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Preface

This preface introduces the AHB Example AMBA SYstem (EASY) and its reference 
documentation. It contains the following sections:

• About this document on page vi

• Further reading on page viii

• Feedback on page ix.
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Preface 
About this document

This document is a comprehensive manual for the behavioral HDL model of the 
Example AMBA SYstem (EASY). It gives detailed information about:

• the function of the whole system

• each module in the system

• how to design a new system module.

This document refers to the Advanced High-performance Bus (AHB). For information 
on the Advanced System Bus (ASB) refer to the ASB Example AMBA SYstem Technical 
Reference Manual.

Intended audience

This document has been written for experienced hardware and software engineers who 
wish to incorporate a fully functional AMBA system into their hardware and software 
design.

Organization

This document is organized into the following chapters:

Chapter 1 Introduction 

Read this chapter for an overview of the AHB Example AMBA SYstem.

Chapter 2 The EASY Microcontroller 

Read this chapter for a description of the modules of the AHB EASY 
microcontroller. 

Chapter 3 ARM7TDMI AHB Wrapper 

Read this chapter for a description of the ARM7TDMI AHB wrapper 
module.

Chapter 4 AHB Modules 

Read this chapter for details of the AHB modules that are used in the 
AHB Example AMBA SYstem.

Chapter 5 APB Modules 

Read this chapter for details of the APB modules that are used in the AHB 
Example AMBA SYstem.
vi Copyright © 1999 ARM Limited. All rights reserved. DDI0170A



Preface 
Chapter 6 Behavioral Modules 

Read this chapter for details of how to use the behavioral modules, 
including memory modules and the external AMBA Test Interface Driver 
module (the TICBOX). This chapter contains a description of the TICTalk 
command language.

Chapter 7 Designer’s Guide 

Read this chapter for details of how to add new bus master, slave and 
peripheral modules to the AHB EASY microcontroller.

Typographical conventions

The following typographical conventions are used in this document:

bold  Highlights ARM processor signal names within text, and interface 
elements such as menu names. May also be used for emphasis in 
descriptive lists where appropriate.

italic  Highlights special terminology, cross-references, and citations.

typewriter Denotes text that may be entered at the keyboard, such as 
commands, file names and program names, and source code.

typewriter Denotes a permitted abbreviation for a command or option. The 
underlined text can be entered instead of the full command or 
option name.

typewriter italic Denotes arguments to commands or functions where the argument 
is to be replaced by a specific value.

typewriter bold Denotes language keywords when used outside example code.
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. vii



Preface 
Further reading

This section lists publications by ARM Limited, and by third parties that provide 
additional information on developing for the ARM processor, and general information 
on related topics.

ARM publications

AMBA Specification (Rev 2.0) (ARM IHI 0011)

ARM Architecture Reference Manual (ARM DDI 01000)

ARM7TDMI Data Sheet (ARM DDI 0029)

Example AMBA SYstem User Guide (ARM DUI 0092)

ASB Example AMBA SYstem Technical Reference Manual (ARM DDI 0138)

Micropack AHB CPU Wrappers Technical Reference Manual (ARM DDI 0169).

Other publications

IEEE 1149.1 JTAG standard.
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Preface 
Feedback

ARM Limited welcomes feedback both on the AHB Example AMBA SYstem, and on 
the documentation.

Feedback on this document

If you have any comments on this document, please send email to errata@arm.com 
giving:

• the document title

• the document number

• the page number(s) to which your comments refer

• an explanation of your comments.

General suggestions for additions and improvements are also welcome.

Feedback on the AHB Example AMBA SYstem

If you have any comments or suggestions about this product, please contact your 
supplier giving:

• the product name

• a concise explanation of your comments.
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. ix



Preface 
Timing diagram conventions

This manual contains one or more timing diagrams. The following key explains the 
components used in these diagrams. Any variations are clearly labelled when they 
occur. Therefore, no additional meaning should be attached unless specifically stated.

Key to timing diagram conventions

Shaded bus and signal areas are undefined, so the bus or signal can assume any value 
within the shaded area at that time. The actual level is unimportant and does not affect 
normal operation.

Clock

Bus stable

HIGH to LOW

Transient

Bus to high impedance

Bus change

HIGH/LOW to HIGH

High impedance to stable bus
x Copyright © 1999 ARM Limited. All rights reserved. DDI0170A



Chapter 1 
Introduction

This chapter introduces the AHB Example AMBA SYstem (EASY). It contains the 
following section:

• Overview of EASY on page 1-2.
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Introduction 
1.1 Overview of EASY

The EASY microcontroller comprises the building blocks needed to create an example 
system based on the low-power, generic design methodology of the Advanced 
Microcontroller Bus Architecture (AMBA).

The EASY microcontroller:

• enables custom devices to be developed in very short design cycles

• allows the resulting subcomponents to be easily reused in future designs. 

Note
 This document refers to the Advanced High-performance Bus (AHB). For information 
on the Advanced System Bus (ASB) refer to the ASB Example AMBA SYstem Technical 
Reference Manual.

1.1.1 EASY system blocks

The example design provides all the system modules needed to manage an AMBA 
system: 

• reset controller

• arbiter

• decoder.

These system modules control various aspects of the Advanced High Performance Bus 
(AHB). 

1.1.2 EASY components

The example design comprises:

• Two buses:

— the AHB

— the Advanced Peripheral Bus (APB).

• The ARM processor AHB wrapper, to allow execution of ARM code in an AHB 
system.

• The Test Interface Controller (TIC), to allow external control of the AHB during 
system test. 

• A minimum set of basic microcontroller peripherals. These are supported, and are 
implemented as low-power designs on the APB. They include:

— an interrupt controller
1-2 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A



Introduction 
— a remap and pause controller

— a 16-bit timer module.

• The example Static Memory Interface (SMI). This demonstrates the minimum 
requirements for an External Bus Interface (EBI).

• A 1KB block of internal memory.

The EASY system consists of a microcontroller with some external memory as shown 
in Figure 1-1.

Figure 1-1 EASY system diagram

The descriptions in this manual refer to an AHB-based EASY system. For details of 
ASB-based EASY system design refer to the Example AMBA SYstem Technical 
Reference Manual.
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Chapter 2 
The EASY Microcontroller

This chapter describes the microcontroller which is the main unit of the EASY system. 
It contains the following sections:

• Functional overview on page 2-2

• The AMBA system components on page 2-3

• Reference peripherals on page 2-5

• Example components on page 2-8

• System test methodology on page 2-9.
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The EASY Microcontroller 
2.1 Functional overview

The modules of the EASY microcontroller are grouped in five classes:

AMBA system components 

Used to control the general operation of the system.

Peripherals Low-power peripherals, which are connected to the peripheral 
bus.

Example components 

Demonstration modules that are only simulation models.

System test methodology 

Modules used for testing the system.

Processor core The ARM processor core that is built into the EASY 
microcontroller. 

With the exception of the processor core the above modules are fully described in this 
chapter. For details of the processor core refer to Chapter 3 ARM7TDMI AHB Wrapper.
2-2 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A



The EASY Microcontroller 
2.2 The AMBA system components

The Advanced Microcontroller Bus Architecture (AMBA) system comprises:

• Reset controller

• Arbiter

• Decoder

• AHB to APB bridge on page 2-4. 

2.2.1 Reset controller

The reset controller consists of a state machine which generates the HRESETn signal. 
This signal indicates the current reset state of the AMBA bus and is used by all the other 
elements in the EASY microcontroller, primarily for power-on initialization. 

Note
 All other reset modes, such as standby or warm reset, must be implemented separately. 

2.2.2 Arbiter

The arbiter provides arbitration between bus masters competing for access to the AHB. 
Although there are only two bus masters in the EASY microcontroller, the ARM and 
the TIC, the arbiter has provision for up to four masters. To extend the number of 
masters, refer to Chapter 7 Designer’s Guide. The arbitration is currently assigned with 
a simple priority system, with the TIC as the highest priority, and the processor as the 
lowest (also the reset default). The arbitration scheme is not defined in the AMBA 
Specification and can be dependent on implementation. 

2.2.3 Decoder

The decoder consists of a simple address decoding logic, which is used to select the 
system bus slaves based on the address of the current transfer. This module controls the 
configurable memory map for the system.
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 2-3



The EASY Microcontroller 
2.2.4 AHB to APB bridge

The AHB to APB bridge interface is an AHB slave. When accessed (in normal 
operation or system test) it initiates an access to the APB. APB accesses are of different 
duration (three HCLK cycles in the EASY for a read, and two cycles for a write). They 
also have their width fixed to one word, which means it is not possible to write only an 
8-bit section of a 32-bit APB register. APB peripherals do not need a PCLK input as 
the APB access is timed with an enable signal generated by the AHB to APB bridge 
interface. This makes APB peripherals low power consumption parts, because they are 
only strobed when accessed. 

For more information on the APB bus refer to the AMBA Specification.
2-4 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A



The EASY Microcontroller 
2.3 Reference peripherals

Figure 2-1 shows how the reference peripherals are interconnected within the Reference 
Peripherals Specification (RPS) block, and how they are connected to the bridge. 

Figure 2-1 Block diagram of the RPS block and bridge

The base addresses of each of the peripherals (timer, interrupt controller, and remap and 
pause controller) are defined in the AHB to APB bridge interface, which selects the 
peripheral according to its base address. The whole APB address range is also defined 
in the bridge.

These base addresses can be implementation-specific. The peripherals standard 
specifies only the register offsets (from an unspecified base address), register bit 
meaning, and minimum supported function.
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The EASY Microcontroller 
Table 2-1 shows the three bases and their current addresses in the EASY 
microcontroller. 

Note
 When writing software or test patterns to run on the system, the absolute hex addresses 
must not be used within the code. Instead, define the base addresses in a header and then 
use the offset to this base address.

The APB data bus is split into two separate directions:

• read (PRDATA), where data travels from the peripherals to the bridge

• write (PWDATA), where data travels from the bridge to the peripherals.

This simplifies driving the buses because turnaround time between the peripherals and 
bridge is avoided.

In the default system, because the bridge is the only master on the bus, PWDATA is 
driven continuously. PRDATA is a multiplexed connection of all peripheral PRDATA 
outputs on the bus, and is only driven when the slaves are selected by the bridge during 
APB read transfers.

It is possible to combine these two buses into a single bidirectional bus, but precautions 
must be taken to ensure that there is no bus clash between the bridge and the peripherals.

2.3.1 Timer

The timer comprises:

• two 16-bit periodic/free running down counters

• a clock prescaler (divide by 1, 16 or 256)

• a test veneer. 

Table 2-1 Peripherals base addresses

Peripheral
EASY base
address

Interrupt controller 0x8000 0000

Timer 0x8400 0000

Remap and pause controller 0x8800 0000
2-6 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A



The EASY Microcontroller 
When the counters underflow (passing zero value and reloading) they can generate 
interrupt requests which are passed to the interrupt controller. Both counter values can 
be loaded, read, and controlled through addressable registers.

2.3.2 Interrupt controller

The interrupt controller contains a set of registers for controlling eight interrupt request 
(IRQ) sources and one fast interrupt request (FIQ) source. These have the following 
functions:

• enable or disable specific interrupt sources from triggering the ARM nIRQ or 
nFIQ interrupt lines

• read the status of all interrupt sources at the inputs of the interrupt controller

• read the status of the interrupt sources enabled to trigger the ARM interrupt lines

• generate a software-triggered nIRQ signal to the ARM processor

• isolate the interrupt controller for test.

The number of IRQ sources can easily be extended by increasing the number of IRQ 
registers.

2.3.3 Remap and pause controller

The remap and pause controller has three functions:

Reset status This enables software to determine whether the last reset was a 
Power-On Reset (POR) or a soft reset. The latter function is 
redundant in the EASY microcontroller, since it does not have a 
soft reset. It is implemented only as an example for systems that 
might provide a soft reset state.

Remap memory On reset the internal RAM is mapped out and bank 4 of the 
external memory is mapped into location 0x0000 0000 which is the 
boot location for the ARM processor. The reset memory map is 
cancelled by writing to a register in this peripheral.

Pause mode The EASY microcontroller only supports one simple 
power-saving mode, called Pause. This halts all bus activity (but 
not the system clock) and waits for an interrupt signal from the 
interrupt controller before restarting the system.

The remap and pause controller also contains an ID register which is currently only a 
single bit. This block can be extended in many ways including support for 
software-generated resets, more sophisticated power-saving modes and more detailed 
ID information.
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The EASY Microcontroller 
2.4 Example components

The example components include:

• Internal memory

• Static memory interface

• Retry slave

• Default slave.

Typically these blocks must be re-implemented according to the specific system 
requirements of the microcontroller being developed.

2.4.1 Internal memory

The internal memory is a very basic behavioral model of 1KB of zero wait state static 
memory, which is not synthesizable. The size of the memory can be extended by 
altering a setting in the HDL file.

2.4.2 Static memory interface

The SMI is a 32-bit External Bus Interface (EBI) that can connect up to four 256MB 
banks of zero to four wait state memory to the EASY microcontroller. However, the 
number of wait states is set as a constant in the HDL (before synthesis), and is set for 
all four banks. The example SMI also supports test signals from the TIC. These override 
the normal operation of the SMI during system test, and directly control the tristate 
drivers on the XD bus.

2.4.3 Retry slave

The retry slave is an example of how to implement an AHB slave that generates retry 
responses and wait states for read or write accesses. It is used as a template for building 
slaves that require the use of a retry response.

2.4.4 Default slave

The default slave is used to fill holes in the memory map, so that the system will still 
function if an invalid area of memory is accessed. This must be modified to suit the 
memory map of the system, so that all areas of memory will access a system slave.
2-8 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A



The EASY Microcontroller 
2.5 System test methodology

Each AHB slave, AHB master, and APB peripheral should be tested in complete 
isolation. This means that components must be designed with test veneers that allow 
non-bus signals to be controlled and observed. 

When a component is tested, a special test bit is set. This test bit switches these 
multiplexed signals to test registers (accessible via the AHB or APB), which effectively 
isolates each component from the rest of the system. 

Test vectors should be written to test the component in isolation, making as few 
assumptions about the rest of the system as possible. 

Figure 2-2 Simple test veneer example

A good example of this approach is provided by the test veneer for the ARM processor, 
which is described in the AMBA ARM7TDMI Interface Data Sheet. This approach is 
also used to test the peripherals on the APB bus. 

Under normal conditions, when the TIC is not in use, the current bus master performs 
transfers to and from any one of the following slaves: 

• internal memory 

• AHB to APB bridge interface (to access the peripherals) 

• example retry slave

• EBI.
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The EASY Microcontroller 
However, when test mode is entered, and the TIC is the current master, the following 
slaves can be accessed: 

• internal memory 

• AHB to APB bridge interface (to access the peripherals)

• example retry slave

• ARM bus master (test veneer).

Note
 Bus masters can become slaves during test mode. The EBI cannot be tested via the TIC 
due to the way test access is provided to the AHB bus. The TIC is a state machine driven 
by the test request inputs (TESTREQA and TESTREQB). It also contains a register 
that allows it to read address information from the test bus (TESTBUS) and drive it onto 
the AHB address bus (HADDR). However, it cannot drive the test bus. Instead, it 
overrides the normal function of the EBI, forcing it to provide a 32-bit channel between 
HRDATA and TESTBUS, passing out read data during a read test vector. Thus, in test 
mode, the EBI cannot function as a slave.

TESTBUS must be a 32-bit channel. In a system which only supports a 16-bit or 8-bit 
external data bus, additional external pins such as address lines must be forced into a 
special test mode in order to supply the full 32-bit bidirectional channel required. 

For more information about: 

• the test interface, see the AMBA Specification

• applying test vectors to an EASY-based microcontroller, see the EASY User 
Guide. 

Note
 The TESTREQA, TESTREQB and TESTBUS signals are the same as the TREQA, 
TREQB and TBUS signals described in the AMBA Specification (Rev 2.0). 
2-10 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A



Chapter 3 
ARM7TDMI AHB Wrapper

This chapter describes the ARM7TDMI processor core wrapper that can be used with 
an AHB-based EASY system. 

Note
 For details of other supported CPU wrappers refer to the Micropack AHB CPU 
Wrappers Technical Reference Manual.

This chapter contains the following sections:

• About the ARM7TDMI AHB wrapper on page 3-2

• Signal interface on page 3-3

• ARM7TDMI AHB signal descriptions on page 3-4

• Overview of the ARM7TDMI wrapper on page 3-7

• Connections to ARM7TDMI core on page 3-9

• Default signal configurations on page 3-13

• Description of the ARM7TDMI wrapper blocks on page 3-14.
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 3-1



ARM7TDMI AHB Wrapper 
3.1 About the ARM7TDMI AHB wrapper

The ARM7TDMI AHB wrapper module interfaces between the ARM7TDMI and the 
AHB bus, allowing the ARM7TDMI to become an AHB bus master. The module also 
includes a test interface, allowing the ARM7TDMI to be selected as a bus slave and 
tested via the TIC interface. If, however, an alternative test approach is to be used, the 
test logic may be removed from the AMBA interface.

The top level block diagram is shown in Figure 3-1, which shows how the wrapper 
interfaces to the ARM7TDMI. The AHB input signals are routed through the wrapper 
before becoming inputs to the ARM7TDMI. The outputs are also routed through the 
wrapper before being driven onto the AHB.

Figure 3-1 ARM7TDMI AHB AMBA wrapper block diagram
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ARM7TDMI AHB Wrapper 
3.2 Signal interface

The ARM7TDMI AHB wrapper has a combined AHB master and AHB slave interface. 
The master interface is used during normal system operation. The slave interface is used 
during testing of the core when the Test Interface Controller (TIC) is acting as the 
current AHB bus master.
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ARM7TDMI AHB Wrapper 
3.3 ARM7TDMI AHB signal descriptions

Table 3-1 describes the signals used by the ARM7TDMI AHB wrapper.

Table 3-1 ARM7TDMI AHB signal descriptions

Signal Type Direction Description

HCLK Bus clock Input This clock times all bus transfers. All signal timings are 
related to the rising edge of HCLK.

HRESETn Reset Input The bus reset signal is active LOW and is used to reset the 
system and the bus. This is the only active LOW AHB signal.

HADDRout[31:0] Address bus Output This is the 32-bit system address bus.

HTRANSin[1:0]
HTRANSout[1:0]

Transfer type Input/ 
output

These signals indicates the type of the current transfer, which 
can be NONSEQUENTIAL, SEQUENTIAL, or IDLE. The 
wrapper does not use the BUSY transfer type.

HWRITEin

HWRITEout

Transfer direction Input/ 
output

When HIGH this signal indicates a write transfer and when 
LOW a read transfer.

HSIZE[2:0] Transfer size Output This signal indicates the size of the transfer, which is 
typically byte (8-bit), halfword (16-bit) or word (32-bit).

HBURST[2:0] Burst type Output This signal indicates if the transfer forms part of a burst. The 
ARM core always performs incrementing bursts of 
unspecified length.

HPROT[3:0] Protection control Output The protection control signals indicate if the transfer is an 
opcode fetch or data access, and if the transfer is a supervisor 
mode access or user mode access.

