failure: Vector run completed: halting simulation
Time: 77703 ns Iteration: 0 Instance:/u_ticbox
Break at ticbox.vhd line 288
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 6-15

Behavioral Modules
In Example 6-4 on page 6-15 you will note that a read error has occurred, but the error
message is broadcast later in the simulation. This is because there are a number of clock
cycles between when the read is requested, and when the information is sampled by the
Ticbox to be compared with the expected value. The example simulation has been run
without HaltOnMismatch set, and therefore the program does not stop after the error has
been detected. Verbosity is set, as all TIF vector comments have been displayed in the
simulation output.

6.4.4 TICTalk command language

TICTalk is a very simple set of commands that allows the development of validation
programs for the AMBA blocks. The TICTalk language is a small library of C functions.
Once a TICTalk program is compiled and run, it produces a test input file in what is
called the TIC Interface Format (TIF) which may be applied using the Ticbox module
to test the desired block.

The AMBA test interface is able to perform the following actions:

• address vector

• write vector

• burst of write vectors

• read vector

• burst of read vectors

• change from write to read and read to write.

The TICTalk language performs these actions by combining together a number of basic
commands. These commands are described in the following sections.

6.4.5 TICTalk commands

The basic TICTalk commands are described in the following sections:

• Write address vector (A) on page 6-17

• Write test vector (W) on page 6-17

• Read test vector (R) on page 6-17

• Burst read test vector (B) on page 6-17

• Repeat last command (L) on page 6-17

• Include the string message into the TIF (C) on page 6-17

• Exit test mode (E) on page 6-17.
6-16 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

Behavioral Modules
Write address vector (A)

The A(int32 address_vector) command is used to address a new location in the system.
It will always be followed by a write test vector, or a read test vector command in order
to perform the required action (write or read data) at that location.

Write test vector (W)

The W(int32 write_vector) command generates a data vector write. It can be used after
an address vector (single write), another write test vector (burst write) or a read test
vector (change from reads to writes).

Read test vector (R)

The R(int32 expected_value, int32 mask_value) command generates a data vector
read. The read value is masked with the specified mask_value and compared with the
expected_value. If the comparison is false, an error message will be broadcast. It can be
used after an address vector (single read), or a write test vector (change from writes to
reads), and to indicate the last read on a burst, but it cannot be used after another read
test vector. To signal a burst sequence of reads, the burst read vector command should
be used instead.

Burst read test vector (B)

The B(int32 expected_value, int32 mask_value) command is similar to the read test
vector. The only difference is that it can only be used if the next action is another read.
This is because, in this case, a change of bus direction is not needed. Otherwise the
function performed is the same.

Repeat last command (L)

The L(int32 number_of_loops) command signals that the last action should be repeated
the specified number of times. This is useful when, for example, a burst of reads or
writes from the same address location needs to be performed.

Include the string message into the TIF (C)

The C(char * message) command is used to add extra simulation comments.

Exit test mode (E)

The E() command should always be used at the end of a program so the Ticbox can
signal the end of the test.
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 6-17

Behavioral Modules
6.4.6 Programming with TICTalk commands

The possible combinations that are available when using the TICTalk commands are:

Single writes The command sequence will be: A-W A-W A-W, and so on.

Single reads The command sequence will be: A-R A-R A-R, and so on.

Burst of writes The command sequence will be: A-W-W-W, and so on.

If the value to be written is always the same, the command
sequence could also be A-W-L, specifying on the L command the
number of writes required.

Burst of reads This is a special case. After the A command, B (burst read vector)
should be used on consecutive reads, and only on the last read of
the burst do we apply the R command. Therefore the sequence will
be: A-B-B-B-R A-B-B-....-B-R, and so on.

If the value to be read is expected always to be the same, or there
is no need to check it against an expected value, the sequence
could also be A-B-L-R, with the L command specifying the number
of reads required.

Change from read to write

This change can only be made after a R command (R-W), and not
after a B command.

Change from write to read

If the change is for a single read, the sequence W-R is used. On the
other hand if the change is for a read burst, the W-B sequence is
used (W-B-B-...-B-R).
6-18 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

Behavioral Modules
6.4.7 The TICTalk file

An example C program using the TICTalk commands is shown in Example 6-5.