HWDATAin[31:0]

HWDATAout[31:0]

Write data bus Input/ 
output

The write data bus is used to transfer data from the master to 
the bus slaves during write operations. 

HSELArmTest Slave select Input Each AHB slave has its own select signal and this signal 
indicates that the current transfer is intended for the selected 
slave. This signal is a combinatorial decode of the address 
bus.

HRDATAin[31:0]

HRDATAout[31:0]

Read data bus Input/ 
output

The read data bus is used to transfer data from bus slaves to 
the bus master during read operations. 

HREADYin
HREADYout

Transfer done Input/ 
output

When HIGH the HREADY signal indicates that a transfer 
has finished on the bus. This signal may be driven LOW to 
extend a transfer. 
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HRESPin[1:0]
HRESPout[1:0]

Transfer response Input / 
output

The transfer response provides additional information on the 
status of a transfer. The wrapper only uses the OKAY 
response.

HBUSREQarm Bus request Output A signal from the wrapper to the bus arbiter which indicates 
that it requires the bus. This output signal is always set HIGH 
as the core requires use of the bus all of the time.

HLOCKarm Locked transfers Output When HIGH this signal indicates that the master requires 
locked access to the bus and no other master should be 
granted the bus until this signal is LOW.

HGRANTarm Bus grant Input This signal indicates that the ARM core is currently the 
highest priority master. Ownership of the address/control 
signals changes at the end of a transfer when HREADY is 
HIGH, so a master gains access to the bus when both 
HREADY and HGRANTx are HIGH.

ARMNFIQ ARM fast 
interrupt

Input This is the ARM fast interrupt request, and is routed to the 
nFIQ input on the ARM CPU.

ARMNIRQ ARM interrupt Input This is the ARM interrupt request, and is routed to the nIRQ 
input on the ARM CPU.

COMMRX Comms receive Output When LOW, this signal denotes that the communications 
channel receive buffer is empty. The communications 
channel allows serial communication of bytes between the 
processor and an external device, using the JTAG port as the 
serial connection.

COMMTX Comms transmit Output When HIGH, this signal denotes that the communications 
channel transmit buffer is empty.

nTRST Not test reset Input Active LOW reset signal for the boundary scan logic. This 
pin must be pulsed or driven LOW to achieve normal device 
operation. This is part of the IEEE 1149.1 JTAG standard.

TCK Test clock Input This is the JTAG clock. This is part of the IEEE 1149.1 JTAG 
standard.

TDI Test data in Input This is part of the IEEE 1149.1 JTAG standard.

Table 3-1 ARM7TDMI AHB signal descriptions (continued)

Signal Type Direction Description
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TMS Test mode select Input This is part of the IEEE 1149.1 JTAG standard.

nTDOEN Not TDO enable Output When LOW, this signal denotes that serial data is being 
driven out on the TDO output. nTDOEN would normally be 
used as an output enable for a TDO pin in a packaged part.

TDO Test data out Output This is part of the IEEE 1149.1 JTAG standard.

Table 3-1 ARM7TDMI AHB signal descriptions (continued)

Signal Type Direction Description
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3.4 Overview of the ARM7TDMI wrapper

The ARM7TDMI AHB wrapper (A7TWrap) is made up of the following five blocks:

A7TWrapBurst Controls the AHB address and control output generation during 
burst transfers.

A7TWrapLock Used to generate the HLOCK output, when the core performs a 
locked transfer (SWP instruction).

A7TWrapMaster Controls the bus master interface to the AHB.

A7TWrapCtrl Contains a test multiplexor used to drive the core control inputs 
with test data during TIC testing of the core. During normal 
operation the control inputs are driven with default values. This 
block is removable.

A7TWrapTest Contains the main test state machine used to control the 
application of test vectors during core TIC testing. A test register 
stores the core control inputs during test, which are driven through 
the A7TWrapCtrl block, and the core control outputs are driven 
onto the AHB read data bus.

For more details of these blocks, refer to Description of the ARM7TDMI wrapper blocks 
on page 3-14.
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Figure 3-2 shows the connections between the blocks that make up the wrapper module.

Figure 3-2 ARM7TDMI AHB wrapper block diagram
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3.5 Connections to ARM7TDMI core

Table 3-2 shows the connections of the ARM7TDMI core inputs and outputs.

Table 3-2 Connections of ARM7TDMI signals

Signal Type Direction Connected to

A[31:0] Addresses Output HADDRout[31:0]

ABE Address bus enable Input Tied HIGH to drive the address and control signals at 
all times.

ABORT Memory abort Input Generated from slave response when wrapper is bus 
master.

ALE Address latch enable Input Tied HIGH to allow pipelined addresses from the core.

APE Address pipeline enable Input Tied HIGH to allow pipelined addresses from the core.

BIGEND Big endian configuration Input Default configuration is tied LOW for little-endian 
operation.

BL[3:0] Byte latch control Input Tied HIGH to latch all 32 bits of the data bus when the 
core is clocked.

BREAKPT Breakpoint Input Tied LOW as there is no external debug logic.

BUSDIS Bus disable Output Only used for test.

BUSEN Data bus configuration Input Tied HIGH to use the unidirectional data buses.

COMMRX Communications channel 
receive

Output Connected to system output COMMRX.

COMMTX Communications channel 
transmit

Output Connected to system output COMMTX.

CPA Coprocessor absent Input Tied HIGH as there is no external coprocessor.

CPB Coprocessor busy Input Tied HIGH as there is no external coprocessor.

D[31:0] Data bus Input/ 
output

Unconnected as the unidirectional data buses are used.

DBE Data bus enable Input Tied HIGH to drive the data buses at all times.

DBGACK Debug acknowledge Output Only used for test.

DBGEN Debug enable Input Tied HIGH to allow use of JTAG debug.
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DBGRQ Debug request Input Tied LOW as there is no external debug logic.

DBGRQI Internal debug request Output Only used for test.

DIN[31:0] Data input bus Input Comes from HRDATAin when a bus master, and from 
HWDATAin when a slave in TIC test mode.

DOUT[31:0] Data output bus Output Used to drive HWDATAout.

DRIVEBS Boundary scan cell enable Output Unconnected output.

ECAPCLK Extest capture clock Output Unconnected output.

ECAPCLKBS Extest capture clock for 
boundary scan

Output Unconnected output.

ECLK External clock input Output Unconnected output.

EXTERN[1:0] External input Input Tied LOW as there is no external debug logic.

HIGHZ - Output Only used for test.

ICAPSCLKBS Intest capture clock Output Unconnected output.

IR[3:0] TAP controller instruction 
register

Output Unconnected output.

ISYNC Synchronous interrupts Input Tied HIGH for synchronous interrupts.

LOCK Locked operation Output Only used for test.

MAS[1:0] Memory access size Output Used to generate HSIZE.

MCLK Memory clock input Output Main clock input of opposite phase to HCLK.

nCPI Not coprocessor 
instruction

Output Only used for test.

nENIN Not enable input Input Tied LOW to enable data buses.

nENOUT Not enable output Output Only used for test.

nENOUTI Not enable output Output Only used for test.

nEXEC Not executed Output Only used for test.

nFIQ Not fast interrupt request Input Connected to system ARMNFIQ.

nHIGHZ Not HIGHZ Output Unconnected output.

Table 3-2 Connections of ARM7TDMI signals (continued)

Signal Type Direction Connected to
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nIRQ Not interrupt request Input Connected to system ARMNIRQ.

nM[4:0] Not processor mode Output Only used for test.

nMREQ Not processor request Output Used to generate HTRANS.

nOPC Not opcode fetch Output Used to generate HPROT and HLOCKarm.

nRESET Not reset Input From system reset HRESETn.

nRW Not read/write Output Used to generate HWRITE.

nTDOEN Not TDO enable Output To system nTDOEN.

nTRANS Not memory translate Output Used to generate HPROT.

nTRST Not test reset Input From system nTRST.

nWAIT Not wait Input Tied HIGH, as wait states are inserted by disabling the 
core clock MCLK.

PCLKBS Boundary scan update 
clock

Output Unconnected output.

RANGEOUT[1:0] EmbeddedICE macrocell Output Only used for test.

RSTCLKBS Boundary scan reset clock Output Unconnected output.

SCREG[3:0] Scan chain register Output Only used for test.

SDINBS Boundary scan serial input 
data

Output Unconnected output.

SDOUTBS Boundary scan serial 
output data

Input Tied LOW as no external scan chains implemented.

SEQ Sequential address Output Used to generate HTRANS.

SHCLKBS Boundary scan shift clock, 
phase 1

Output Unconnected output.

SHCLK2BS Boundary scan shift clock, 
phase 2

Output Unconnected output.

TAPSM[3:0] TAP controller state 
machine

Output Unconnected output.

TBE Test bus enable Input Tied HIGH to drive outputs.

Table 3-2 Connections of ARM7TDMI signals (continued)

Signal Type Direction Connected to
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TBIT Thumb state Output Only used for test.

TCK Test clock Input From system TCK.

TCK1 TCK, phase 1 Output Unconnected output.

TCK2 TCK, phase 2 Output Unconnected output.

TDI Test data input Input From system TDI.

TDO Test data output Output To system TDO.

TMS Test mode select Input From system TMS.

Table 3-2 Connections of ARM7TDMI signals (continued)

Signal Type Direction Connected to
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3.6 Default signal configurations

Within the wrapper there are a number of control signals that are tied to default values. 
The following configurations exist:

• BIGEND is tied LOW for little-endian operation, but may be tied HIGH for 
big-endian operation.

• ISYNC is tied HIGH for synchronous interrupts, but may be tied LOW if 
asynchronous interrupts are used.

• The debug input signals (BREAKPT, DBGEN, DBGRQ and EXTERN[1:0]) 
are tied to fixed values. These signals may be used to implement additional debug 
logic external to the core.

• The coprocessor signals (CPA, CPB) are tied HIGH, but will be required if an 
external coprocessor is to be added.

• If an additional boundary scan is to be added, the SDOUTBS input will be 
required.
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3.7 Description of the ARM7TDMI wrapper blocks

This section contains descriptions of each of the following blocks:

• A7TWrap

• A7TWrapBurst

• A7TWrapLock on page 3-23

• A7TWrapMaster on page 3-27

• A7TWrapCtrl on page 3-33

• A7TWrapTest on page 3-34

• Non-standard design practices on page 3-42.

3.7.1 A7TWrap

This top-level block is purely structural, and connects together all of the blocks within 
the wrapper.

If the test interface is to be removed, it can be done by removing it from this module and 
tying the unconnected output signals that are generated to appropriate levels, as 
described within the HDL code. Removal of the test multiplexor is optional, because 
when the test interface is removed the multiplexor control input will be tied LOW.

3.7.2 A7TWrapBurst

The burst control block generates the AHB address and control outputs from the core 
address and control outputs. A simplified diagram of the HDL code is shown in 
Figure 3-3 on page 3-15.
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Figure 3-3 A7TWrapBurst block system diagram
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There are three main sections to this block:

• HADDR generation

• HTRANS generation on page 3-20

• Other control signal generation on page 3-20.

HADDR generation

The address generation section generates the output address from two sources:

• the core address output A
• the internal address incrementer.

These address sources are selected according to the current transfer type, using the state 
machine shown in Figure 3-4.

Figure 3-4 Address selection state machine
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• STA_INCR

During this state the bus is synchronized with the core, and is performing the 
current core transfer.

Due to the late address output from the core, the incrementer is used as the current 
source for the AHB address output, allowing the system address to be driven out 
much earlier than the core A output.

As the current core transfer is the same as the current bus transfer, the HTRANS 
output is generated combinatorially from the core outputs.

The STA_INCR state is entered from:

— reset, when the system is initialized

— STA_INT when an S_CYC follows an I_CYC or C_CYC

— STA_CORE when both the bus and the core are clocked after an N_CYC

— STA_INCR when the bus is clocked with an S_CYC, or when the bus is not 
clocked and is not performing an N_CYC.

The next state is:

— STA_SKIP when the bus is clocked and the core starts an N_CYC

— STA_INT when the bus is clocked and the core starts an I_CYC or C_CYC

— STA_CORE when the bus is not clocked and the core starts an N_CYC

— STA_INCR when the bus is clocked with an S_CYC, or when the bus is not 
clocked and is not performing an N_CYC.

• STA_SKIP

During this state the core is running one cycle ahead of the bus.

When the core starts an N_CYC, a new address value will be driven out by the 
core that is not related to the address of the previous transfer. An IDLE cycle is 
inserted on the AHB during the STA_INCR state when the core first started the 
N_CYC, allowing time for the new core address to be sampled, and then the 
NONSEQUENTIAL transfer is started on the AHB during this state.

To allow the AHB to resynchronize with the core, the core clock is stopped during 
the next cycle, using the skip block output which is passed to the core clock 
enabling logic.

The STA_SKIP state is entered from:

— STA_INCR when the bus is clocked and the core starts an N_CYC

— STA_INT when the core performs an N_CYC following an I_CYC or 
C_CYC.

The next state is always STA_CORE, as the previous IDLE transfer will always 
receive a zero wait OKAY response.
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• STA_INT

During this state the core and bus are synchronized.

When the bus is clocked and the core starts an internal cycle, this state is entered. 
The core address is selected, as if the following transfer is a SEQUENTIAL or 
internal the address output will not change. If the next transfer is a 
NONSEQUENTIAL, then a new address will be driven out by the core, and will 
be sampled when the STA_SKIP state is entered.

The STA_INT state is entered from:

— STA_INCR when the bus is clocked and the core starts an I_CYC or 
C_CYC after an S_CYC

— STA_CORE when the bus is clocked and the core starts an I_CYC or 
C_CYC after an N_CYC

— STA_INT when following an I_CYC or C_CYC the bus is not clocked or 
the core starts another I_CYC or C_CYC.

The next state is:

— STA_INCR when the core starts an S_CYC

— STA_SKIP when the core starts an N_CYC

— STA_INT when the core starts an I_CYC or C_CYC or the bus is not 
clocked.

• STA_CORE

During this state the bus resynchronizes with the core, as the core is not clocked, 
and the current core transfer is started on the AHB. The core address output is 
used to generate HADDR.

When this state is entered from STA_INCR, the STA_SKIP state is bypassed. 
This is possible as when the bus is not clocked and the core starts an N_CYC, the 
IDLE cycle will be started on the bus during the HREADY LOW cycle. As 
HREADY being LOW causes the core clock to be disabled for one cycle, then the 
STA_SKIP state is not needed to allow the bus and core to resynchronize, and the 
STA_CORE state can be entered immediately as the core and bus will now be 
synchronized again.

The STA_CORE state is entered from:

— STA_SKIP following an N_CYC when the bus is clocked

— STA_INCR following an N_CYC when the bus is not clocked

— STA_CORE when the bus is not clocked, or when the bus is clocked and 
the core is not clocked and is performing an S_CYC or N_CYC.
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The next state is:

— STA_INCR when both the bus and core are clocked

— STA_INT when the bus is clocked and the core starts an I_CYC or C_CYC

— STA_CORE when the bus is not clocked, or when the bus is clocked and 
the core is not clocked and is performing an S_CYC or N_CYC.

The output of the state machine is used to control the input to the iHaddrInt 
registers, selecting either the incremented or the core address. There is also a 
multiplexor after the incrementer which selects the current AHB address output 
when the core is not clocked, because the incremented address must not change 
if the core is not clocked. For example, this happens when the wrapper is not 
granted the bus but the core wants to perform a transfer.

The 8-bit incrementer uses the HADDR output value, and increments against 
halfword or word boundaries depending on the size of the current transfer. When 
the address incrementer overflows, the bound signal becomes valid, which causes 
an IDLE and NONSEQUENTIAL transfer sequence to be inserted, allowing time 
for the new address value to be sampled from the core.

The HADDR output is stored in a register to improve the output timing. This 
structure may need to be changed, as detailed in the HDL code, depending on the 
clock frequency that the system is driven with. The default system assumes that 
the A address output from the core becomes valid in time to be sampled on the 
rising edge of HCLK by the iHaddrInt registers. If this is not possible then an 
array of latches must be used to hold the address, with an array of registers used 
to store the output of the incrementer, as shown in Figure 3-5.

Figure 3-5 Address output latches used with slow core output address
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HTRANS generation

The HtransInt output is mainly generated from the core transfer signals nMREQ and 
SEQ, as well as the address selection state machine.

The HTRANS output multiplexor is used to select either the current core transfer 
output, or the previous transfer held in the TranReg registers, according to the address 
selection state machine.

When the incremented address is the source of the current AHB address, then the 
current core transfer outputs are used to generate the AHB transfer outputs. As the 
incremented address is generated before the core starts the transfer that relates to that 
address, then the direct core outputs must be used.

When the core address is the current source, then the registered transfer value is used to 
generate the AHB transfer outputs. When the core address is valid, it relates to the 
previous transfer that the core was generating, so the registered transfer values must be 
used.

The core transfer type outputs are modified so that:

• when an incrementer address boundary is crossed, a NONSEQUENTIAL cycle 
is generated

• when a SEQUENTIAL follows an INTERNAL cycle, a NONSEQUENTIAL is 
generated

• when the core indicates an INTERNAL or COPROCESSOR cycle, an IDLE is 
generated.

The output of the multiplexor is then converted from the core transfer type encoding 
into the AHB HTRANS transfer encoding.

Other control signal generation

Registers are used to generate HwriteInt, HsizeInt(1:0) and HprotInt(1) directly from 
the core outputs, so that they are valid with the correct AHB timing.

It is assumed that the core outputs being used are valid early enough to be sampled on 
the rising edge of HCLK (falling edge of MCLK). If these signals cannot be 
guaranteed to be valid on this edge (for example, the system bus speed is run at a 
frequency approaching the maximum frequency of the ARM7TDMI core, effectively 
making the core outputs valid later in the clock cycle), then clock HIGH enabled 
transparent latches will need to be used to store the signals, so that the control outputs 
are stable at the end of the address phase on the rising edge of the clock.
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The timing of the nOPC output from the core does not naturally match up with the AHB 
bus control signal timing, so an internally generated version of this signal is used to 
drive bit zero of the HprotInt output. A simple state machine is used to control the 
generation of this signal, which is shown in Figure 3-6 below:

Figure 3-6 Instruction fetch state machine
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• STI_NSEQ on page 3-22.
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• STI_NSEQ when a NONSEQUENTIAL transfer is performed that is not an 
instruction fetch

• STI_INSTR when an instruction fetch is being performed.

STI_IDLE

During this state the wrapper is performing an IDLE transfer before a 
NONSEQUENTIAL bus access that is not an instruction fetch. Bit zero of HprotInt is 
driven HIGH, as during an IDLE cycle the value of HPROT is not used.

The STI_IDLE state is entered from:

• STI_INSTR when an IDLE transfer is inserted before a transfer that is not an 
instruction fetch

• STI_IDLE when the NONSEQUENTIAL transfer has not been started yet.

The next state is:

• STI_NSEQ when the NONSEQUENTIAL transfer has started, following the 
IDLE

• STI_IDLE when the NONSEQUENTIAL transfer has not been started yet.

STI_NSEQ

During this state the wrapper is not performing an instruction fetch, so bit zero of 
HprotInt is driven LOW.

The STI_NSEQ state is entered from:

• STI_INSTR when a NONSEQUENTIAL transfer is performed that is not an 
instruction fetch

• STI_IDLE when the NONSEQUENTIAL transfer has started, following the 
IDLE

• STI_NSEQ when a burst of SEQUENTIAL transfers is being performed, or a 
locked transfer is performed that consists of two back to back 
NONSEQUENTIAL transfers.
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3.7.3 A7TWrapLock

The Lock generation block controls the generation of the HLOCK wrapper output, 
which is only set when the core performs a SWP instruction. A simplified diagram of 
the HDL code is shown in Figure 3-7.

Figure 3-7 A7TWrapLock block system diagram
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The code can branch before the SWP is performed, and this needs to be checked for. 
This is done by detecting when a NONSEQUENTIAL instruction fetch is performed, 
as this indicates that a new location in memory has been jumped to. The only case when 
this does not indicate a branch is when it follows a write cycle. The first instruction fetch 
after a write will always be NONSEQUENTIAL, and a branch will never immediately 
follow a write. A read is always followed by an INTERNAL cycle, and the following 
instruction fetch will be SEQUENTIAL if the code has not branched. So, the branch 
signal is set HIGH when there is a SWP instruction in the pipeline and the core is 
performing a NONSEQUENTIAL instruction fetch which is not immediately after a 
write. This is then used to synchronously reset the last SWP register (register 2 is not 
cleared as the instruction after the branch may be a SWP) and clear iHlockInt, so that 
the HLOCK output does not get set if the code branches before it reaches the SWP 
instruction.

If wait states or SPLIT/RETRY cycles are inserted during an instruction fetch, then it is 
possible for the read data to become available many cycles after the address cycle of the 
instruction fetch is performed. MclkNext is used to enable the SWP detection registers, 
ensuring that they are only clocked when the instruction fetch transfer completes.

The lock state machine shown in Figure 3-8 on page 3-25 controls the generation of the 
HLOCK wrapper output. Two locked states are used to indicate the locked read and 
write transfers that are performed during a SWP instruction.
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Figure 3-8 Locked state machine

The three states are described in:

• ST_NORMAL

• ST_LOCK1 on page 3-26

• ST_LOCK2 on page 3-26.

• ST_NORMAL

This state is used when the core is not performing a locked SWP transfer, and the 
HLOCK output is held LOW.

The ST_NORMAL state is entered from:

— reset, when the system is initialized

— ST_LOCK2 when the transfer after the SWP read has started

— ST_NORMAL when a locked transfer is not being performed on the bus

The next state is:

— ST_LOCK1 when the instruction fetch preceding the SWP transfers is 
performed and the SWP is not branched past

— ST_NORMAL when a locked transfer is not being performed on the bus.
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• ST_LOCK1

This state is entered during the transfer before the read transfer of the SWP 
instruction, which is always an instruction fetch. If a branch has occurred before 
this instruction fetch has been performed, then this state is not entered, as it will 
not be necessary to perform a locked transfer.

The HLOCK output is held HIGH, indicating that the next AHB transfer (the 
SWP read) is locked.

The ST_LOCK1 state is entered from:

— ST_NORMAL when the instruction fetch preceding the SWP transfers is 
performed and the SWP is not branched past

— ST_LOCK1 when the core has not started the read transfer of the SWP 
instruction.

The next state is:

— ST_LOCK2 when the core has been clocked, and is starting the locked read 
transfer of the SWP instruction

— ST_LOCK1 when the core has not started the locked read transfer of the 
SWP instruction.

• ST_LOCK2

This state is used during the read of the locked transfer to indicate that the 
following write transfer is also locked. 

The HLOCK output is held HIGH, indicating that the next AHB transfer (the 
SWP write) is locked.

The ST_LOCK2 state is always entered from ST_LOCK1 when the core has been 
clocked and starts the read transfer.

The next state is always ST_NORMAL, when the locked write transfer is started.

If multiple SWP instructions are performed sequentially, then the state machine 
will continue to cycle through all three states as the core performs:

1. an instruction fetch 

2. the read and write transfers of the SWP

3. the next instruction fetch and SWP instruction.
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3.7.4 A7TWrapMaster

This block controls the interface of the wrapper to the AHB as a bus master. A 
simplified diagram of the HDL code is shown in Figure 3-9.

Figure 3-9 A7TWrapMaster block system diagram
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The A7TWrapMaster block is made up of many different sections, the main ones being 
the:

• Granted state machine

• Core clock generation on page 3-30

• Address and control holding registers on page 3-31

• Address, control and data output drivers on page 3-32.

Granted state machine

This is used to determine when the wrapper is granted the bus as a bus master, and when 
it can drive the address, control and data outputs without clashing with other bus 
masters. The AddrDrive and DataDrive outputs are generated from the current state, and 
can be used to enable or disable the wrapper address, control and data outputs onto the 
AHB depending on the interconnection scheme used.

The state machine used is shown in Figure 3-10, and only advances when HREADYin 
is HIGH.

Figure 3-10 A7TWrapMaster block state machine

The four states are described in:

• ST_NOT_GRANT on page 3-29

• ST_GAIN_GRANT on page 3-29
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• ST_GRANT

• ST_LOSE_GRANT on page 3-30.

• ST_NOT_GRANT

This state is used when the wrapper is not granted control of the bus, and the 
address, control and data outputs are all driven LOW to avoid clashing with the 
current bus master.

The ST_NOT_GRANT state is entered from:

— reset, when the system is initialized

— ST_LOSE_GRANT when the grant input has been set LOW for two 
completed bus cycles

— ST_NOT_GRANT when the grant input has been set LOW for at least three 
completed bus cycles.

The next state is:

— ST_GAIN_GRANT when the grant input is first set HIGH

— ST_NOT_GRANT when the grant input is set LOW.

• ST_GAIN_GRANT

This state is used when the wrapper has first been granted control of the bus, and 
can drive the address and control outputs onto the bus. The previously granted 
master still has control of the read and write data buses from the previous transfer.

The ST_GAIN_GRANT state is entered from:

— ST_NOT_GRANT when the grant input is first set HIGH

— ST_LOSE_GRANT when the wrapper lost control of the bus for one cycle, 
but has been granted control of the bus again.

The next state is:

— ST_GRANT when the grant input is set HIGH

— ST_LOSE_GRANT when the wrapper was only granted control of the bus 
for one cycle.

• ST_GRANT

This state is used when the wrapper has been granted the bus for at least two 
cycles, and can drive all of the address, control and data outputs without clashing 
with another bus master.

The ST_GRANT state is entered from:

— ST_GAIN_GRANT when the grant input has been set HIGH for two 
completed bus cycles

— ST_GRANT when the grant input has been set HIGH for at least three 
completed bus cycles.
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The next state is:

— ST_LOSE_GRANT when the grant input is first set LOW

— ST_GRANT if the grant input is still set HIGH.

• ST_LOSE_GRANT

This state is used when the grant input has just been set LOW, and the wrapper 
can only drive the data outputs. The address and control lines will be driven by 
the currently granted bus master.

The ST_LOSE_GRANT state is entered from:

— ST_GRANT when the grant input is first set LOW

— ST_GAIN_GRANT when the wrapper was only granted control of the bus 
for one cycle.

The next state is:

— ST_NOT_GRANT when the grant input has been set LOW for two cycles, 
and the wrapper fully loses control of the bus

— ST_GAIN_GRANT when the wrapper lost control of the bus for one cycle, 
but has been granted control of the bus again.

Core clock generation

This controls the generation of the MCLK input to the core, which is of the opposite 
phase to HCLK.

The core clock is disabled:

• when HREADYin is LOW and the core is granted the bus

• when the holding registers contain an unperformed transfer

• when the Skip input from the A7TWrapBurst block is set HIGH, indicating that 
the clock must be disabled while a new core address is being sampled.

The clock is enabled at all other times.

A combinatorial path is used between the system clock input (HCLK), the enabling and 
inverting logic, and the core clock output (MCLK). This is required as both clocks are 
running at the same frequency, so a registered MCLK output cannot be used. 

The latched enable signal (MclkEn) is gated with the system clock to generate the core 
clock. A latch is used for the enable to ensure that no glitches are generated after the 
rising edge of the system clock. 
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If a rising edge register was used to hold the enable, then when the enable changed from 
HIGH to LOW, the output of the enable register would not change until after the rising 
edge of the clock. This would mean that the core clock output would be set LOW for a 
short time until the enable output became HIGH. 

The registered clock enable (MclkEnReg) is used in this block to control the operation 
of the holding registers, and is needed to align the clock enable to the rising edge of the 
clock.

Address and control holding registers

Holding registers are needed to allow the regeneration of transfers that were stopped due 
to a SPLIT or RETRY response from the current slave, or when the wrapper loses grant.

During normal operation the outputs of the holding registers are not used, but they are 
enabled so that they always contain a copy of the previous transfer address and control 
data. When they are needed, the enable is set LOW, ensuring that the registers hold their 
current values until after the transfer has been regenerated. The clock signal Enable is 
used to control the loading of the holding registers.

A multiplexor is used to select either the current transfer signals, or the holding register 
outputs. As it is possible for a transfer to be held for many cycles, a register is used to 
store the multiplexor control signal. This is set and cleared using the HoldSet and 
HoldClr signals.

HoldSel is set HIGH during a split or retry cycle, or when the core has lost grant, and 
is requesting a SEQUENTIAL or NONSEQUENTIAL transfer.

HoldSel is cleared when the holding registers have been used to regenerate a transfer, 
which is when the wrapper has been regranted the bus, or during the second phase of a 
SPLIT or RETRY cycle when the wrapper has not lost grant of the bus.

The HTRANS signal is modified before and after the holding registers. As a 
regenerated transfer will never be part of a burst, then if a SEQUENTIAL transfer is 
stored in the holding registers it is first converted to a NONSEQUENTIAL. Also, after 
the holding register selection multiplexors, the transfer type is converted to IDLE during 
the second cycle of a SPLIT or RETRY transfer, as the current transfer must always be 
IDLE during this cycle.
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The holding register HLOCK signal is modified before passing through the holding 
register selection multiplexers. If an idle transfer is generated after an instruction fetch 
and immediately before a locked SWP read, it will not be regenerated if the instruction 
fetch is split or retried. This means that when the instruction fetch is regenerated, the 
next transfer will be the locked read, so the HLOCK output must be set HIGH during 
the instruction fetch transfer. As the holding registers will not have HLOCK set HIGH 
for the instruction fetch, a combinatorial path must exist between the internal lock 
signal and the HLOCK wrapper output. This is generated by ORing the internal lock 
signal with the output of the lock holding register.

Address, control and data output drivers

The outputs from the holding register multiplexers are used to directly drive the address 
and control outputs.

The HBURST output is held at 001, as the core only performs incrementing bursts of 
unspecified length.

The HBUSREQarm output is held HIGH, as the wrapper is always requesting use of 
the bus.

If it is not possible for the wrapper to continuously drive its outputs all of the time 
without clashing with other masters on the bus (for example, the system uses an OR bus 
connection scheme), the outputs must be enabled only when the wrapper is granted 
control of the bus.

This is done using the AddrDrive and DataDrive outputs from the granted state 
machine. AddrDrive is used to enable the address and control outputs (HADDRout, 
HTRANSout, HWRITEout, HSIZE, HPROT and HLOCKarm), and is set during 
the ST_GAIN_GRANT and ST_GRANT states. DataDrive is used to enable the write 
data output (HWDATAout) during the ST_GRANT and ST_LOSE_GRANT states.

The AHB slave outputs are only used during TIC testing mode. HREADYout is driven 
by the HreadyInt signal from the test block. HRESPout is always driven to OKAY, as 
the wrapper will never assert SPLIT, RETRY or ERROR responses.

This section of the block is also used to drive some core inputs. AbortInt (which is 
passed to the A7TWrapCtrl block) is set HIGH when an error response is generated 
from the currently selected slave, and is used to drive the ABORT core input during 
normal operation.

DIN, the core data input, is driven with HWDATAin during TIC testing mode, or with 
HRDATAin when the wrapper is acting as a standard AHB bus master.
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3.7.5 A7TWrapCtrl

This block contains the test wrapper control multiplexor used during TIC testing of the 
core. A simplified diagram of the A7TWrapCtrl block is shown in Figure 3-11.

Figure 3-11 A7TWrapCtrl block system diagram

This block is only used during test mode when the wrapper is acting as an AHB slave, 
and drives the control inputs of the core with the TIC test data. It is separated from the 
main test block (A7TWrapTest) to allow for easier removal of the test wrapper.

When not in test mode the control inputs are driven to their default values (either HIGH 
or LOW), or are driven with wrapper inputs, such as the two interrupt lines and the 
JTAG pins. The AbortInt signal is generated in the A7TWrapMaster block.

If the test wrapper is removed, then this multiplexor will be optimized out during 
synthesis, and the outputs will be driven with their default values. It is also possible to 
remove this block if the test wrapper is not used. The default connections that the 
outputs must be tied to are shown in the A7TWrap HDL file. 

BUSEN, DBE and nENIN are all set to constant values, because they do not need to be 
controlled during normal system use, or during core TIC testing.
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3.7.6 A7TWrapTest

The test interface block is used to allow the wrapper module to act as an AHB slave 
during TIC testing of the core. A simplified diagram of the HDL code is shown in 
Figure 3-12.

Figure 3-12 A7TWrapTest block system diagram

The main parts of this block are:

• the test state machine, which controls the application of the test vectors

• the 28-bit test register, which stores the value of the control inputs during test.

The state diagram for the test state machine is shown in Figure 3-13 on page 3-35.
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Figure 3-13 A7TWrap Test block state machine

The TestEn signal is used to control when test vectors are applied to the core, and 
therefore controls the transitions through the test state machine. TestEn is set HIGH 
when the core is addressed during a valid transfer, when the HTRANS input indicates 
a NONSEQUENTIAL or a SEQUENTIAL transfer.

The seven states are described in:

• ST_INACTIVE on page 3-36

• ST_CTRL_IN on page 3-36

• ST_DATA_IN on page 3-36

• ST_DATA_OUT on page 3-37

• ST_STAT_OUT on page 3-37

• ST_ADDR_OUT on page 3-37

• ST_TURNAROUND on page 3-38.
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• ST_INACTIVE

This state is used when the wrapper is not in test mode, and all test outputs are 
driven to their default levels. The core is clocked as normal in this state.

The ST_INACTIVE state is entered from:

— reset, when the system is initialized

— ST_ADDR_OUT when the end of the test has been reached.

The next state is:

— ST_CTRL_IN when test mode is first entered

— ST_INACTIVE when the test wrapper is not addressed during a valid 
transfer.

• ST_CTRL_IN

This state is used to load the test register with the control data that is currently on 
the write data bus. This then determines the values of the control signals that will 
be applied to the core when it is clocked. The core is not clocked during this state.

The ST_CTRL_IN state is entered from:

— ST_INACTIVE when test mode is first entered

— ST_TURNAROUND when the next control vector is being written onto the 
data bus

— ST_CTRL_IN when test mode has been entered, but the wrapper is not 
currently selected.

The next state is:

— ST_DATA_IN when write data is being applied to the core

— ST_DATA_OUT when read data is being loaded from the core.

• ST_DATA_IN

In this state write data is being applied to the core (the core is performing a read 
transfer). The core is clocked in this state.

The ST_DATA_IN state is entered from:

— ST_CTRL_IN when write data is being applied to the core

— ST_DATA_IN when write data has been applied to the core, but the wrapper 
is not currently selected.

The next state is:

— ST_STAT_OUT when the wrapper is selected for the output status signals 
to be read

— ST_DATA_IN when the wrapper is not currently selected.
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• ST_DATA_OUT

In this state read data is being loaded from the core (the core is performing a write 
transfer). The core is clocked in this state.

The ST_DATA_OUT state is entered from:

— ST_CTRL_IN when read data is being loaded from the core

— ST_DATA_OUT when read data has been loaded from the core, but the 
wrapper is not currently selected.

The next state is:

— ST_STAT_OUT when the wrapper is selected for the output status signals 
to be read

— ST_DATA_OUT when the wrapper is not currently selected.

• ST_STAT_OUT

This state is used to read the output status signals from the core. The core is not 
clocked in this state.

The ST_STAT_OUT state is entered from:

— ST_DATA_OUT when the previous transfer was a data write to the core

— ST_DATA_IN when the previous transfer was a data read from the core

— ST_STAT_OUT when the core output status signals have just been read, but 
the wrapper is not currently selected.

The next state is:

— ST_ADDR_OUT when the wrapper is selected for the address output to be 
read from the core

— ST_STAT_OUT when the wrapper is not currently selected.

• ST_ADDR_OUT

This state is used to read the address output from the core. The core is not clocked 
in this state.

The ST_ADDR_OUT state is only entered from ST_STAT_OUT, when the 
previous transfer was a read of the core status outputs.

The next state is:

— ST_INACTIVE when the wrapper is still selected, indicating the end of the 
test

— ST_TURNAROUND when the wrapper is not selected, indicating the 
turnaround cycle before the new control data is written to the test registers.
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• ST_TURNAROUND

This state is used to allow the external data bus time to turnaround between the 
address read cycle and the control vector write cycle. The core is not clocked in 
this state.

The ST_TURNAROUND state is entered from:

— ST_ADDR_OUT when the wrapper is not selected after the address read 
cycle

— ST_TURNAROUND when a turnaround cycle has been inserted on the 
external data bus, but the wrapper is not currently selected.

The next state is:

— ST_CTRL_IN when the turnaround cycle has been inserted, and the next 
control vector is being written into the test registers

— ST_TURNAROUND when the wrapper is not currently selected.

The 28-bit test register that is loaded during the ST_CTRL_IN state determines 
the control inputs to the core when it is clocked during the ST_DATA_IN or 
ST_DATA_OUT states. Table 3-3 shows the control input bit positions.

Table 3-3 ARM7TDMI control input bit position

Signal Description
Bit
position

Comments

SDOUTBS Boundary scan serial 
output data

27 -

TBE Test bus enable 26 -

APE Address pipeline 
enable

25 -

BL[3:0] Byte latch control 24:21 ANDed with TestClk, and should only 
be valid during data access cycle.

TMS Test mode select 20 -

TDI Test data in 19 -

TCK Test clock 18 ANDed with TestClk.

nTRST Not test reset 17 -

EXTERN1 External input 1 16 -

EXTERN0 External input 0 15 -

DBGRQ Debug request 14 -
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The test data output multiplexor is found in the A7TWrapCtrl block, but is controlled 
by the test outputs of this block. It is used to select between:

• core data output during ST_DATA_OUT

• core address output during ST_ADDR_OUT

• core status outputs during ST_STAT_OUT.

BREAKPT Breakpoint 13 -

DBGEN Debug enable 12 -

ISYNC Synchronous 
interrupts

11 -

BIGEND Big-endian 
configuration

10 -

CPA Coprocessor absent 9 -

CPB Coprocessor busy 8 -

ABE Address bus enable 7 This should normally be set HIGH, as if 
the address bus is tristated (ABE 
LOW), then it will not be possible to 
read address values.