Example 6-5

#define CT1Load Counter_Base + 0x00
#define CT1Value Counter_Base + 0x04
#define CT1Control Counter_Base + 0x08
#define CT1Clear Counter_Base + 0x0C
#define CT1Test Counter_Base + 0x10

#define MaskAll 0x00000000
#define NoMask 0xFFFFFFFF
#define MaskControl 0x000000CC
#define MaskValue 0x0000FFFF
#define DUMMY 0x12345678

#include “header.h”
#include “ticmacros.h”

int main()
{
 A(CT1Load)
 W(0x55555555)
 A(CT1Control)
 W(0x000000C0) /* Counter Enabled, Periodic Mode, Prescale 0 */
 A(CT1Value)
 R(0x55555547, MaskValue)
 A(CT1Load)
 W(0xDADADADA)
 B(0xDADADADA, MaskValue) /* Read CT1Value */
 R(0x000000C0, MaskControl) /* Read CT1Control */
 A(CT1Value)
 R(0xAAAAAAB8, MaskAll)
 W(0x000000C4) /* Write to CT1Control */
 W(DUMMY) /* Write to CT1Clear */
 L(5) /* Repeat last write 5 times */
 E()
}

DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 6-19

Behavioral Modules
Example 6-5 on page 6-19 shows the TICTalk commands accept 32-bit integers as
arguments. These can be specified using the #define directive, immediate values or
normal C variables. This C-like approach provides the flexibility to develop more
elaborate tests and new extended functions. For example, the basic commands could be
used to build a pair of functions for reading and writing vectors that automatically take
care of bus turnaround and address vectors.

The ticmacros.h file includes all the macro definitions for each command. These
macros are expanded to generate a test input file in a format that can be read by the
Ticbox.

The header.h file contains the base address definitions for the different blocks in the
system. This is where the Counter_Base constant should be defined. This ensures
portability of the test program to other systems with different peripheral address
mapping.

6.4.8 Generating a test input format file

To generate a TIF file, the TICTalk program should be C compiled (using gcc for
example) in the following way:

gcc -ansi source_file ticmacros.c -o object_file

Afterwards the object_file should be run and its output redirected to a file with the same
name as the generic variable FileName defined in the Ticbox, for example:

object_file > infile.tif

This output file should then be copied or linked to the directory where the Ticbox
simulation model exists.

6.4.9 TIF format file

The TIF file is very similar to the TICTalk file as shown in Example 6-6 on page 6-21,
with the difference that all the constant definitions have been substituted with their
hexadecimal values and each line reflects a single test cycle. The previous example
compiled and executed will output the following TIF. Lines preceded with a semicolon
(;) are comments that the simulator will print on the screen while the test is being
executed.
6-20 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

Behavioral Modules
Example 6-6

; Addressing location 84000000
A 84000000
; Writing data 55555555
W 55555555
; Addressing location 84000008
A 84000008
; Writing data 000000C0
W 000000C0
; Addressing location 84000004
A 84000004
; Reading. Expected: 55555547. Mask: 0000FFFF
R 55555547 0000FFFF
A ZZZZZZZZ
; Addressing location 84000000
A 84000000
; Writing data DADADADA
W DADADADA
; Reading. Expected: DADADADA. Mask: 0000FFFF
R DADADADA 0000FFFF
; Reading. Expected: 000000C0. Mask: 000000CC
R 000000C0 000000CC
A ZZZZZZZZ
; Addressing location 84000004
A 84000004
; Reading. Expected: AAAAAAB8. Mask: 00000000
R AAAAAAB8 00000000
A ZZZZZZZZ
; Writing data 000000C4
W 000000C4
; Writing data 12345678
W 12345678
; Looping for 5 cycles
L 5
; Addressing cycle at end
A 00000000
; Exiting Test Mode
E ZZZZZZZZ
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 6-21

Behavioral Modules
6.4.10 SIM format file

The Verilog Ticbox requires the input file to be in the SIM format, which is formatted
as a Verilog ̀ include input file, with each test vector calling a task in the Verilog Ticbox
behavioral module.