ALE Address latch enable 6 -

DBE Data bus enable 5

nFIQ Not fast interrupt 
request

4 -

nIRQ Not interrupt request 3 -

ABORT Memory abort 2 This should normally be driven when 
HRESP indicates ERROR, and the 
wrapper has control of the AHB data 
bus.

nWAIT Not wait 1 ANDed with TestClk, so that the core 
state can only change during the data 
access cycle.

nRESET Not reset 0 -

Table 3-3 ARM7TDMI control input bit position (continued)

Signal Description
Bit
position

Comments
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The selected output is driven onto the HRDATAout output data bus. 

Table 3-4 shows the bit positions of the status output signals when driven on the data 
bus.

Table 3-4 ARM7TDMI status bit positions

Signal Description
Bit 
position

Comment

BUSDIS Bus disable 31 -

SCREG[3:0] Scan chain register 30:27 These signals are not important 
to the normal functioning of the 
core, but are included in this test 
vector to give a slight 
improvement in fault coverage 
during scan and debug testing.

HIGHZ HIGHZ instruction in 
TAP controller

26 -

nTDOEN Not TDO enable 25 -

DBGRQ1 Internal debug request 24 -

RANGEOUT0 ICEbreaker Rangeout0 23 -

RANGEOUT1 ICEbreaker Rangeout1 22 -

COMMRX Communications 
channel receive

21 -

COMMTX Communications 
channel transmit

20 -

DBGACK Debug acknowledge 19 -

TDO Test data out 18 This value is often tristate (as 
indicated by nTDOEN), so will 
usually be masked out.

nENOUT Not enable output 17 nENOUT is only valid during 
the data access cycle, so 
TestClk is used to clock a 
register that will capture the 
correct state.
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This test interface block may be removed if not required, by removing the 
A7TWrapTest block from the A7TWrap top level wrapper HDL file. It is then necessary 
to tie the outputs which were originally generated from this block to fixed values, and 
these are described in the A7TWrap HDL code.

Removing this block means that the test inputs to the A7TWrapCtrl block will be static, 
allowing the test multiplexors to be removed during synthesis, or manually removed 
from the HDL code.

The AHB slave outputs are only used during TIC testing mode. HREADYout is always 
driven HIGH, as the wrapper will never generate wait states. HRESPout is always 
driven to OKAY, as the wrapper will never assert split, retry or error responses.

HRDATAout is generated according to the current test control signal outputs, and is 
driven to either DOUT from the core, TestData from the test block (which is comprised 
of the core control outputs), or LOW. 

nENOUTI Not enable output 16 nENOUTI is only valid during 
the data access cycle, so 
TestClk is used to clock a 
register that will capture the 
correct state.

TBIT Thumb state 15 -

nCPI Not coprocessor 
instruction

14 -

nM[4:0] Not processor mode 13:9 -

nTRANS Not memory translate 8 -

nEXEC Not executed 7 -

LOCK Locked operation 6 -

MAS[1:0] Memory access size 5:4 -

nOPC Not opcode fetch 3 -

nRW Not read/write 2 -

nMREQ Not memory request 1 -

SEQ Sequential address 0 -

Table 3-4 ARM7TDMI status bit positions (continued)

Signal Description
Bit 
position

Comment
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If an OR bus interconnection scheme is used, then all three of these slave outputs must 
be driven LOW when the test wrapper has been removed or when the wrapper is not in 
test mode, so that they do not clash with other slaves on the bus.

3.7.7 Non-standard design practices

This section contains all the non-standard design practices that are used in the 
ARM7TDMI AHB wrapper.

Signal delays

In some cases delays have been added to some of the wrapper signals. This is necessary 
to ensure that in a zero delay RTL system simulation using a core model that requires 
setup and hold times, no timing violations are created on the core inputs. When a full 
netlist system simulation is run, then these delays are not required, as they will be 
provided by the cell and interconnect delays of the system.

These delays can be found in the A7TWrap top-level HDL file. They are used to create 
hold times on the data input to the core DIN, the external abort input ABORT, the BL 
and nWAIT core inputs, and the two interrupt sources nFIQ and nIRQ.

Transparent latches

Two of the wrapper blocks use transparent latches rather than registers to hold data 
values.

In the A7TWrapMaster block a transparent LOW latch is used to hold the clock enable 
value. This removes the chance of generating a glitch on the clock output, which is 
generated if the system clock is gated with a rising edge registered version of the clock 
enable.

In the A7TWrapBurst block, it may be necessary to use transparent HIGH latches to 
generate the HSIZE and HPROT outputs directly from the core outputs MAS, 
nTRANS and nOPC. The timing of these core outputs in the default system allows the 
use of registers, but if the clock speed of the system relative to the maximum clock 
speed of the core is increased, then latches may be required to sample these core output 
signals if they become valid after the rising edge of the clock.

Gated clock

The enabled clock output to the core is a gated version of the main system clock. This 
method of controlling the timing of the core has been chosen as due to the timing of the 
core and the AHB, it is not possible to use the nWAIT core input. This means that wait 
states must be passed to the core via the clock, so clock enabling and gating must be 
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used. This clock control logic has been constructed to eliminate the generation of 
glitches on the clock output, and only adds a single AND gate into the path between the 
system clock and the core clock.
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Chapter 4 
AHB Modules

This chapter describes the data sheets for the modules that are connected to the 
Advanced High Performance Bus (AHB). It contains the following sections:

• APB bridge on page 4-2

• Arbiter on page 4-14

• Decoder on page 4-25

• Default slave on page 4-29

• Master to slave multiplexor on page 4-32

• Slave to master multiplexor on page 4-36

• Reset controller on page 4-40

• Retry slave on page 4-46

• Static memory interface on page 4-53

• Test interface controller on page 4-64.
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4.1 APB bridge

The AHB to APB bridge is an AHB slave, providing an interface between the high- 
speed AHB and the low-power APB. Read and write transfers on the AHB are converted 
into equivalent transfers on the APB. As the APB is not pipelined, then wait states are 
added during transfers to and from the APB when the AHB is required to wait for the 
APB. Figure 4-1 shows the block diagram of the APB bridge module.

Figure 4-1 Block diagram of bridge module

The main sections of this module are:

• AHB slave bus interface

• APB transfer state machine, which is independent of the device memory map

• APB output signal generation.

To add new APB peripherals, or alter the system memory map, only the address decode 
sections need to be modified.
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4.1.1 Signal descriptions

The APB bridge module signals are described in Table 4-1.

Table 4-1 Signal descriptions for bridge module

Signal Type Direction Description

HCLK Bus clock Input This clock times all bus transfers.

HRESETn Reset Input The bus reset signal is active LOW, and is used to reset the 
system and the bus. 

HADDR[31:0] Address bus Input The 32-bit system address bus.

HTRANS[1:0] Transfer type Input This indicates the type of the current transfer, which can be 
NONSEQUENTIAL, SEQUENTIAL, IDLE or BUSY.

HWRITE Transfer direction Input When HIGH this signal indicates a write transfer, and when 
LOW, a read transfer.

HWDATA[31:0] Write data bus Input The write data bus is used to transfer data from the master to 
the bus slaves during write operations. A minimum data bus 
width of 32 bits is recommended. However, this may easily be 
extended to allow for higher bandwidth operation.

HSELAPBif Slave select Input Each APB slave has its own slave select signal, and this signal 
indicates that the current transfer is intended for the selected 
slave. This signal is a combinatorial decode of the address bus.

HRDATA[31:0] Read data bus Output The read data bus is used to transfer data from bus slaves to the 
bus master during read operations. A minimum data bus width 
of 32 bits is recommended. However, this may easily be 
extended to allow for higher bandwidth operation.

HREADYin
HREADYout

Transfer done Input/output When HIGH the HREADY signal indicates that a transfer has 
finished on the bus. This signal may be driven LOW to extend 
a transfer.

HRESP[1:0] Transfer response Output The transfer response provides additional information on the 
status of a transfer. This module will always generate the 
OKAY response. 

PRDATA[31:0] Peripheral read 
data bus

Input The peripheral read data bus is driven by the selected 
peripheral bus slave during read cycles (when PWRITE is 
LOW).
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Timing diagrams showing the relationship between AHB and APB transfers can be 
found in the APB Specification.

PWDATA[31:0] Peripheral write 
data bus

Output The peripheral write data bus is continuously driven by this 
module, changing during write cycles (when PWRITE is 
HIGH).

PENABLE Peripheral enable Output This enable signal is used to time all accesses on the peripheral 
bus. PENABLE goes HIGH on the second clock rising edge 
of the transfer, and LOW on the third (last) rising clock edge 
of the transfer.

PSELx Peripheral slave 
select

Output There is one of these signals for each APB peripheral present 
in the system. The signal indicates that the slave device is 
selected, and that a data transfer is required. It has the same 
timing as the peripheral address bus. It becomes HIGH at the 
same time as PADDR, but will be set LOW at the end of the 
transfer.

PADDR[31:0] Peripheral 
address bus

Output This is the APB address bus, which may be up to 32 bits wide 
and is used by individual peripherals for decoding register 
accesses to that peripheral. The address becomes valid after 
the first rising edge of the clock at the start of the transfer. If 
there is a following APB transfer, then the address will change 
to the new value, otherwise it will hold its current value until 
the start of the next APB transfer.

PWRITE Peripheral 
transfer 
direction

Output This signal indicates a write to a peripheral when HIGH, and 
a read from a peripheral when LOW.

It has the same timing as the peripheral address bus. 

Table 4-1 Signal descriptions for bridge module (continued)

Signal Type Direction Description
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4.1.2 Peripheral memory map

The APB bridge controls the memory map for the peripherals, and generates a select 
signal for each peripheral. The default system memory map is shown in Figure 4-2.

Figure 4-2 Peripheral memory map

4.1.3 Function and operation of module

The APB bridge responds to transaction requests from the currently granted AHB 
master. The AHB transactions are then converted into APB transactions. The state 
machine, shown in Figure 4-3 on page 4-6, controls:

• the AHB transactions with the HREADYout signal

• the generation of all APB output signals.

The individual PSELx signals are decoded from HADDR, using the state machine to 
enable the outputs while the APB transaction is being performed.

If an undefined location is accessed, operation of the system continues as normal, but 
no peripherals are selected.
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Figure 4-3 State machine for AHB to APB interface

The individual states of the state machine operation are described in the following 
sections:

• ST_IDLE on page 4-7

• ST_READ on page 4-7

• ST_WWAIT on page 4-7

• ST_WRITE on page 4-8

• ST_WRITEP on page 4-8

• ST_RENABLE on page 4-9

• ST_WENABLE on page 4-9

• ST_WENABLEP on page 4-9.
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ST_IDLE 

During this state the APB buses and PWRITE are driven with the last values they had, 
and PSEL and PENABLE lines are driven LOW.

The ST_IDLE state is entered from:

• reset, when the system is initialized

• ST_RENABLE, ST_WENABLE, or ST_IDLE, when there are no peripheral 
transfers to perform.

The next state is:

• ST_READ, for a read transfer, when the AHB contains a valid APB read transfer

• ST_WWAIT, for a write transfer, when the AHB contains a valid APB write 
transfer.

ST_READ

During this state the address is decoded and driven onto PADDR, the relevant PSEL 
line is driven HIGH, and PWRITE is driven LOW. A wait state is always inserted to 
ensure that the data phase of the current AHB transfer does not complete until the APB 
read data has been driven onto HRDATA.

The ST_READ state is entered from ST_IDLE, ST_RENABLE, ST_WENABLE, or 
ST_WENABLEP during a valid read transfer.

The next state will always be ST_RENABLE.

ST_WWAIT

This state is needed due to the pipelined structure of AHB transfers, to allow the AHB 
side of the write transfer to complete so that the write data becomes available on 
HWDATA. The APB write transfer is then started in the next clock cycle.

The ST_WWAIT state is entered from ST_IDLE, ST_RENABLE, or ST_WENABLE, 
during a valid write transfer.

The next state will always be ST_WRITE.
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ST_WRITE

During this state the address is decoded and driven onto PADDR, the relevant PSEL 
line is driven HIGH, and PWRITE is driven HIGH.

A wait state is not inserted, as a single write transfer can complete without affecting the 
AHB.

The ST_WRITE state is entered from:

• ST_WWAIT, when there are no further peripheral transfers to perform

• ST_WENABLEP, when the currently pending peripheral transfer is a write, and 
there are no further transfers to perform.

The next state is:

• ST_WENABLE, when there are no further peripheral transfers to perform

• ST_WENABLEP, when there is one further peripheral write transfer to perform.

ST_WRITEP

During this state the address is decoded and driven onto PADDR, the relevant PSEL 
line is driven HIGH, and PWRITE is driven HIGH. A wait state is always inserted, as 
there must only ever be one pending transfer between the currently performed APB 
transfer and the currently driven AHB transfer. See the write transfer timing diagrams 
in the AMBA Specification (Rev 2.0) for more details.

The ST_WRITEP state is entered from:

• ST_WWAIT, when there is a further peripheral transfer to perform.

• ST_WENABLEP, when the currently pending peripheral transfer is a write, and 
there is a further transfer to perform.

The next state will always be ST_WENABLEP.
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ST_RENABLE

During this state the PENABLE output is driven HIGH, enabling the current APB 
transfer. All other APB outputs remain the same as the previous cycle.

The ST_RENABLE state is always entered from ST_READ.

The next state is: 

• ST_READ, when there is a further peripheral read transfer to perform

• ST_WWAIT, when there is a further peripheral write transfer to perform

• ST_IDLE, when there are no further peripheral transfers to perform.

ST_WENABLE

During this state the PENABLE output is driven HIGH, enabling the current APB 
transfer. All other APB outputs remain the same as the previous cycle.

The ST_WENABLE state is always entered from ST_WRITE.

The next state is: 

• ST_READ, when there is a further peripheral read transfer to perform

• ST_WWAIT, when there is a further peripheral write transfer to perform

• ST_IDLE, when there are no further peripheral transfers to perform.

ST_WENABLEP

A wait state is inserted if the pending transfer is a read because, when a read follows a 
write, an extra wait state must be inserted to allow the write transfer to complete on the 
APB before the read is started.

The ST_WENABLEP state is entered from:

• ST_WRITE, when the currently driven AHB transfer is a peripheral transfer

• ST_WRITEP, when there is a pending peripheral transfer following the current 
write.

The next state is: 

• ST_READ, when the pending transfer is a read

• ST_WRITE, when the pending transfer is a write, and there are no further 
transfers to perform

• ST_WRITEP, when the pending transfer is a write, and there is a further transfer 
to perform.
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4.1.4 System description

This section describes how the HDL code for the APB bridge is set out. A simple system 
block diagram, with information about the main parts of the HDL code, is followed by 
details of the registers, inputs, and outputs used in the module. This should be read in 
conjunction with the HDL code.

Figure 4-4 shows the APB bridge module block diagram.

Figure 4-4 APB bridge module block diagram

The AHB to APB bridge comprises a state machine, which is used to control the 
generation of the APB and AHB output signals, and the address decoding logic which 
is used to generate the APB peripheral select lines.

All registers used in the system are clocked from the rising edge of the system clock 
HCLK, and use the asynchronous reset HRESETn.

Figure 4-5 on page 4-11 shows the APB bridge HDL file.
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Figure 4-5 APB bridge module system diagram
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The main sections in this module are explained in the following paragraphs: 

• Constant definitions

• AHB slave bus interface

• APB transfer state machine

• APB output signal generation on page 4-13

• AHB output signal generation on page 4-13.

Constant definitions

The constant PADDRWIDTH sets the width of the peripheral address bus that is used, 
up to a maximum of 32 bits. This size depends on the size of address that is needed by 
the peripherals in the system. The default value is a 16-bit address bus.

The next two constants define the state machine states, and the top four address bits that 
are used to decode the peripheral select outputs. If the peripheral address map is 
changed from the default, then these constants must be modified to match the changes.

AHB slave bus interface

This module uses the standard AHB slave bus interface, which comprises:

• the valid transfer detection logic which is used to determine when a valid transfer 
is accessing the slave

• the address and control registers, which are used to store the information from the 
address phase of the transfer for use in the data phase.

Due to the different AHB to APB timing of read and write transfers, either the current 
or the previous address input value is needed to correctly generate the APB transfer. A 
multiplexor is therefore used to select between the current address input or the 
registered address, for read and write transfers respectively. 

APB transfer state machine

The transfer state machine is used to control the application of APB transfers based on 
the AHB inputs. The state diagram in Figure 4-3 on page 4-6 shows the operation of the 
state machine, which is controlled by its current state and the AHB slave interface 
signals.
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APB output signal generation

The generation of all APB output signals is based on the status of the transfer state 
machine:

• PWDATA is a registered version of the HWDATA input, which is only enabled 
during a write transfer. As the bridge is the only bus master on the APB, then it 
can drive PWDATA continuously.

• PENABLE is only set HIGH during one of three enable states, in the last cycle 
of an APB transfer. A register is used to generate this output from the next state 
of the transfer state machine.

• The PSELx outputs are decoded from the current transfer address. They are only 
valid during the read, write and enable states, and are all driven LOW at all other 
times so that no peripherals are selected when no transfers are being performed.

• PADDR is a registered version of the currently selected address input (HADDR 
or the address register) and only changes when the read and write states are 
entered at the start of the APB transfer.

• PWRITE is set HIGH during a write transfer, and only changes when a new APB 
transfer is started. A register is used to generate this output from the next state of 
the transfer state machine.

• The APBen signal is used as an enable on the PSEL, PWRITE and PADDR 
output registers, ensuring that these signals only change when a new APB transfer 
is started, when the next state is ST_READ, ST_WRITE, or ST_WRITEP.

AHB output signal generation

A standard AHB slave interface consists of the following three outputs:

• HRDATA is directly driven with the current value of PRDATA. APB slaves only 
drive read data during the enable phase of the APB transfer, with PRDATA set 
LOW at all other times, so bus clash is avoided on HRDATA (assuming OR bus 
connections for both the AHB and APB read data buses).

• HREADYout is driven with a registered signal to improve the output timing. Wait 
states are inserted by the APB bridge during the ST_READ and ST_WRITEP 
states, and during the ST_WENABLEP state when the next transfer to be 
performed is a read.

• HRESP is continuously held LOW, as the APB bridge does not generate SPLIT, 
RETRY or ERROR responses.
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4.2 Arbiter

The AMBA bus specification is a multi-master bus standard. As a result, a bus arbiter 
is needed to ensure that only one bus master has access to the bus at any particular point 
in time. Each bus master requests control of the bus, and the arbiter decides which has 
the highest priority and issues a grant signal accordingly.

Every system must have a default bus master which is granted use of the bus when no 
other bus master requires control. Figure 4-6 shows the arbiter block diagram.

Figure 4-6 Arbiter block diagram

The default arbiter included in the EASY design can support up to four bus masters, 
although only two are used. It is expandable up to a maximum of fifteen bus masters, 
excluding the default master. 

The main sections of this module are:

• the split transfer control logic

• the locked transfer control logic

• the arbitration scheme

• the grant output signal generation.
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4.2.1 Signal descriptions

Table 4-2 contains a list of signals used by the arbiter.