A SIM file is generated from a TIF file using the conversion script tif2sim in the
following manner:

tif2sim infile.tif > infile.sim

Comments use the Verilog style double slash (//), and due to the properties of Verilog
`include files, are not displayed in the simulation output. The Verilog Ticbox directly
generates the simulation comments based on the test vector that is being run.

The TIF file above is shown in Example 6-7 in SIM format:

Example 6-7

// Addressing location 84000000
A(32'h84000000);

// Writing data 55555555
W(32'h55555555);

// Addressing location 84000008
A(32'h84000008);

// Writing data 000000C0
W(32'h000000C0);

// Addressing location 84000004
A(32'h84000004);

// Reading. Expected: 55555547. Mask: 0000FFFF
R(32'h55555547, 32'h0000FFFF);
A(32'hZZZZZZZZ);

// Addressing location 84000000
A(32'h84000000);

// Writing data DADADADA
W(32'hDADADADA);

// Reading. Expected: DADADADA. Mask: 0000FFFF
R(32'hDADADADA, 32'h0000FFFF);
6-22 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

Behavioral Modules
// Reading. Expected: 000000C0. Mask: 000000CC
R(32'h000000C0, 32'h000000CC);
A(32'hZZZZZZZZ);

// Addressing location 84000004
A(32'h84000004);

// Reading. Expected: AAAAAAB8. Mask: 00000000
R(32'hAAAAAAB8, 32'h00000000);
A(32'hZZZZZZZZ);

// Writing data 000000C4
W(32'h000000C4);

// Writing data 12345678
W(32'h12345678);

// Looping for 5 cycles
L(32'd5);

// Addressing cycle at end
A(32'h00000000);

// Exiting Test Mode
E(32'hZZZZZZZZ);
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 6-23

Behavioral Modules
6.5 Tube

The tube is a simple method of passing system messages from a test program to the
display, and allows a test program to stop the simulation.

Figure 6-5 shows the tube module interface.

Figure 6-5 Tube module interface diagram

The main sections of this module are:

• message output to simulator

• message output to file

• simulation termination control.

6.5.1 Signal descriptions

Table 6-9 shows signal descriptions for the tube module.

TUBE

XD

XCSN

XWEN

Simulator display
and text file

Table 6-9 Signal descriptions for the tube module

Signal Type Direction Description

XD[31:0] External data Input This is the external data bus, which is sampled by this module
during write transfers.

XCSN[3:0] External chip select Input These signals are active LOW chip enables.

XWEN[3:0] External write enable Input This is the active LOW memory write enable. For
little-endian systems, XWEN[0] controls writes to the least
significant byte and XWEN[3], the most significant. The
example system is configured to be little-endian.
6-24 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

Behavioral Modules
6.5.2 User-defined settings

Table 6-10 shows user-defined settings for the tube module.

6.5.3 Function and operation of module

The tube module is used to perform program message and simulation termination
control. It acts as a one-way communications port through which ASCII information
can be passed.

Messages are written, one byte at a time, to the tube model location. In the default
system this is address range 0x2000 0000 to 0x2FFF FFFF, detected by the model using the
external enable XCSN[2]. These bytes are buffered until a terminating control character
is written to the tube, or the buffer overflows (default buffer length is 80 characters). The
message is then printed by the simulator, and written to the output text file. An example
message is:

** Note: TUBE: Hard Reset

In this example the message Hard Reset has been passed to the tube. The program
running on the microcontroller can also terminate simulation by writing a control
character to the tube with no message to produce the following assertion:

** Failure: TUBE: Program exit

All user messages sent to the simulator display are also recorded in the output text file.

The tube module only accepts the ASCII control characters shown in Table 6-11.

Table 6-10 User-defined settings for the tube module

Signal Type
Default
setting

Description

OutFile Output filename Tube.txt This points to the local output data file that is written to during
simulation when messages are passed to the tube.