Table 4-2 Signal descriptions

Signal Type Direction Description

HCLK Bus clock Input This clock times all bus transfers.

HRESETn Reset Input The bus reset signal is active LOW and is used to reset the 
system and the bus.

HTRANS[1:0] Transfer type Input Indicates the type of the current transfer, which can be 
NONSEQUENTIAL, SEQUENTIAL or BUSY.

HBURST[2:0] Burst type Input Indicates if the transfer forms part of a burst. Both 4-beat and 
8-beat bursts are supported and the burst can be either 
incrementing or wrapping.

HREADY Transfer done Input When HIGH the HREADY signal indicates that a transfer 
has finished on the bus. This signal may be driven LOW to 
extend a transfer.

HRESP Transfer response Input The transfer response provides additional information on the 
status of a transfer. This input is used to detect Split or Retry 
transfers.

HBUSREQx Bus request Input A signal from the bus master to the bus arbiter which 
indicates that the master requires the bus.

HLOCKarm Locked transfers Input When HIGH this signal indicates that the master requires 
locked access to the bus and no other master should be 
granted the bus until this signal is LOW.

HLOCKx Locked transfers Input Lock signal from the bus master.

HSPLITx[15:0] Split completion 
request

Input The 16-bit split bus is used by a split-capable slave to 
indicate to the arbiter which bus masters should be allowed 
to re-attempt a split transaction. Each bit of this split bus 
corresponds to a single bus master. 

Pause Pause mode Input This signal allows the processor system to enter a low-power, 
wait for interrupt state, when the system does not require the 
processors to be active.
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4.2.2 Function and operation of arbiter module

The arbiter is used to ensure that, at any point in time, only one master has access to the 
bus. The arbiter performs this function by observing all of the bus master requests to use 
the bus, and deciding which is currently the highest priority. The arbiter also receives 
requests from slaves that wish to complete split transfers, which are used to modify the 
priority of the master request inputs.

The arbiter has a standard interface to all bus masters and split-capable slaves in the 
system.

A bus master may request the bus during any cycle by setting its HBUSREQ output 
HIGH. This is then sampled by the arbiter on the rising edge of the clock, and passed 
through the priority algorithm to decide which master will have access to the bus during 
the next cycle. The HGRANT outputs then change to indicate which master currently 
is granted control of the bus.

The HLOCK signals may be used to ensure that, during an indivisible transfer, the 
current grant outputs do not change. HLOCK must be asserted at least one cycle before 
the locked transfer to prevent the arbiter from changing the grant signals.

The following arbitration priorities (from highest to lowest) are implemented in the 
default system:

• TIC (highest)

• bus master 3

• bus master 4

• ARM processor (lowest and default).

HGRANTx Bus grant Output This signal indicates that the bus master is currently the 
highest priority master. Ownership of the address/control 
signals changes at the end of a transfer when HREADY is 
HIGH, so the master gets access to the bus when both 
HREADY and HGRANTx are HIGH.

HMASTER[3:0] Master number Output These signals from the arbiter indicate which bus master is 
currently performing a transfer. This is used by slaves which 
support split transfers to determine which bus master is 
attempting an access.

HMASTLOCK Locked sequence Output Indicates that the current master is performing a locked 
sequence of transfers. This signal has the same timing as the 
HMASTER signals.

Table 4-2 Signal descriptions (continued)

Signal Type Direction Description
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During split transfers the above priorities will be changed to allow other masters access 
to the bus. When a split transfer is indicated by a split-capable slave that cannot 
complete the current transfer immediately, the bus request input for the current master 
is masked out. This has the effect of changing the priorities of the bus request inputs, 
allowing a lower priority master to be granted control of the bus. When the slave is ready 
to complete the split transfer, it drives the HSPLIT bus with the number of the bus 
master that was performing the transfer. This number was sampled by the slave, from 
the HMASTER arbiter output, when it started the split transfer. The arbiter then uses 
this input to unmask the bus request of the master, allowing it to be regranted the bus so 
that the transfer can complete.

During reset, and when no other masters are requesting control of the bus, the ARM 
core is selected as the currently granted master. This minimizes the delay required for 
the core to perform a transfer on the bus, as it does not have to wait to be granted control 
of the bus before it can start a new transfer.

The system also requires a default master, which is selected when no masters are 
granted control of the bus, for example, when all system bus masters are waiting for split 
transfers to complete. The default master performs IDLE transfers while it is granted 
control of the bus.

The default master is also selected during pause mode when the Pause input is set 
HIGH, indicating that the system has entered a low-power mode, and no transfers will 
be started on the bus.

The bus grant outputs may change while HREADY is LOW, but the newly granted 
master may only drive the bus when the current transfer has completed. This requires 
that bus masters only drive the bus after they detect that both their HGRANT and 
HREADY inputs are set HIGH.
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4.2.3 System description

This section describes how the HDL code for the system arbiter is set out. A simple 
system block diagram, with information about the main parts of the HDL code, is 
followed by details of the registers, inputs, and outputs used in the module. This part 
should be read in conjunction with the HDL code.

Figure 4-7 Arbiter module block diagram

The arbiter comprises:

• split grant masking logic

• locked transfer control

• arbitration scheme logic

• HGRANT output drivers

• HMASTER output generation.

All registers used in the system are clocked from the rising edge of the system clock 
HCLK, and use the asynchronous reset HRESETn.

Figure 4-8 on page 4-19 shows the arbiter HDL file.
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Figure 4-8 Arbiter module system diagram

The main sections in this module are explained in:

• Split grant masking on page 4-20

• Locked state machine on page 4-20

• Arbitration scheme on page 4-24

• Output registers on page 4-24.
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Split grant masking

The split grant masking logic is comprised of a set of registers which hold the current 
mask value, and a combinational logic that is used to control the setting of the registers. 

When a split transfer is detected, a single bit in the mask register is cleared, which 
blocks the bus request input of the split master from reaching the arbitration logic. This 
allows lower priority masters access, if they are requesting use of the bus. A decoded 
16-bit version of the previous 4-bit HMASTER output is used to determine which bit 
of the mask to clear, when a split response is detected.

When a split transfer is resumed, the 16-bit HSPLIT input is used to set the bit in the 
mask register, allowing the bus request line to be used to generate the bus grant outputs. 
The split master will then be regranted the bus as normal and will be able to complete 
the split transfer.

The encoding of the HSPLIT input allows multiple bits of the grant mask to be set at 
the same time.

The grant mask value is ANDed with the HGRANTx inputs to generate the internal 
Hmaskx signals, which are then fed to the arbitration logic.

Locked state machine

A state machine is used to control the operation of the arbiter during a locked transfer.

First, the HLOCKx inputs from the system bus masters are masked with the current 
grant outputs, generating an internal lock signal. This shows when the currently granted 
master is requesting a locked transfer, and ignores the lock status of the other system 
bus masters. This signal is then passed to the locked state machine, which is shown in 
Figure 4-9 on page 4-21.
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Figure 4-9 Locked state machine

The four states are described in:

• ST_NORMAL on page 4-22

• ST_LOCKED on page 4-22

• ST_LAST_LOCK on page 4-23

• ST_SPLIT on page 4-23.
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HRESP != SPLIT)
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• ST_NORMAL

During this state, the arbiter is operating normally and no locked transfers are 
being performed. The HMASTLOCK output is set LOW.

The ST_NORMAL state is entered from:

— reset, when the system is initialized

— ST_LAST_LOCK, when the data phase of the last locked transfer has 
completed

— ST_NORMAL, when no locked transfers are being performed.

The next state is:

— ST_LOCKED, when the currently granted master sets its HLOCK output 
HIGH

— ST_NORMAL, when no locked transfers are being performed.

• ST_LOCKED

During this state, the currently performed transfer is locked, and the grant outputs 
will not change. The HMASTLOCK output is set HIGH to indicate that the 
current transfer is locked.

The ST_LOCKED state is entered from:

— ST_NORMAL, when the currently granted master sets its HLOCK output 
HIGH

— ST_SPLIT, when a split locked transfer has been restarted

— ST_LOCKED, when there is another locked transfer to perform

— ST_LAST_LOCK, during the second locked transfer in a 
locked-unlocked-locked sequence, or when the last locked transfer 
(HLOCK is LOW) has received a RETRY response.

The next state is:

— ST_SPLIT, when the current locked transfer receives a SPLIT response

— ST_LAST_LOCK, when the currently granted master sets its HLOCK 
output LOW

— ST_LOCKED, when there is another locked transfer to perform.
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• ST_LAST_LOCK

This state is used to add an extra locked transfer after the currently granted master 
has set its HLOCK output LOW, ensuring that the grant outputs do not change 
until the data phase of the last locked transfer has completed, even if it has 
received a SPLIT or RETRY response. The HMASTLOCK output is set LOW.

The ST_LAST_LOCK state is always entered from ST_LOCKED when the 
currently granted master sets its HLOCK output LOW.

The next state is:

— ST_NORMAL, when the data phase of the last locked transfer has 
completed

— ST_LOCKED, during the second locked transfer in a 
locked-unlocked-locked sequence, or when the last locked transfer 
(HLOCK is LOW) has received a RETRY response

— ST_SPLIT, when the last locked transfer receives a SPLIT response

— ST_LAST_LOCK, when the bus is waited and the last locked transfer has 
not received a SPLIT response.

• ST_SPLIT

This state is used when a locked transfer receives a SPLIT response. As the 
transfer is locked, no new masters may be granted control of the bus, but as it has 
been split the currently granted master may not have control of the bus until the 
slave indicates that it is ready to resume the transfer. So, the default master is 
granted while in this state. The HMASTLOCK output is set LOW.

The ST_SPLIT state is entered from:

— ST_LOCKED, when a locked transfer receives a SPLIT response

— ST_LAST_LOCK, when the last locked transfer receives a SPLIT response

— ST_SPLIT, when the slave is not ready to resume the transfer.

The next state is:

— ST_LOCKED, when the split locked transfer has been restarted

— ST_SPLIT, when the slave is not ready to resume the transfer.
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Arbitration scheme

This section of the code defines the arbitration scheme that is used by the system, the 
default being a priority-based system. The order that the inputs are checked in the if 
statement defines the priority order of the system. This section should be modified if the 
arbitration scheme of the system is to be changed from the default. The HgrantxNew 
signals are generated by this section, which are then registered to generate the 
HGRANT outputs.

Output registers

The HGRANT registers sample the outputs from the arbitration scheme logic when the 
HgrantEn enable signal is set HIGH. This is used to control the loading of the grant 
output registers during locked, split and burst transfers.

The grant outputs do not change:

• during locked transfers

• during the first n-1 transfers of a fixed length burst of n transfers.

The grant outputs only change:

• when the system is not performing a locked transfer

• when a locked transfer receives a SPLIT response, to allow the default master to 
be selected

• during a locked split transfer, when the slave indicates that the transfer may 
resume, to allow the locked master to be selected

• during the last transfer of a fixed-length burst.

HMASTER is generated from the current HGRANT outputs, encoding the 16 possible 
master grant signals into a 4-bit number. This is registered, and is valid during the 
address phase of the transfer it relates to. A previous value is also generated, which is 
used to control the operation of the system during split transfers, and is valid during the 
data phase of the transfer.

HMASTLOCK is directly generated from the current state of the locked state machine, 
and is valid during the address phase of the locked transfer.
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4.3 Decoder

The system decoder is used to decode the address bus and generate select lines to each 
of the system bus slaves, indicating that a read or write access to that slave is required. 
Figure 4-10 shows the decoder module interface block diagram.

Figure 4-10 Decoder module interface diagram

This module only contains a combinatorial decode of the system address bus, using the 
Remap input to control the selection of the internal and external memory.

4.3.1 Signal description

Table 4-3 shows the signal descriptions for the decoder module

.

Decoder

HRESETn

HADDR HSELx

Remap

Table 4-3 Decoder module signal descriptions

Signal Type Direction Description

HRESETn Reset Input The bus reset signal is active LOW, and is used to reset the 
system and the bus.

HADDR[31:0] Address bus Input The 32-bit system address bus.

Remap Reset memory map Input When LOW, the internal memory is not part of the system 
memory map, and external memory is mapped from address 
0x0000 0000 which normally contains the system startup 
code. In normal operation this signal is HIGH, allowing use 
of the internal memory.

HSELx Slave select Output Slave select to each system bus slave.
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4.3.2 System memory map

The decoder controls the memory map of the system, and generates a slave select signal 
for each memory region.

The Remap signal is used to provide a different memory map at reset, when ROM is 
required at address 0x0000 0000, and during normal operation, when internal RAM may 
be used at address 0x0000 0000.

The Remap signal is typically provided by a remap and pause peripheral, which drives 
Remap LOW at reset. The signal is driven HIGH only after a particular address in the 
remap and pause peripheral is accessed.

Figure 4-11 shows both the normal and reset memory maps.

Figure 4-11 System memory map
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Normal Memory Map
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0x0000 0000
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0x8000 0000

0xC000 0000
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Address Reset Memory Map
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Advanced Peripheral Bus

0x3000 0000

0x4000 0000
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Advanced Peripheral Bus
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4.3.3 Function and operation of the decoder module

The decoder continuously performs a combinatorial decode of the system address bus, 
updating the slave select outputs whenever the address or system Remap inputs change 
value.

The default slave is used to control the operation of the system when a transfer is made 
to an undefined area of memory, and is selected when an invalid address is generated.

4.3.4 System description

The following paragraphs give a description of how the HDL code for the decoder is set 
out. A simple system block diagram, with information about the main parts of the HDL 
code, is followed by details of the inputs, and outputs used in the module. This part 
should be read together with the HDL code.

Figure 4-12 shows the decoder module block diagram.

Figure 4-12 Decoder module block diagram

The decoder comprises a simple block of combinational logic, which is used to decode 
the address and system remap inputs to directly generate the slave select outputs.

Figure 4-13 shows the decoder HDL file.

Figure 4-13 Decoder module system diagram

The whole of the decode logic is contained in one if statement. During reset, the default 
slave is selected, and at all other times, the HADDR and Remap inputs are decoded and 
used to generate the HSELx outputs.

The minimum number of address bits needed to select a slave are used, keeping the 
combinational logic as small as possible.

Decoder module

Slave select
output drivers

Address
decode

HADDR

Remap

HSELx

HRESETn
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This section of code is used to define the memory map for the whole system, and if 
modules are added, removed, or moved to new locations, the code must be modified to 
match these system changes, ensuring that the correct slave is selected for each address 
used.
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4.4 Default slave

The default slave is used to respond to transfers that are made to undefined regions of 
memory, where no AHB system slaves are mapped. A zero wait OKAY response is 
made to IDLE or BUSY transfers, with an ERROR response being generated if a 
NONSEQUENTIAL or SEQUENTIAL transfer is performed. Figure 4-14 shows the 
default slave module interface diagram.

Figure 4-14 Default slave module interface diagram

This module contains a standard AHB slave response interface, using the HREADY 
and HRESP outputs to respond to transfers.

4.4.1 Signal descriptions

Table 4-4 shows the signal descriptions for the default slave module

Default
slave

HRESETn

HTRANS

HREADY

HSELDefault

HCLK

HRESP

Table 4-4 Default slave module signal descriptions

Signal Type Direction Description

HCLK Bus clock Input This clock times all bus transfers.

HRESETn Reset Input The bus reset signal is active LOW, and is used to reset the 
system and the bus.

HTRANS[1:0] Transfer type Input Indicated the type of the current transfer, which can be 
NONSEQUENTIAL, SEQUENTIAL, IDLE or BUSY.
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.

4.4.2 Function and operation of module

The default slave only responds to transfers when it is selected by the decoder with the 
HSEL input when an undefined region of memory is accessed. The response generated 
depends on the type of transfer that is performed.

If an IDLE or BUSY transfer is performed, then the default slave must provide a zero 
wait OKAY response as the master will not expect to receive any data back from these 
transfers.

If a NONSEQUENTIAL or SEQUENTIAL transfer is performed, then an ERROR 
response is generated, as there is nothing at the current location that can be written to or 
read from. The standard two-cycle ERROR response is provided with one wait state.

4.4.3 System description

This section describes how the HDL code for the default slave is set out. A simple 
system block diagram, with information about the main parts of the HDL code, is 
followed by details of the registers, inputs, and outputs used in the module. This should 
be read together with the HDL code.

HSEL Default slave select Input Each AHB slave has its own slave select signal and this signal 
indicates that the current transfer is intended for the selected 
slave. This signal is simply a combinatorial decode of the 
address bus.

HREADYout Transfer done Output When HIGH the HREADY signal indicates that a transfer 
has finished on the bus. This signal is only driven LOW to 
generate a two cycle error response.

HRESP[1:0] Transfer response Output The transfer response provides additional information on the 
status of a transfer. This module will only generate the OKAY 
and ERROR responses.

Table 4-4 Default slave module signal descriptions (continued)

Signal Type Direction Description
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Figure 4-15 shows the default slave module block diagram.

Figure 4-15 Default slave module block diagram

The default slave comprises the invalid transfer detection logic and two simple sets of 
combinational logic and registers, which are used to generate the HREADY and 
HRESP outputs.

Figure 4-16 shows the decoder HDL file.

Figure 4-16 Default slave module system diagram

The internal signal Invalid is set HIGH during the final cycle of the address phase of an 
invalid transfer (when HREADYin is set HIGH, a NONSEQUENTIAL or 
SEQUENTIAL transfer is performed, and the default slave is selected), and is set LOW 
at all other times.

This signal is then passed to the response generation logic, which is split into two 
sections for the HREADYout and HRESP outputs. This logic generates the response 
values for the output registers. HREADYout is set LOW during the first cycle of the 
data phase, as is required for the two cycle ERROR response, and HRESP is set to 
ERROR for the two-cycles of the data phase.

At all other times, the default slave generates a zero wait OKAY response.

Default slave module
AHB slave

output drivers
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transfer
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HSELDefault
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Next
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4.5 Master to slave multiplexor

The master to slave multiplexor is used to connect all of the system bus masters to the 
bus slaves, using the current HMASTER number to select the bus master outputs to 
use. It is also used to generate the default master outputs when no other masters are 
selected. Figure 4-17 shows an interface diagram of the master to slave multiplexor 
module.

Figure 4-17 Master to slave multiplexor module interface diagram

The module has the address, control and data outputs of all system bus masters as its 
inputs, and has a single set of these signals as its outputs, which are connected to the 
inputs of all system slaves. When masters are added to, or removed from the system, the 
input connections to this module must be altered to account for the changes.

MuxM2S
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HWRITE
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HADDR
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HPROT

HWDATA

HADDRx
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HTRANSx
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4.5.1 Signal descriptions

Table 4-5 lists signal descriptions for the master to slave multiplexor module.

Table 4-5 Master to slave multiplexor signal descriptions

Signal Type Direction Description

HCLK Bus clock Input This clock times all bus transfers.

HRESETn Reset Input The bus reset signal is active LOW, and is used to reset the 
system and the bus.

HMASTER[3:0] Master number Input These signals from the arbiter indicate which bus master is 
currently performing a transfer, and is used by slaves which 
support split transfers to determine which master is attempting 
an access.

HREADY Transfer done Input When HIGH the HREADY signal indicates that a transfer has 
finished on the bus. This signal may be driven LOW to extend 
a transfer.