Table 6-11 Valid tube ASCII control characters

ASCII
character

Decimal
value

Tube
function

Control D (^D) 04 Exit test

Linefeed 10 Print output

Carriage return 13 Print output
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 6-25

Behavioral Modules
Other standard alphanumeric characters will be stored in the buffer until displayed. The
values for commonly used display characters are shown in Table 6-12.

Table 6-12 Commonly used ASCII alphanumeric characters

ASCII
character

Decimal
value

0-9 48-57

a-z 97-122

A-Z 65-90

space 32

_ 95

35
6-26 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

Chapter 7
Designer’s Guide

This chapter briefly describes adding new modules to the EASY microcontroller. Since
AMBA has been designed specifically to be modular, little change needs to be made to
other elements when a component is added or removed. The chapter contains the
following sections:

• Adding bus masters on page 7-2

• Adding AHB slaves on page 7-3

• Adding APB peripherals on page 7-4.
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 7-1

Designer’s Guide
7.1 Adding bus masters

For bus masters, the arbiter is the only block that requires changes.

The arbiter currently has facilities for up to two more masters without any modification.
A new master needs to be connected to the appropriate HBUSREQx and HGRANTx
signals. This can be done by altering the top-level HDL file, which connects all AHB
modules together.

Note
 If a system requires more than four masters, the arbiter HDL file will also need to be
modified.

7.1.1 Arbiter modifications

When modifying the arbiter the following rules must be followed:

• The ARM core should be the default master (granted on reset), and granted when
no masters are requesting the bus.

• The Test Interface Controller (TIC) should have the highest priority (to allow test
access under all conditions).

• Only one master should tie its HBUSREQx permanently HIGH.

• Currently the ARM bus master always asserts HBUSREQx, thus no other bus
master should constantly request the bus. Consequently the ARM must be the
lowest priority master, as masters of lower priority than the ARM will never get
granted.

If more sophisticated round-robin type arbitration schemes are used, the latter point will
no longer be valid. Alternative arbitration schemes are not considered further in this
document.

7.1.2 Bus master requirements

New designs of bus master must drive all the relevant signals at appropriate times. For
more information consult the AMBA Specification.
7-2 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

Designer’s Guide
7.2 Adding AHB slaves

When a slave is added, the decoder needs to be modified. This will add an HSELx
signal for the new slave. The central slave to master multiplexor must also have extra
connections added for the new slave.

7.2.1 AHB slave modifications

When adding new AHB slaves, care should be taken to:

• plan the slave position in the memory map

• consider any issues concerning the remapping of memory to allow the external
boot ROM to appear at location zero

• decode as few address lines as possible, to keep the slave address decode section
gate count low

• ensure that all areas of address space have one, and only one, slave selected.

The default slave must be set so that all holes in the memory map are filled. If any holes
are left without a slave to drive the HREADY line, then any accesses to this area will
cause the system to lock, with HREADY staying LOW until a system reset.

7.2.2 Slave requirements

These vary according to the function of the slave. Special cases like external bus
interfaces (which must also consider the requirements of the TIC), or the AHB to APB
bridge interface have more complex requirements. For more information consult the
AMBA Specification.
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 7-3

Designer’s Guide
7.3 Adding APB peripherals

When adding a peripheral, the APB bridge needs to be modified. This will add a new
PSELx signal for the new peripheral. The central peripheral to bridge multiplexor must
also have extra connections added for the new peripheral.

7.3.1 APB bridge modifications

When adding new PSELx lines similar steps should be taken to those outlined in AHB
slave modifications on page 7-3, although reset memory map will not be an issue for
APB peripherals.

7.3.2 Peripheral requirements

When designing APB peripherals, ensure that the resulting hardware has a low power
consumption. The following guidelines should be followed where possible:

• Do not use PCLK in peripherals unless absolutely necessary as its use will
dramatically increase power consumption.

• Ensure that peripherals cannot drive PRDATA[31:0] during reset (by including a
PRESETn term on the output enable control).

Designers familiar with conventional circuits connected to free-running clocks may find
this design approach difficult. However, it will result in small circuits with low power
consumption.
7-4 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

Index
A
Adding

AHB slaves 7-3
APB peripherals 7-4
bus masters 7-2
new modules 7-1

Address and control holding registers
ARM7TDMI 3-31

Address generation
ARM7TDMI 3-16

Address, control and data output drivers
ARM7TDMI 3-33

AMBA system components
AHB to APB bridge 2-4
arbiter 2-3
reset controller 2-3

APB
bridge HDL code 4-10
data bus 2-6

APB bridge
operation 4-5
peripheral memory map 4-5
signal descriptions 4-3
system description 4-10

APB modules
interrupt controller 5-2
remap and pause controller 5-12
timers 5-20

Arbiter 4-14
module HDL code 4-18
signal descriptions 4-15
system description 4-18

ARM7TDMI
address and control holding registers

3-31
address generation 3-16
address, control and data output

drivers 3-33
connections to 3-9
control signal generation 3-20
granted state machine 3-28
transfer type generation 3-20

ARM7TDMI (continued)
wrapper blocks 3-14
wrappers 3-1

ARM7TDMI wrapper
block diagram 3-2

B
Behavioral modules 6-1
Block diagram

ARM7TDMI wrapper 3-2

C
Clocks

timer clock 5-23
Connections

ARM7TDMI core 3-9
Control signal generation

ARM7TDMI 3-20
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. Index-1

Index
D
Decoder 4-25

operation 4-27
signal description 4-25
system memory map 4-26

Default slave 2-8, 4-29
operation 4-30
signal descriptions 4-29
system description 4-30

E
EASY

components 1-2
overview 1-2
system blocks 1-2

Example components 2-8
default slave 2-8
internal memory 2-8
retry slave 2-8
static memory interface 2-8

External RAM 6-2
External ROM 6-5

F
FRC 5-20

system description 5-29
Free-running counters 5-20

G
Granted state machine

ARM7TDMI 3-28

I
Internal RAM 6-8
Interrupt controller 5-2

hardware interface and signal
description 5-3

memory map 5-6
operation 5-4

Interrupt controller (continued)
registers 5-6
system description 5-8

M
Master to slave multiplexor 4-32
Memory

access wait states 4-59
SRAM 2-8
write control 4-58

Microcontroller 2-1
functional overview 2-2
reference peripherals 2-5

MUXM2S 4-32
operation 4-34
signal descriptions 4-33
system description 4-34

MUXP2B 5-35
operation 5-35
signal descriptions 5-35
system description 5-36

MUXS2M 4-36
operation 4-37
signal descriptions 4-36
system operation 4-37

P
Pause mode 2-7
Peripheral memory map 4-5
Peripheral to bridge multiplexor 5-35
Power on reset 2-7
Processor core wrappers

ARM7TDMI 3-1

R
RAM, external 6-2
RAM, internal 6-8
Reference peripherals 2-5

interrupt controller 2-7
remap and pause controller 2-7
timer 2-6

Remap and pause controller 5-12
memory map 5-14
operation 5-13
registers 5-14
signal descriptions 5-12
system description 5-16

Remap memory 2-7
Reset controller 4-40

operation 4-40
signal descriptions 4-40
system description 4-44

Reset status 2-7
Reset status register 5-18
Retry slave 2-8, 4-46

module HDL code 4-49
operation 4-48
signal description 4-47
system description 4-49

ROM, external 6-5

S
SIM format 6-22
Slave to master multiplexor 4-36
SMI 4-53

module HDL code 4-60
signal descriptions 4-54
system description 4-60

Static memory interface 2-8, 4-53
System test access 4-59
System test methodology 2-9

T
Test interface controller 4-64
Test interface driver 6-12
Test vector

sequences 4-71
types 4-68

TIC 4-64
operation 4-67
signal descriptions 4-65
system description 4-77

Ticbox 6-12
operation 6-14
signal descriptions 6-13
user-defined settings 6-14
Index-2 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

Index
TICTalk 6-16
TICTalk commands 6-16
TICTalk programming 6-18
TIF 6-20
Timers 2-6, 5-20

memory map 5-24
module HDL code 5-26
operation 5-22
register descriptions 5-24
registers 5-24
signal descriptions 5-20
system description 5-26
test registers 5-25