HADDRx[31:0]

HADDR[31:0]

Address bus Input/ 
output 

The 32-bit system address bus.

HTRANSx[1:0]
HTRANS[1:0]

Transfer type Input/ 
output

These signals indicate the type of the current transfer, which 
can be NONSEQUENTIAL, SEQUENTIAL, IDLE or BUSY.

HWRITEx

HWRITE

Transfer direction Input/ 
output

When HIGH this signal indicates a write transfer, and when 
LOW, a read transfer.

HSIZEx[2:0]

HSIZE[2:0]

Transfer size Input/ 
output

These signals indicate the size of the transfer, which is 
typically byte (8-bit), halfword (16-bit) or word (32-bit). The 
protocol allows for larger transfer sizes up to a maximum of 
1024 bits.

HBURSTx[2:0]

HBURST[2:0]

Burst type Input/ 
output

These signals indicate if the transfer forms part of a burst. Both 
four beat and eight beat bursts are supported and the burst may 
be either incrementing or wrapping.

HPROTx[3:0]

HPROT[3:0]

Protection control Input/ 
output

The protection control signals provide additional information 
about a bus access and are primarily intended for use by any 
module that wishes to implement some level of protection.

HWDATAx[31:0]
HWDATA[31:0]

Write data bus Input/ 
output

The write data bus is used to transfer data from the master to 
the bus slaves during write operations. A minimum data bus 
width of 32 bits is recommended, however this can easily be 
extended to allow for higher bandwidth operation.
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4.5.2 Function and operation of module

The master to slave multiplexor controls the routing of address, control and data signals 
from the system bus masters to the bus slaves. The arbiter determines which master 
currently has control of the bus, and the multiplexor is used to connect the outputs of 
the selected master to the inputs of the bus slaves.

The address and control signals are switched during the address phase of a transfer 
using the HMASTER arbiter output.

The write data signals are switched during the data phase of a transfer using a registered 
version of HMASTER.

When no masters are selected, the default master signals are selected and the module 
drives all outputs LOW, performing IDLE transfers until another master is granted 
control of the bus.

4.5.3 System description

This section describes how the HDL code for the master to slave multiplexor is set out. 
A simple system block diagram, with information about the main parts of the HDL 
code, is followed by details of the registers, inputs, and outputs used in the module. This 
should be read together with the HDL code.

Figure 4-18 shows the master to slave module block diagram.

Figure 4-18 Master to slave multiplexor module block diagram

The master to slave multiplexor module comprises a set of multiplexors for each 
address, control and data output from the system bus masters. A set of registers is also 
used to hold the previous value of the HMASTER input.
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4-34 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A



AHB Modules 
Figure 4-19 shows the master to slave multiplexor HDL file.

Figure 4-19 Master to slave multiplexor module system diagram

The multiplexor for each master signal has an input for each system bus master, and a 
ground connection for the default master signal values. The master number is decoded, 
and used to select the correct input signal.

The multiplexors are constructed using case statements, ensuring that there is no 
priority to the master selection logic.

An HREADY enabled register is used to hold the previous value of HMASTER, 
because the HWDATA master outputs are always running one cycle behind the other 
address and control signals, due to the pipelined bus. The enable is used to ensure that 
the value is only updated when the previous transfer has completed.
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4.6 Slave to master multiplexor

The slave to master multiplexor is used to connect the read data and response signals of 
the system bus slaves to the bus masters, using the current decoder HSELx outputs to 
select the bus slave outputs to use. Figure 4-20 shows the slave to master multiplexor 
module.

Figure 4-20 Slave to master multiplexor module interface diagram

This module has the read data and response outputs of all system bus slaves as its inputs, 
and has a single set of these signals as its outputs, which are connected to the inputs of 
all system masters. When slaves are added to the system or removed, the input 
connections to this module must be altered to account for the changes.

4.6.1 Signal descriptions

Table 4-6 shows the signal descriptions for the slave to master multiplexor module.

MuxS2M

HRESETn

HREADY
HSELx

HCLK

HRDATA

HRESP
HREADYx

HRDATAx

HRESPx

Table 4-6 Slave to master multiplexor signal descriptions

Signal Type Direction Description

HCLK Bus clock Input This clock times all bus transfers.

HRESETn Reset Input The bus reset signal is active LOW, and is used to reset the 
system and the bus.

HSELx Slave select Input Each AHB slave has its own slave select signal and this 
signal indicates that the current transfer is intended for the 
selected slave.
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4.6.2 Function and operation of module

The slave to master multiplexor controls the routing of read data and response signals 
from the system bus slaves to the bus masters. The decoder determines which is the 
currently selected slave, and the multiplexor is used to connect the outputs of the 
selected slave to the inputs of the bus masters.

The read data and response signals are switched during the data phase of a transfer, so 
a registered version of the slave select signals is used.

The default slave inputs are used when no other slaves are selected.

4.6.3 System description

This section describes how the HDL code for the slave to master multiplexor is set out. 
A simple system block diagram, with information about the main parts of the HDL 
code, is followed by details of the registers, inputs, and outputs used in the module. This 
part should be read together with the HDL code.

Figure 4-21 on page 4-38 shows the slave to master module block diagram.

HRDATAx[31:0]
HRDATA[31:0]

Read data bus Input/ 
output

The read data bus is used to transfer data from bus slaves to 
the bus master during read operations.

HREADYx

HREADY

Transfer done Input/ 
output

When HIGH the HREADY signal indicates that a transfer 
has finished on the bus. This signal may be driven LOW to 
extend a transfer.

HRESPx[1:0]

HRESP[1:0]

Transfer response Input/ 
output

The transfer response provides additional information on the 
status of a transfer.

Table 4-6 Slave to master multiplexor signal descriptions (continued)

Signal Type Direction Description
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Figure 4-21 Slave to master multiplexor module block diagram

The slave to master multiplexor module comprises a set of registers to store the previous 
slave select values, and a set of multiplexors for the read data and slave response signals.

Figure 4-22 shows the slave to master multiplexor HDL file.

Figure 4-22 Slave to master multiplexor module system diagram
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To allow the use of case statements for the multiplexors, the HSEL slave select inputs 
are combined to create a multi-bit bus signal. This bus is then registered, and used as the 
select control on the three multiplexors, one each for the read data and two response 
signals. The select register is enabled with the internal HREADY signal, ensuring that 
the outputs only change when the previous transfer has finished.

As the default slave does not generate any read data, one input to the HRDATA 
multiplexor is tied LOW, so that when the default slave is selected, no read data appears 
on HRDATA.
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 4-39



AHB Modules 
4.7 Reset controller

The reset controller is used to generate the system reset signal from an external reset 
input as shown in Figure 4-23.

Figure 4-23 Reset controller module interface diagram

This module is based around a state machine, which is used to detect the external reset 
being asserted, and is used to generate the system reset output.

4.7.1 Signal descriptions

Table 4-7 shows the signal descriptions for the reset controller.

The source of the POReset signal is implementation-dependent.

4.7.2 Function and operation of module

HRESETn is asserted LOW, and is used to indicate a reset condition where all bus and 
system states should be initialized. This signal is suitable as an asynchronous clear into 
state machine flip-flops, and for resetting any peripheral registers that require 
initialization.

During reset, the arbiter grants the bus to the default reset bus master, and the decoder 
selects the default slave.

Reset
controller

HCLK

POReset
HRESETn

Table 4-7 Reset controller signal descriptions

Signal Type Direction Description

HCLK Bus clock Input This clock times all bus transfers. 

POReset Power-on reset Input Power-on reset input. This active LOW signal causes a cold reset 
when LOW. May be asserted asynchronously to HCLK.

HRESETn Reset Output The bus reset signal is active LOW, and is used to reset the system 
and the bus.
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Assertion (the falling edge) of HRESETn is asynchronous to HCLK. De-assertion (the 
rising edge) of HRESETn is synchronous to the rising edge of HCLK. HRESETn is 
only asserted during a power-on reset condition, caused by the assertion of the POReset 
signal. The POReset input is an asynchronous input, so a synchronizing register is 
required to eliminate propagation of metastable values. Figure 4-24 shows the operation 
of the HRESETn signal with respect to an example POReset input signal and the 
system clock.

Figure 4-24 Reset signal timing

The reset controller contains a state machine running from the rising edge of HCLK. 
The HRESETn signal directly reflects a single bit of the current state, minimizing the 
combinational logic applied to the reset output.

HRESETn

POReset

HCLK
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Figure 4-25 shows the state machine for the reset controller.

Figure 4-25 State machine for reset controller

The four states are described in:

• ST_POR on page 4-43

• ST_INI1 on page 4-43

• ST_INI2 on page 4-43

• ST_RUN on page 4-43.
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ST_RUN

HRESETn = 1
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POReset = 0
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ST_POR

During this state, the system is initialized when the reset line is asserted. This state 
should be preserved by a power on reset cell or controller, until the system bus clock is 
running and stable, and the system power supply has reached its correct operating 
voltage (within its allowed limits).

The ST_POR state is entered from:

• reset, when the external reset input is first asserted LOW

• ST_POR when the external reset input is still asserted and the system clock is 
running.

The next state is:

• ST_INI1 when the external reset input is de-asserted

• ST_POR when the external reset input is still asserted and the system clock is 
running.

If there is a clock valid signal in the system, this should be used to prevent the ST_POR 
state from being exited until the clock is valid.

ST_INI1

This state is used to hold the HRESETn output LOW for an extra cycle after the 
external reset is de-asserted.

This state is always entered from ST_POR on the first rising edge of the clock that the 
external reset is HIGH.

The next state is always ST_INI2.

ST_INI2

This state is used in the same manner as ST_INI1. 

This state is always entered from ST_INI1.

The next state is always ST_RUN.

ST_RUN

This state is used during normal system operation when the HRESETn output is set 
HIGH.

This state is held until the external reset is re-asserted.
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The default reset controller implementation asserts HRESETn for two cycles after the 
external reset is de-asserted, but this may be altered by adding extra ST_INI states to the 
state machine, so that it takes more cycles to reach the final ST_RUN state.

4.7.3 System description

The following paragraphs give a description of how the HDL code for the reset 
controller is set out. A simple system block diagram, with information about the main 
parts of the HDL code, is followed by details of the registers, inputs, and outputs used 
in the module. This part should be read together with the HDL code.

Figure 4-26 shows the reset controller module block diagram.

Figure 4-26 Reset controller module block diagram

The reset controller is comprised of a register used to synchronize the external reset 
input, and a state machine used to control the generation of the system reset output. 

All registers used in the system are clocked from the rising edge of the system clock 
HCLK. 

Figure 4-27 shows the reset controller HDL file.

Figure 4-27 Reset controller module system diagram
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The main sections in this module are explained in the following paragraphs:

• Asynchronous reset input synchronization

• Reset state machine

• Reset output generation.

Asynchronous reset input synchronization

The asynchronous external reset is first passed through a rising-edge-triggered register. 
This is to avoid metastability, due to the arrival time of the input relative to the system 
clock when used in the state machine.

Reset state machine

The state machine shown in Figure 4-25 on page 4-42 is used to control the generation 
of the system reset output, based on the status of the synchronized external reset input 
and the system clock.

The number of cycles the module holds HRESETn asserted after the de-assertion of 
the external reset may be changed by altering the number of initialization states between 
the first and last states.

Reset output generation

The reset output is generated directly from bit 0 of the state machine registers, gated 
with the external reset input. This allows asynchronous assertion of the reset output 
when the external reset input is set LOW and the system clock is not running, but 
ensures that de-assertion is synchronous to the rising edge of the clock.
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4.8 Retry slave

The retry slave is a rudimentary module that is used to demonstrate how to build an 
AHB slave. The example contains very little functionality and consists of four 32-bit 
wide registers. The slave generates various logic functions of these registers, which can 
be read from different locations.

One of the most important features of the slave is that the response that it gives can be 
varied according to the high order address lines. Figure 4-28 shows the retry slave block 
diagram.

Figure 4-28 Retry slave block diagram

The main sections of this module are:

• the AHB slave bus interface

• the internal read/write registers

• the wait state and retry cycle generation logic

• the read data value generation.
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4.8.1 Signal descriptions

Table 4-8 contains a list of signals used by the retry slave.

Table 4-8 Signal descriptions

Signal Type Direction Description

HCLK Bus clock Input This clock times all bus transfers.

HRESETn Reset Input The bus reset signal is active LOW, and is used to reset the 
system and the bus. 

HADDR[31:0] Address bus Input The 32-bit system address bus.

HTRANS[1:0] Transfer type Input Indicated the type of the current transfer, which can be 
NONSEQUENTIAL, SEQUENTIAL, IDLE or BUSY.

HWRITE Transfer direction Input When HIGH this signal indicates a write transfer, and when 
LOW, a read transfer.

HWDATA[31:0] Write data bus Input The write data bus is used to transfer data from the master to 
the bus slaves during write operations. A minimum data bus 
width of 32 bits is recommended, however, this may easily be 
extended to allow for higher bandwidth operation.

HSELRetry Slave select Input Each AHB slave has its own slave select signal, and this 
signal indicates that the current transfer is intended for the 
selected slave. This signal is a combinatorial decode of the 
address bus.

HRDATA[31:0] Read data bus Output The read data bus is used to transfer data from bus slaves to 
the bus master during read operations. A minimum data bus 
width of 32 bits is recommended, however this may easily be 
extended to allow for higher bandwidth operation.

HREADYin

HREADYout

Transfer done Input/output When HIGH the HREADY signal indicates that a transfer 
has finished on the bus. This signal may be driven LOW to 
extend a transfer.

HRESP[1:0] Transfer response Output The transfer response provides additional information on the 
status of a transfer. This module only generates OKAY and 
RETRY responses. 
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4.8.2 Function and operation of module

This example module contains four 32-bit wide registers, which can be accessed using 
byte, halfword or word, read or write transfers. Extra read only locations are provided 
that generate logical combinations of these four registers. The module memory map in 
Table 4-9 shows the logical functions that the slave can provide, and the addresses at 
which the functions and four read/write registers are accessed.

All addresses shown in the memory map are offsets from the module base address. In 
the default system the retry slave module occupies memory locations 0x4000 0000 to 
0x5FFF FFFF.

When any of the memory locations are accessed, the high order address lines are used 
to determine the response that the slave will provide, inserting wait states or retry cycles.

The address lines that are used are:

• HADDR[11:8], number of wait states to be inserted

• HADDR[13:12], number of times a retry response will be generated.

Table 4-9  Memory map of the example AHB retry slave

Address
Read
location

Write
location

0x00 R0 R0

0x04 R1 R1

0x08 R2 R2

0x0C R3 R3

0x10 Not R0 -

0x14 R0 and R1 -

0x18 R1 or R2 -

0x1C R2 xor R3 -

0x20 R0 and R1

and R2 and R3

-

0x24 R0 or R1

or R2 or R3

-

0x28 R0 xor R1

xor R2 xor R3

-
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The number of wait states inserted for each read or write module access can be varied 
from 0 to 15, and the number of times the slave provides a retry response can be varied 
from 0 to 3.

When the slave is programmed to provide a retry response, the number of wait states to 
insert must be set to a value greater than zero, as all retry responses require two cycles, 
with a wait state inserted during the first cycle.

4.8.3 System description

The following paragraphs give a description of how the HDL code for the example retry 
slave is set out. A basic block diagram, with information about the main parts of the 
HDL code, is followed by details of the registers, inputs and outputs used in the system. 
This part should be read together with the HDL code.

Figure 4-29 shows a basic block diagram of the retry slave module system.

Figure 4-29 Retry slave module block diagram

The retry slave comprises a set of read/write registers, and programmable wait/retry 
generation logic.

All registers used in the system are clocked from the rising edge of the system clock 
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Figure 4-30 shows the retry slave HDL file.

Figure 4-30 Retry slave module system diagram
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The main sections in this module are explained in the following paragraphs:

• AHB slave bus interface

• Write data mask

• Read/write registers

• Response generation logic on page 4-52

• Read data generation on page 4-52.

AHB slave bus interface

This module uses the standard AHB slave bus interface, which comprises the valid 
transfer detection logic, and the address and control registers, which are used to store 
the information from the address phase of the transfer for use in the data phase.

Write data mask

The amount of data written to the four internal registers depends on the transfer size 
setting. The mask is used to control which bytes of data are written to the 32-bit 
registers, and which bytes are left unchanged. A single mask value is used to allow one 
set of size decoding logic to be used for all registers in the module, rather than having 
a set of decoding logic for each register.

The bytes of data that will change are set LOW in the mask, and all other bits are set 
HIGH.

Read/write registers

Four 32-bit registers are used to store user data, all initializing to zero. They are only 
enabled when addressed during a write transfer, and when any wait states or retry cycles 
have ended. The data mask is used to control writes of byte, halfword and word, by 
masking out the bits of the current write data that are not needed, and ORing it with a 
masked version of the current register data. This ensures that only the required bytes of 
the read data are used, and the unchanged register bytes are reloaded with the previous 
register value.
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Response generation logic

This logic is used to control the generation of wait states and retry cycles.

Wait states are inserted when the address of the current transfer has a nonzero value in 
bits [11:8]. This value, from zero to fifteen, is loaded into the CurrentWait register, and 
then decremented each clock cycle until zero is reached. This counter value is used to 
hold the HREADYout output LOW until zero is reached, when HREADYout is set 
HIGH and the transfer can complete.

Retry cycles are inserted when the address of the current transfer has a nonzero value in 
bits [13:12] and [11:8], as all retry cycles require at least one wait state. This value is 
loaded into the CurrentRetry register, and is decremented each time the transfer is 
retried until zero is reached. The input to the iHRESP register is set according to the 
state of the retry logic and the wait logic, so that if more than one wait state is inserted, 
the HRESP output only changes during the last HREADY LOW cycle. Retry responses 
are generated until the counter reaches zero, when the HRESP output indicates that the 
transfer may complete normally.

Read data generation

Different read data values must be generated according to the address of the current 
transfer, selecting output data from one of the four registers or one of the seven 
combinational outputs. This section of the code selects a data source during the data 
phase of a valid transfer, and then directly drives the output data bus HRDATA with this 
selected data value.

This combinational output path allows a zero wait state response to be possible, as data 
written to a register can be read the following cycle with a zero wait state transfer. If a 
registered output data path is used, then reads from registers that were written to in the 
previous cycle must have at least one wait state inserted, to allow for the internal data 
register to sample the write data, and then for the data register output to be sampled by 
the output read data register, before being driven onto the output read data bus. 
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4.9 Static memory interface

The AMBA Static Memory Interface (SMI) is an example design which shows the basic 
requirements of an External Bus Interface (EBI) in an AMBA system. It is not intended 
to be a ready-made EBI for a real system. Such an EBI design would have to take 
process, package, and varying external delays into account.

The SMI connects the AMBA AHB to the external memory bus of an AMBA 
microcontroller. This allows the connection of up to three 256MB banks of 32-bit wide 
static memory (for example, SRAM and ROM) and also provides 32-bit test access to 
the AMBA system in conjunction with the TIC. Figure 4-31 shows the block diagram 
of the SMI.