Transfer type generation
ARM7TDMI 3-20

Tube 6-24
operation 6-25
signal descriptions 6-24
user-defined settings 6-25

W
Wrapper blocks

ARM7TDMI 3-14
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. Index-3

Index
Index-4 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A

	AHB Example AMBA SYstem Technical Reference Manual
	Contents
	Preface
	About this document
	Intended audience
	Organization
	Typographical conventions

	Further reading
	ARM publications
	Other publications

	Feedback
	Feedback on this document
	Feedback on the AHB Example AMBA SYstem
	Timing diagram conventions

	Introduction
	1.1 Overview of EASY
	1.1.1 EASY system blocks
	1.1.2 EASY components

	The EASY Microcontroller
	2.1 Functional overview
	2.2 The AMBA system components
	2.2.1 Reset controller
	2.2.2 Arbiter
	2.2.3 Decoder
	2.2.4 AHB to APB bridge

	2.3 Reference peripherals
	2.3.1 Timer
	2.3.2 Interrupt controller
	2.3.3 Remap and pause controller

	2.4 Example components
	2.4.1 Internal memory
	2.4.2 Static memory interface
	2.4.3 Retry slave
	2.4.4 Default slave

	2.5 System test methodology

	ARM7TDMI AHB Wrapper
	3.1 About the ARM7TDMI AHB wrapper
	3.2 Signal interface
	3.3 ARM7TDMI AHB signal descriptions
	3.4 Overview of the ARM7TDMI wrapper
	3.5 Connections to ARM7TDMI core
	3.6 Default signal configurations
	3.7 Description of the ARM7TDMI wrapper blocks
	3.7.1 A7TWrap
	3.7.2 A7TWrapBurst
	HADDR generation
	HTRANS generation
	Other control signal generation
	STI_INSTR
	STI_IDLE
	STI_NSEQ

	3.7.3 A7TWrapLock
	3.7.4 A7TWrapMaster
	Granted state machine
	Core clock generation
	Address and control holding registers
	Address, control and data output drivers

	3.7.5 A7TWrapCtrl
	3.7.6 A7TWrapTest
	3.7.7 Non-standard design practices
	Signal delays
	Transparent latches
	Gated clock

	AHB Modules
	4.1 APB bridge
	4.1.1 Signal descriptions
	4.1.2 Peripheral memory map
	4.1.3 Function and operation of module
	ST_IDLE
	ST_READ
	ST_WWAIT
	ST_WRITE
	ST_WRITEP
	ST_RENABLE
	ST_WENABLE
	ST_WENABLEP

	4.1.4 System description
	Constant definitions
	AHB slave bus interface
	APB transfer state machine
	APB output signal generation
	AHB output signal generation

	4.2 Arbiter
	4.2.1 Signal descriptions
	4.2.2 Function and operation of arbiter module
	4.2.3 System description
	Split grant masking
	Locked state machine
	Arbitration scheme
	Output registers

	4.3 Decoder
	4.3.1 Signal description
	4.3.2 System memory map
	4.3.3 Function and operation of the decoder module
	4.3.4 System description

	4.4 Default slave
	4.4.1 Signal descriptions
	4.4.2 Function and operation of module
	4.4.3 System description

	4.5 Master to slave multiplexor
	4.5.1 Signal descriptions
	4.5.2 Function and operation of module
	4.5.3 System description

	4.6 Slave to master multiplexor
	4.6.1 Signal descriptions
	4.6.2 Function and operation of module
	4.6.3 System description

	4.7 Reset controller
	4.7.1 Signal descriptions
	4.7.2 Function and operation of module
	ST_POR
	ST_INI1
	ST_INI2
	ST_RUN

	4.7.3 System description
	Asynchronous reset input synchronization
	Reset state machine
	Reset output generation

	4.8 Retry slave
	4.8.1 Signal descriptions
	4.8.2 Function and operation of module
	4.8.3 System description
	AHB slave bus interface
	Write data mask
	Read/write registers
	Response generation logic
	Read data generation