Figure 4-31 Static memory interface block diagram

The main sections of this module are:

• the AHB slave bus interface

• the data and address bus registers and drivers

• the external memory access control logic.
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4.9.1 Signal descriptions

Table 4-10 describes the signals used by the SMI.

Table 4-10 Signal descriptions

Signal Type Direction Description

HCLK Bus clock Input This clock times all bus transfers.

HRESETn Reset Input The bus reset signal is active LOW, and is used to reset the 
system and the bus. 

HADDR[31:0] Address bus Input The 32-bit system address bus.

HTRANS[1:0] Transfer type Input This indicates the type of the current transfer, which can be 
NONSEQUENTIAL, SEQUENTIAL, IDLE or BUSY.

HWRITE Transfer direction Input When HIGH this signal indicates a write transfer, and 
when LOW, a read transfer.

HSIZE[2:0] Transfer size Input Indicates the size of the transfer, which is typically byte 
(8-bit), halfword (16-bit) or word (32-bit). The protocol 
allows for larger transfer sizes up to a maximum of 1024 
bits.

HWDATAin[31:0 Write data bus Input The write data bus is used to transfer data from the master 
to the bus slaves during write operations. A minimum data 
bus width of 32 bits is recommended, however, this can 
easily be extended to allow for higher bandwidth 
operation.

HSELExtMem Slave select Input Each AHB slave has its own slave select signal and this 
signal indicates that the current transfer is intended for the 
selected slave. This signal is a combinatorial decode of the 
address bus.

HRDATAin[31:0] 
HRDATAout[31:0]

Read data bus Input/output The read data bus is used to transfer data from bus slaves 
to the bus master during read operations. A minimum data 
bus width of 32 bits is recommended, however this can 
easily be extended to allow for higher bandwidth 
operation.

HREADYin

HREADYout

Transfer done Input/output When HIGH the HREADY signal indicates that a transfer 
has finished on the bus. This signal may be driven LOW to 
extend a transfer.

HRESP[1:0] Transfer response Output The transfer response provides additional information on 
the status of a transfer. This module will always generate 
the OKAY response. 
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Remap Reset memory 
map

Input When LOW, the internal memory is not part of the system 
memory map, and external memory is mapped from 
address 0x0000 0000, which normally contains the system 
startup code. In normal operation this signal is HIGH, 
allowing use of the internal memory.

TicRead Drive out read data Input This signal controls the SMI to drive the current read data 
from HRDATA to XD.

XD[31:0] External data bus Input/output This is the bidirectional external data bus. In normal 
operation it is driven by the external bus when XOEN is 
LOW, and by this module when XOEN is HIGH. During 
system test this becomes the test bus TESTBUS and its 
direction is controlled by the TIC control signals.

XA[30:0] External address 
bus

Output The external address bus becomes valid during the HCLK 
LOW phase of the transfer and remains valid throughout 
the rest of the transfer.

XCSN[3:0] External chip 
select

Output These signals are active LOW chip enables for each of the 
three banks (0-1, 3) of static memory. XCSN[3] should be 
connected to the memory containing the startup program 
(boot ROM/BIOS) for the system.

XOEN External output 
enable

Output This is the output enable for devices on the external bus. 
This is LOW during reads from external memory, during 
which time the selected bank should drive the XD bus.

XWEN[3:0] External write 
enable

Output This is the active LOW memory write enable. For 
little-endian systems, XWEN[0] controls writes to the 
least significant byte and XWEN[3], the most significant. 
The example system is configured to be little-endian. The 
SMI is configured to have a minimum of two wait states 
when writing to memory. XWEN is only valid during the 
second cycle of the write transfer.

Table 4-10 Signal descriptions (continued)

Signal Type Direction Description
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4.9.2 Functional description of the SMI

The SMI has five functions in the example system described in the following 
paragraphs:

• External bus control

• Memory bank select on page 4-57

• Memory write control on page 4-58

• Configurable memory access wait states on page 4-59

• System test access on page 4-59.

External bus control

To perform a read from external memory, XOEN must be LOW and the XD output is 
tristated, allowing it to be driven with read data by the external memory. 

Figure 4-32 shows the timing of a read from memory with zero wait states.

Figure 4-32 Zero wait memory read

Note
 The data must be valid on the XD bus in time for the signal to propagate on-chip so that 
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To perform a write to the external memory, XOEN must be HIGH, to allow XD to be 
driven by the SMI with a registered version of HWDATA. 

The SMI requires at least two wait states to be added for a write to memory, to allow for 
the timing of the XWEN write enable signal relative to the XA and XD buses. When 
XWEN is LOW XA must be stable and, on the rising edge of XWEN, XD must be 
valid.

Figure 4-33 shows the timing of a write to memory with two wait states.

Figure 4-33 Memory write with two wait states
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Table 4-11 shows the relationship between the inputs and the generated value of XCSN.

XCSN is also held in the 1111 state asynchronously during reset.

Memory write control

The 4-bit XWEN write enable signal allows the four bytes in the 32-bit wide word to 
be written independently. The byte assignments are:

• XWEN[0] controls XD[7:0]
• XWEN[1] controls XD[15:8]
• XWEN[2] controls XD[23:16]
• XWEN[3] controls XD[31:24].

The SMI controls XWEN for writes in word (32-bit), halfword (16-bit) and byte (8-bit) 
quantities. The SMI uses HSIZE[1:0] and HADDR[1:0] to select the width and order 
of each write to memory. This information must be valid before XWEN is asserted.

Table 4-11 XCSN coding

Input 
HSELExtMem

Input Remap
Input 
HADDR[29:28]

Output 
XCSN[3:0]

0 X XX 1111

1 0 00 0111

1 0 01 1101

1 0 10 1011

1 0 11 0111

1 1 00 1110

1 1 01 1101

1 1 10 1011

1 1 11 0111
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Table 4-12 shows the bytes selected according to the HSIZE and HADDR[1:0] inputs.

Configurable memory access wait states

The SMI only supports global (the same for every bank) wait states for read and write 
accesses. This is configurable (in the HDL model, not in synthesized hardware) between 
zero and three waits for reads, and between two and three for writes. Figure 4-33 on 
page 4-57 shows a memory transfer with two wait states. A transfer with more wait 
states causes further wait cycles to be added. The external address and data information 
remains valid until the memory access cycle is completed. For writes, the XWEN signal 
is extended, going LOW during the first wait, and not going HIGH until the final cycle 
of the transfer. Before synthesis, the wait states can be configured by altering the 2-bit 
wide constants READWAIT and WRITEWAIT. WRITEWAIT must be value 2 or 
greater. 

System test access

During system TIC testing, the external bus output of the SMI is controlled by the active 
HIGH TicRead signal from the TIC. This is used to pass read data from the HRDATAin 
bus onto the external test bus XD During normal operation this signal is held LOW.

Table 4-12 XWEN coding

HSIZE[1:0] HADDR[1:0] XWEN[3:0]

10 (word) XX 0000

01 (half word) 0X 1100

01 (half word) 1X 0011

00 (byte) 00 1110

00 (byte) 01 1101

00 (byte) 10 1011

00 (byte) 11 0111
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4.9.3 System description

The following paragraphs give a description of how the HDL code for the module is set 
out. A basic system block diagram, with information about the main parts of the HDL 
code, is followed by details of the registers, inputs and outputs used in the module. This 
part should be read together with the HDL code.

A basic block diagram of the static memory interface system is shown in Figure 4-34.

Figure 4-34 Static memory interface module block diagram

The static memory interface module comprises the input bus registers, the wait state 
counter used to insert wait states, and the external memory control signal generation.

All registers used in the system are clocked from the rising edge of the system clock 
HCLK, and use the asynchronous reset HRESETn.
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Figure 4-34 on page 4-60 shows the static memory interface HDL file.

Figure 4-35 Static memory interface module system diagram
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The main sections in the SMI module are explained in more detail in the following 
paragraphs:

• Constant definitions

• AHB slave bus interface

• Wait state generation

• AHB output data bus generation on page 4-63

• External bus output generation on page 4-63.

Constant definitions

The constants READWAIT and WRITEWAIT are used to set the number of wait states 
that are inserted when a read and write transfer is performed. The value of zero to three 
for reads, and two to three for writes, is set for all transfers to all memory banks, and 
although configurable in the HDL code, it is permanently set when synthesized.

AHB slave bus interface

This module uses the standard AHB slave bus interface, which comprises:

• the valid transfer detection logic

• the address and control registers, which are used to store the information from the 
address phase of the transfer for use in the data phase.

The default address setting of the module is external RAM from 0x0000 0000 to 
0x1FFF FFFF, and external boot ROM from 0x3000 0000 to 0x3FFF FFFF. When the 
Remap signal is HIGH, indicating that remapped memory is in use, external RAM is 
mapped from 0x0000 0400 to 0x1FFF FFFF, with internal memory being mapped in the 
first 0x000 to 0x400 region.

Wait state generation

The counter register is used to insert wait states according to the values set in the 
READWAIT and WRITEWAIT constants. The counter is loaded with the relevant value 
when a read or write transfer begins, and decrements the value until no more wait states 
need to be added. The counter value is used to generate the input to the HREADYout 
register, which is set LOW while the counter is not zero. 
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AHB output data bus generation

The HRDATAout output is driven to XD during a normal external memory read 
transfer, to propagate the read data value from the external bus onto the AHB. 
HRDATAout is driven LOW at all other times.

The registered HREADYout output is driven LOW while the current value of the wait 
state counter is not zero.

The HRESP output is held LOW, because the SMI will always generate an OKAY 
response to all transfers.

External bus output generation

This section contains the signals that are driven onto the external bus:

• XD is generated from either the AHB read or write data buses, depending on the 
current system mode of operation. HWDATAin is used during a normal external 
memory write transfer, and HRDATAin is used during a TIC testing read cycle. 
As XD is a tristate bus, then it is only driven by the SMI when the current transfer 
is a standard write or a TIC testing read, allowing XD to be driven by any external 
modules at all other times.

• XA is driven with a registered version of bits [30:0] of HADDR, as the full 
system address range is not required on the external bus.

• XCSN is generated from the input address during a valid read or write transfer. 
Bits [29:28] of the address are decoded as shown in Table 4-11 on page 4-58. 
When Remap is LOW, the boot ROM is mapped at the base address, as well as 
its standard address. External RAM access is not dependant on the Remap input. 
During reset, or when the memory is not addressed, all XCSN output bits are set 
HIGH to deselect all banks of external memory.

• XOEN is set LOW during a valid read transfer, and is set HIGH at all other times.

• XWEN is generated from the size and address settings for a write transfer, 
selecting the transfer size and byte lane to use, as shown in Table 4-11 on 
page 4-58. A registered output is used to avoid the generation of glitches, which 
can cause incorrect values to be written to the external ROM.
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4.10 Test interface controller

The Test Interface Controller (TIC) is a state machine that provides an AMBA AHB bus 
master for system test. It reads test write and address data from the external data bus 
TESTBUS (XD), and uses the External Bus Interface (EBI) to drive the external bus 
with test read data, allowing the use of only one set of output tristate buffers onto 
TESTBUS.

The TIC is used to convert externally applied test vectors into internal transfers on the 
AHB bus. A three-wire external handshake protocol is used, with two inputs controlling 
the type of vector that is applied and a single output that indicates when the next vector 
can be applied.

Typically the TIC is the highest priority AMBA bus master, which ensures test access 
under all conditions.

The TIC model supports address incrementing and control vectors. This means that the 
address for burst transfers can automatically be generated by the TIC.

Figure 4-36 shows the TIC module interface diagram.

Figure 4-36 TIC module interface diagram
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Figure 4-36 on page 4-64 represents a TIC module in a system where the external data 
bus becomes the test bus when performing test mode accesses. 16-bit and 8-bit data bus 
systems require, for example, 16 or 24 address lines to be reconfigured as bidirectional 
test port signals for the test mode access.

4.10.1 Signal descriptions

The TIC has three primary interfaces:

• the AHB bus master interface, to control the operation of the system during test

• the external test interface, to read the type of vector being applied and control the 
application of new vectors

• the datapath interface, to control the operation of the EBI to drive the external 
data bus.

Table 4-13 shows the TIC module signal descriptions for an AHB-based system.

Table 4-13 TIC signal descriptions for AHB

Signal Type Direction Description

HCLK Bus clock Input This clock times all bus transfers. All signal timings are related 
to the rising edge of HCLK.

HRESETn Reset Input The bus reset signal is active LOW and is used to reset the 
system and the bus. This is the only active LOW signal.

HADDR[31:0] Address bus Output The 32-bit system address bus.

HTRANS[1:0] Transfer type Output Indicates the type of the current transfer, which can be 
NONSEQUENTIAL, SEQUENTIAL or IDLE. The TIC does 
not use the BUSY transfer type.

HWRITE Transfer direction Output When HIGH this signal indicates a write transfer and when 
LOW a read transfer.

HSIZE[2:0] Transfer size Output Indicates the size of the transfer, which is typically byte 
(8-bit), halfword (16-bit) or word (32-bit). The TIC does not 
support larger transfer sizes.

HBURST[2:0] Burst type Output Indicates if the transfer forms part of a burst. The TIC always 
performs incrementing bursts of unspecified length.
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HPROT[3:0] Protection control Output The protection control signals indicate if the transfer is an 
opcode fetch or data access, as well as if the transfer is a 
supervisor mode access or user mode access. These signals 
can also indicate whether the current access is cacheable or 
bufferable.

HWDATA[31:0] Write data bus Output The write data bus is used to transfer data from the master to 
bus slaves during write operations. A minimum data bus width 
of 32 bits is recommended, however this can easily be 
extended to allow for higher bandwidth operation.

HREADY Transfer done Input When HIGH the HREADY signal indicates that a transfer has 
finished on the bus. This signal may be driven LOW to extend 
a transfer.

HRESP[1:0] Transfer response Input The transfer response provides additional information on the 
status of a transfer. Four different responses are provided, 
OKAY, ERROR, RETRY and SPLIT.

HBUSREQtic Bus request Output A signal from the TIC to the bus arbiter which indicates that it 
requires the bus.

HLOCKtic Locked transfers Output When HIGH this signal indicates that the master requires 
locked access to the bus and no other master should be granted 
the bus until this signal is LOW.

HGRANTtic Bus grant Input This signal indicates that the TIC is currently the highest 
priority master. Ownership of the address and control signals 
changes at the end of a transfer when HREADY is HIGH, so 
a master gains access to the bus when both HREADY and 
HGRANTx are HIGH.

TESTBUS Test data bus Input This is the bidirectional external data bus. In normal operation 
it is driven by the external bus interface. During system test it 
becomes the test data bus and its direction is controlled by the 
test bus request A and B signals.

TESTREQA Test bus request A Input This is the test bus request A input signal and is required as a 
dedicated device pin. During normal system operation the 
TESTREQA signal is used to request entry into the test mode. 
During test TESTREQA is used, in combination with 
TESTREQB, to indicate the type of test vector that will be 
applied in the following cycle.

Table 4-13 TIC signal descriptions for AHB (continued)

Signal Type Direction Description
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4.10.2 Function and operation of module

The TIC operates as a standard AHB bus master during system test when the external 
test pins show that the system is required to enter test mode. In this mode, the TIC 
requests control of the AHB, and when granted uses the AHB to perform system tests.

Table 4-14 shows the operation of the external test pins to change the TIC mode from 
normal operation into test mode.

TESTREQB Test bus request B Input During test this signal is used, in combination with 
TESTREQA, to indicate the type of test vector that will be 
applied in the following cycle.

TESTACK Test acknowledge Output The test bus acknowledge signal gives external indication that 
the test bus has been granted and also indicates when a test 
access has completed. When TESTACK is LOW the current 
test vector must be extended until TESTACK becomes HIGH.

TicRead Drive out read 
data

Output This signal controls the EBI to drive the current read data from 
HRDATA to TESTBUS.

Table 4-13 TIC signal descriptions for AHB (continued)

Signal Type Direction Description

Table 4-14 Test control signals during normal operation

TESTREQA TESTREQB TESTACK Description

0 - 0 Normal operation

1 - 0 Enter test mode request

- - 1 Test mode entered
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During system test the external test pins are used to control the operation of the TIC. 
The operation of these pins is shown in Table 4-15.

In test mode, the internal HCLK is driven from the external TESTCLK source. This 
pin may be the normal clock oscillator source input or a port replacement signal. The 
system bus clock must not glitch when switching between normal and test mode.

On entry into test mode the TIC indicates that it has switched to the test clock input by 
asserting the TESTACK signal.

Test vector types

There are five types of test vector associated with the test interface:

Address vector The address for all subsequent read and write transfers is sampled 
by the TIC.

Write vector The TIC performs an AHB write cycle, using the write data 
currently driven onto the external data bus.

Read vector The TIC performs an AHB read cycle, driving the read data onto 
the external data bus when it becomes valid.

Control vector Internal TIC registers are set, which control the types of read and 
write transfers that are performed.

Turnaround vector Used between a read cycle and a write cycle to avoid clashes on 
the external data bus.

Table 4-15 Test control signals during test mode

TESTREQA TESTREQB TESTACK Description

- - 0 Current access incomplete

1 1 1 Address vector or 
control vector or 
turnaround vector

1 0 1 Write vector

0 1 1 Read vector

0 0 1 Exit test mode
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The address, control and turnaround vectors are all indicated by the same value on the 
TESTREQA and TESTREQB signals. The following rules may be used to determine 
which type of vector is being applied:

• a read vector, or burst of read vectors, is followed by two turnaround vectors

• when a single address or control vector is applied it is an address vector

• when multiple address and control vectors are applied they are all address vectors, 
apart from the last which is a control vector.

Control vectors

The control vector is used to determine the types of transfer the TIC can perform, by 
setting the values of the HSIZE, HPROT and HLOCK AHB master outputs.

The default TIC bus master transfer type is:

• 32-bit transfer width, HSIZE[2:0] signifies word transfer

• privileged system access, HPROT[3:0] signifies supervisor data access, 
uncacheable and unbufferable.

Bit 0 of the control vector is used to indicate if the control vector is valid. Thus, if a 
control vector is applied with bit 0 LOW, the vector will be ignored and will not update 
the control information. This mechanism allows address vectors which have bit 0 LOW 
to be applied for many cycles without updating the control information.

Although the default settings will be sufficient for testing many embedded system 
designs, the control vector can be used to change the control signals of the transfer, and 
can also be used to determine whether the TIC should generate fixed addresses or 
incrementing addresses.

Table 4-16 defines the bit positions of the control vector. The control vector bit 
definitions are designed to be backwards compatible with earlier versions of the TIC 
and therefore not all of the control bits are in obvious positions.

Table 4-16 Control vector bit definitions

Bit position Description

0 Control vector valid

1 Reserved

2 HSIZE[0]

3 HSIZE[1]
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There is no mechanism to control the types of burst that the TIC can perform and only 
incrementing bursts of an undefined length are supported. The TIC only supports 8-bit, 
16-bit and 32-bit transfers and therefore HSIZE[2] cannot be altered and will always 
be LOW.

In order to support burst accesses using the test interface the TIC may support 
incrementing of the bus address. The TIC increments eight address bits and the address 
range that can be covered by this incrementer is dependent on the size of the transfers 
being performed.