	4.9 Static memory interface
	4.9.1 Signal descriptions
	4.9.2 Functional description of the SMI
	External bus control
	Memory bank select
	Memory write control
	Configurable memory access wait states
	System test access

	4.9.3 System description
	Constant definitions
	AHB slave bus interface
	Wait state generation
	AHB output data bus generation
	External bus output generation

	4.10 Test interface controller
	4.10.1 Signal descriptions
	4.10.2 Function and operation of module
	Test vector types
	Control vectors

	4.10.3 Test vector sequences
	Entering test mode
	Write vectors
	Read vectors
	Control vector
	Burst vector
	Read-to-write and write-to-read transfers
	Exiting test mode

	4.10.4 System description
	Granted state machine
	TIC vector state machine
	AHB address generation
	Control vector detection
	Read data control
	Split or retry detection
	AHB bus master output signal generation

	APB Modules
	5.1 Interrupt controller
	5.1.1 Hardware interface and signal description
	5.1.2 Function and operation of the interrupt controller module
	Interrupt control

	5.1.3 Register memory map
	5.1.4 Register descriptions
	5.1.5 Standard configuration of registers
	5.1.6 System description
	Constant definitions
	IRQ generation
	FIQ generation
	Output data generation

	5.2 Remap and pause controller
	5.2.1 Signal descriptions
	5.2.2 Functions and operations of the remap and pause module
	5.2.3 Register memory map
	5.2.4 Remap and pause register descriptions
	5.2.5 System description
	Constant definitions
	ResetStatus value generation
	Pause output generation
	Remap output generation
	Output data generation

	5.3 Timers
	5.3.1 Signal descriptions
	5.3.2 Function and operation of module
	5.3.3 Timer operation
	5.3.4 Register memory map
	5.3.5 Timer register descriptions
	5.3.6 System description
	5.3.7 Timer system description
	Address decoder
	Test clock select generation
	Clock prescaler
	Output clock enable generation
	Output data generation

	5.3.8 FRC system description
	5.3.9 FRC signal descriptions
	Control, Test and Load registers
	Counter enable selection
	16-bit counter
	Interrupt generation
	Output data generation

	5.4 Peripheral to bridge multiplexor
	5.4.1 Signal descriptions
	5.4.2 Function and operation of module
	5.4.3 System description

	Behavioral Modules
	6.1 External RAM
	6.1.1 Signal descriptions
	6.1.2 User-defined settings
	6.1.3 Function and operation of module
	Memory initialization from local data file
	Memory read and write from external bus

	6.2 External ROM
	6.2.1 Signal descriptions
	6.2.2 User-defined settings
	6.2.3 Function and operation of module
	Memory initialization from local data file
	Memory read from external bus

	6.3 Internal RAM
	6.3.1 AHB signal descriptions
	6.3.2 User-defined settings
	6.3.3 Function and operation of module
	Memory initialization from local data file
	Memory read and write from system bus

	6.4 Test interface driver
	6.4.1 Signal descriptions
	6.4.2 User-defined settings
	6.4.3 Function and operation of module
	6.4.4 TICTalk command language
	6.4.5 TICTalk commands
	Write address vector (A)
	Write test vector (W)
	Read test vector (R)
	Burst read test vector (B)
	Repeat last command (L)
	Include the string message into the TIF (C)
	Exit test mode (E)

	6.4.6 Programming with TICTalk commands
	6.4.7 The TICTalk file
	6.4.8 Generating a test input format file
	6.4.9 TIF format file
	6.4.10 SIM format file

	6.5 Tube
	6.5.1 Signal descriptions
	6.5.2 User-defined settings
	6.5.3 Function and operation of module

	Designer’s Guide
	7.1 Adding bus masters
	7.1.1 Arbiter modifications
	7.1.2 Bus master requirements

	7.2 Adding AHB slaves
	7.2.1 AHB slave modifications
	7.2.2 Slave requirements

	7.3 Adding APB peripherals
	7.3.1 APB bridge modifications
	7.3.2 Peripheral requirements

	Index
	A
	B
	C
	D
	E
	F
	G
	I
	M
	P
	R
	S
	T
	W