The control vector provides a mechanism to enable and disable the address incrementer 
within the TIC. This allows burst accesses to incremental addresses, as would be used 
for testing internal RAM. Alternatively the address increment can be disabled, such that 
successive accesses of a burst occur to the same address, as would be required to 
continually read from a single peripheral register.

The address incrementer is disabled by default and must be enabled using a control 
vector prior to use.

Note
 The control vector is primarily used to change signals which have the same timing as 
the address bus. However the control vector also allows the lock signal to be changed, 
which is actually required before the locked transfer commences. If the HLOCK signal 
is used during testing it should be set a transfer before it is required. This difference in 
timing on the HLOCK signal may in some cases cause an additional transfer to be 
locked both before and after the sequence intended to be locked.

4 HLOCK

5 HPROT[0]

6 HPROT[1]

7 Address increment enable

8 Reserved

9 HPROT[2]

10 HPROT[3]

Table 4-16 Control vector bit definitions (continued)

Bit position Description
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4.10.3 Test vector sequences

The following test vector sequences are described:

• Entering test mode

• Write vectors on page 4-72

• Read vectors on page 4-73

• Control vector on page 4-74

• Burst vector on page 4-75

• Read-to-write and write-to-read transfers on page 4-76

• Exiting test mode on page 4-77.

Entering test mode

In normal operating mode TESTREQA will be LOW, indicating that test access is not 
required and the test bus will be used as required for normal operation, which will 
usually be part of the external bus interface. Entering test mode allows test vectors to be 
applied externally that will cause transfers on the internal bus.

The following sequence, required in order to enter test mode, is illustrated in 
Figure 4-37 on page 4-72:

1. TESTREQA is asserted to request test bus access.

2. Test mode is entered when the TIC has been granted the internal bus and this is 
indicated by the assertion of the TESTACK signal.

3. At this point TESTCLK will become the source of the internal HCLK signal.

4. When test mode has been entered TESTREQB is asserted to initiate an address 
vector.

5. The TIC will not perform any internal transfers until a valid address vector has 
been applied.

A synchronous tester would not be expected to poll TESTACK for the bus. Normally 
the TESTREQA signal would be asserted for a minimum number of cycles guaranteed 
to gain access to the bus (completion of the longest wait-state peripheral access or the 
maximum number of cycles for all bus masters to have completed their current 
instruction).
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Figure 4-37 Test start sequence

Write vectors

Figure 4-38 shows the sequence of events when applying a set of write test vectors. 
Initially an address vector is applied and this is followed by a write test vector.

Figure 4-38 Write test vectors
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Figure 4-38 on page 4-72 shows an example of a number of write transfers being 
performed. 

The TIC samples the address, TESTREQA, and TESTREQB signals at time T3, and 
following this it can initiate the appropriate transfer on the AHB. In the following cycle 
the write data is driven onto TESTBUS and it is then sampled on the following clock 
edge, T4, and driven onto the internal bus.

If the internal transfer is not able to complete then the TESTACK signal is driven LOW 
and this indicates that the external test vector must be applied for another cycle.

Read vectors

Read transfers are more complex because they require TESTBUS to be driven in the 
opposite direction, and therefore additional cycles are required to prevent bus clash 
when changing between different drivers of TESTBUS. Figure 4-39 shows a typical 
test sequence for reads.

Figure 4-39 Read test vectors
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The TESTREQA and TESTREQB signals are used in the same way as for write 
transfer. Initially TESTREQA and TESTREQB are used to apply an address vector 
and then in the following cycle they are used to indicate that a read transfer is required. 
For the first cycle of a read TESTBUS must be tristated, which ensures that the external 
equipment driving TESTBUS has an entire cycle to tristate its buffers before the TIC 
will enable the on-chip buffers to drive out the read data.

At the end of a burst of reads it is also necessary to allow time for bus turnaround. In 
this case the TIC must turn off the internal buffers and an entire cycle is allowed before 
the external test equipment starts to drive TESTBUS.

The end of a burst of reads is indicated by both TESTREQA and TESTREQB being 
HIGH, as for an address vector. In fact they must indicate an address vector for two 
cycles, which allows for the turnaround cycle at the start of the burst and also the 
turnaround cycle at the end of the burst.

Control vector

The operation of the TIC may be modified by the use of a control vector. Whenever 
more than one address vector is applied in succession then the last vector is considered 
to be a control vector and is not latched as the address. Bit 0 of the control vector is used 
to determine whether or not the control vector should be considered valid, which allows 
multiple address vectors to be applied without changing the control information.

Figure 4-40 on page 4-75 shows the process of inserting a control vector. 
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Figure 4-40 Control vector
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Read-to-write and write-to-read transfers

It is possible to switch between read transfers and write transfers without applying a 
new address vector. Usually this is done with the address incrementer disabled, so that 
both the read transfers and the write transfers are to the same address. It is also possible 
to do this with the incrementer enabled if the test circumstances require it.

When moving from a read transfer to a write transfer it is also necessary to allow two 
cycles for bus handover and therefore TESTREQA and TESTREQB should signal an 
address vector for two cycles after the read. This will not cause the address to be 
changed unless it is followed by a third address vector.

Figure 4-41 illustrates the sequence of events.

Figure 4-41 Read vector followed by write vector
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Exiting test mode

Test mode is exited using the following sequence:

1. Apply a single cycle of address vector, which causes an IDLE cycle internally. 
This ensures any internal transfers have been completed and an 
ADDRESS-ONLY transfer is performed on the internal bus.

2. TESTREQA and TESTREQB are both driven LOW to indicate that test mode 
is to be exited.

3. When the test interface has been configured for normal system operation, 
TESTACK will go LOW to indicate that test mode has been exited.

It is important that test mode can be entered and exited cleanly so that the TIC can be 
used for diagnostic test during system operation, as well as during production testing.

4.10.4 System description

This describes how the HDL code for the TIC is set out. A simple system block diagram, 
with information about the main parts of the HDL code, is followed by details of the 
registers, inputs, and outputs used in the module. This should be read together with the 
HDL code.

Figure 4-42 shows the TIC module block diagram.

Figure 4-42 TIC module block diagram
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All registers in the system are clocked from the rising edge of the system clock HCLK, 
and use the asynchronous reset HRESETn.

A diagram of the TIC HDL file is shown in Figure 4-43.

Figure 4-43 TIC module system diagram
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The main sections of the code are explained in the following paragraphs:

• Granted state machine

• TIC vector state machine

• AHB address generation on page 4-82

• Control vector detection on page 4-83

• Read data control on page 4-83

• Split or retry detection on page 4-83

• AHB bus master output signal generation on page 4-84.

Granted state machine

This is part of the standard AHB bus master interface, and is used to determine when 
the TIC is granted the bus, and when it can drive the address, control and data outputs.

The state machine is shown in Figure 4-44, and only advances when the HREADY 
input is set HIGH.

Figure 4-44 TIC module granted state machine
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Figure 4-45 illustrates the operation of the TIC vector state machine.

Figure 4-45 TIC vector state machine

SyncTestreqA != 1

SyncTestreqA = 1

STV_IDLE

STV_START

TESTREQA/B = ADDR

STV_ADDRVEC

TESTREQA/B != ADDR
TESTREQA/B =

EXIT

TESTREQA/B =

WRITE

STV_READVEC

STV_LASTREAD

TESTREQA/B = !READ

STV_TURNAROUND

STV_WRITEVEC

TESTREQA/B = ADDR or

TESTREQA/B = EXIT

TESTREQA/B = READ

TESTREQA/B = READTESTREQA/B = WRITE

TESTREQA/B = WRITE

TESTREQA/B = ADDR or

TESTREQA/B = EXITTESTREQA/B = !READ

TESTREQA/B = READ

TESTREQA/B = ADDR

HRESETN = 0
4-80 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A



AHB Modules 
At reset the TIC is in the IDLE state and will not be requesting use of the AHB. When 
in the IDLE state TESTACK is driven LOW to indicate that the test interface cannot be 
used.

The TESTACK signal controls all transactions around the state machine, except for the 
transition from IDLE to START. In all other cases the state machine remains in the same 
state if the TESTACK signal is low.

The TESTREQA signal moves from the IDLE state to the START state. The state of 
TESTREQB is not checked when moving from normal operation to test mode.

In some system implementations it will be necessary to switch from an internal clock 
source to an external clock TESTCLK which is used during test mode. When 
TESTREQA first goes HIGH this can be used as an indication that the clock source 
should be changed. A return signal that indicates when the clock switch has occurred 
successfully can be used to prevent the move into the START state until the test clock 
is in use.

If clock switching is being used then it is possible that TESTREQA is asynchronous to 
the on-chip clock before test mode is entered. Therefore a synchronizer is used to 
generate a synchronized version of TESTREQA to control the movement from the 
IDLE state to the START state.

The START state ensures that the first vector applied is an address vector to prevent read 
and write vectors occurring before the address has been initialized. The START state is 
only exited when TESTREQA and TESTREQB indicate an address vector and the 
following state is ADDRVEC.

In the ADDRVEC state the TIC registers the address on the TESTBUS. The 
ADDRVEC state is used for both address and control vectors, so additional logic is 
required to determine whether the value on TESTBUS should be considered as an 
address or as a control vector. If the previous cycle was an address vector and the 
following cycle (as indicated by TESTREQA and TESTREQB) is not an address 
vector then the current cycle is a control vector.

It is possible to stay in the ADDRVEC state for a number of cycles, but usually an 
address vector will be followed by either read or write transfers.

If a write transfer is being performed, the TIC moves into the WRITEVEC state at the 
same time that it initiates the transfer on the bus. Multiple write transfers can be 
performed by remaining in the WRITEVEC state. Usually the WRITEVEC will be 
followed by an address vector. However, it is also possible to move directly to a read 
transfer by moving to the READVEC state.
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When a read, or a burst of reads is performed, the TIC enters the READVEC state. This 
state indicates that the TIC is starting a read transfer on the bus and it is not until the 
following cycle that the read data will appear. When the READVEC state is first entered 
the TESTBUS will be tristated, but will become driven during additional cycles in the 
READVEC state.

All read vectors must be followed by two turnaround vectors. For the first of these 
cycles the TIC will move into the LASTREAD state, during which the last read of the 
transfer will complete and will be driven out on to the external TESTBUS. During the 
LASTREAD state no internal transfers will be started and the TIC will perform IDLE 
transfers on the bus.

Following the LASTREAD state the TIC moves into the TURNAROUND state, during 
which time the external TESTBUS will be tristated. The TURNAROUND state will 
usually be followed by an address vector, but it is also possible to go immediately to a 
write vector or another read.

The usual method to exit from test is to return to the ADDRVEC state and then set both 
TESTREQA and TESTREQB LOW to return to IDLE and effectively exit from test. 
In fact, at any point the test mode can be exited by setting both TESTREQA and 
TESTREQB LOW, and eventually this will cause the TIC to exit from test.

Note
 When applying TIC vectors it is theoretically possible to assert the HLOCK output and 
then exit from the test. If this happens and then the TIC is granted the bus under normal 
operation it will effectively lock up the bus. No protection is provided within the TIC to 
prevent this occurrence.

AHB address generation

There are four main sources of the HADDR output in the TIC:

• current address registers

• previous address registers

• external data bus

• incrementer.

The current address is held during a standard read or write cycle, as the address loaded 
during the previous address vector is used for all subsequent read and write transfers.

The previous address is only used when a split or retry response has been generated by 
the currently selected slave, and the TIC is set in incrementing mode. When the transfer 
is regenerated, the incremented address will have moved on for the next transfer, so the 
previous address must be stored for use.
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When an address vector is applied, the TIC must read in the new address from the 
external data bus TESTBUS. This new value is stored in the iHADDR registers, and 
used for the following read and write transfers.

If address incrementing is enabled, then sequential read and write vectors will 
increment the address according to the transfer size that has been set. The first read or 
write transfer after an address vector will be to that address, then subsequent transfers 
will have their address incremented. This continues until a control vector is used to 
disable address incrementing.

Sequential incrementing read and write vectors are signalled as SEQUENTIAL 
transfers on the AHB, but a NONSEQUENTIAL transfer is added when the address 
incrementer crosses an 8-bit boundary, set by the current transfer size.

Control vector detection

This part is used to detect a control vector, and contains the control registers. A control 
vector is the last address vector in a burst of addresses, so is only detected when 
TESTREQA and TESTREQB indicate that the next transfer is a read or write vector, 
and there have been two or more address vectors. The TIC vector state machine is used 
to detect this, when LastVect and CurrentVect are set to address vector, and NextVect is 
either a read or a write vector. Also, bit 0 of the control vector (on TESTBUS) must be 
set HIGH for it to be valid, allowing for bursts of addresses.

Once it has been detected, the control vector is written to the registers used to hold the 
transfer settings for HSIZE, HLOCK, HPROT, and if address incrementing is 
enabled. These values are then held until the next control vector is detected and stored.

Read data control

TicRead is used to enable the EBI to drive the current read data value from HRDATA 
onto TESTBUS. It is set HIGH when the last vector was a read, allowing time for the 
read data to be driven onto the AHB. This output is disabled when the TIC is not granted 
control of the bus, allowing the EBI to function normally.

Split or retry detection

The TIC must know when the currently selected slave has generated a split or retry, and 
this section is used to detect that response. If the TIC loses grant before the transfer has 
been regenerated, then the value of the SplitRetry signal is held until the TIC has 
gained control of the bus again.

SR1 and SR2 are also used to indicate the first and second cycles of a SPLIT/RETRY 
response. SR2 is registered to remove a combinational path from HRESP to HTRANS.
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AHB bus master output signal generation

As the TIC is an AHB bus master, it must drive all of the output signals needed to 
control the operation of AHB slaves on the bus, and also the bus grant request output. 
This section generates these outputs, and controls when they can be driven out.

HTRANS is generated according to the granted state machine, the TIC vector state 
machine, the split or retry status, and the incrementer boundary condition.

NONSEQUENTIAL transfers are generated:

• during a read or write following an address

• during a read or write when the TIC has just gained control of the bus

• during a regenerated read or write that has been split or retried

• when the address incrementer has crossed an 8-bit boundary during a sequential 
read or write.

SEQUENTIAL transfers are generated in incrementing mode:

• when a read follows a read or a write

• when a write follows a write.

IDLE transfers are generated at all other times, as no bus transfers need to be performed.

HWRITE is set HIGH when the current transfer is a write, and is set LOW at all other 
times. During a regenerated split/retry transfer, the last vector is used.

HBUSREQtic is set LOW when the TIC vector state machine is in the IDLE state, and 
is set HIGH at all other times, as the bus is only requested when test mode has been 
entered.
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Chapter 5 
APB Modules

This chapter describes the modules that comprise the Advanced Peripheral Bus (APB). 
It contains the following sections:

• Interrupt controller on page 5-2

• Remap and pause controller on page 5-12

• Timers on page 5-20

• Peripheral to bridge multiplexor on page 5-35.
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5.1 Interrupt controller

The interrupt controller is an APB slave, providing a simple software interface to the 
interrupt system. It consists of:

• source status and interrupt request status

• separate enable set and enable clear registers to allow independent bit enable 
control of interrupt sources

• level-sensitive interrupts

• programmable interrupt source.

Figure 5-1 shows the interrupt controller module block diagram.

Figure 5-1 Interrupt controller module block diagram
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5.1.1 Hardware interface and signal description

The interrupt controller module is connected to the APB bus. Table 5-1 shows the signal 
descriptions for the interrupt controller.

Table 5-1 APB signal descriptions for interrupt controller

Signal Type Direction Description

PCLK Peripheral clock Input This clock times all bus transfers. Both the LOW phase and 
HIGH phase of PCLK are used to control transfers.

PRESETn Peripheral reset Input The bus reset signal is active LOW and is used to reset the 
system. 

PENABLE Peripheral enable Input This enable signal is used to time all accesses on the 
peripheral bus. 

PSELIC Peripheral slave 
select

Input When HIGH, this signal indicates that this module has been 
selected by the APB bridge. This selection is a decode of the 
system address bus.

PADDR[8:2] Peripheral address Input This is the peripheral address bus, which is used for decoding 
register accesses. The addresses become valid before 
PENABLE goes HIGH and remains valid after PENABLE 
goes LOW.

PWRITE Peripheral transfer 
direction

Input This signal indicates a write when HIGH and a read when 
LOW. It has the same timing as the peripheral address bus. 

PWDATA[5:0] Peripheral write 
data bus

Input The write peripheral data bus is driven by the bridge at all 
times.

PRDATA[7:0] Peripheral read 
data bus

Output The read peripheral data bus is driven by this block during 
read cycles (when PWRITE is LOW and PSELIC is HIGH).

FIQESource FIQ interrupt 
source

Input FIQ interrupt signal into the interrupt module. This active 
HIGH signal indicates that a fast interrupt request has been 
generated.

IRQESource[0]

IRQESource[7:2]

IRQ interrupt 
sources

Input IRQ interrupt signals into the interrupt module. These active 
HIGH signals indicate that interrupt requests have been 
generated. (IRQESource[1] is internally generated in the 
interrupt controller module and is used to provide a software 
triggered IRQ.) 

nFIQ FIQ output Output Active LOW fast interrupt request input to the ARM core.

nIRQ IRQ output Output Active LOW interrupt request input to the ARM core.
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5.1.2 Function and operation of the interrupt controller module

The interrupt controller provides a simple software interface to the interrupt system. 
Certain interrupt bits are defined for the basic functionality required in any system. The 
remaining bits are available for use by other devices in any particular implementation. 
In an ARM system, two levels of interrupt are available:

• fast interrupt request (FIQ) for fast, low latency interrupt handling

• interrupt request (IRQ) for more general interrupts.

Ideally, in an ARM system, only a single FIQ source is in use at any particular time. 
This provides a true low-latency interrupt, because a single source ensures that the 
interrupt service routine may be executed directly without the need to determine the 
source of the interrupt. It also reduces the interrupt latency because the extra banked 
registers, which are available for FIQ interrupts, may be used to maximum efficiency by 
preventing the need for a context save.

Separate interrupt controllers are used for FIQ and IRQ. Only a single bit position is 
defined for FIQ, which is intended for use by a single interrupt source, while up to 32 
bits are available in the IRQ controller. The standard configuration only makes eight 
interrupt request lines available. This can be extended to up to 32 sources by altering the 
IRQSize constant setting and increasing the width of the PWDATA and PRDATA lines 
to the interrupt controller.

The IRQ interrupt controller uses a bit position for each different interrupt source. Bit 
positions are defined for a software-programmed interrupt, a communications channel, 
and counter-timers. Bit 0 is unassigned in the IRQ controller so that it may share the 
same interrupt source as the FIQ controller.

All interrupt source inputs must be active HIGH and level-sensitive. Any inversion or 
latching required to provide edge sensitivity must be provided at the generating source 
of the interrupt.

No hardware priority scheme nor any form of interrupt vectoring is provided, because 
these functions can be provided in software.

A programmed interrupt register is also provided to generate an interrupt under software 
control. Typically this may be used to downgrade an FIQ interrupt to an IRQ interrupt.

Interrupt control

The interrupt controller provides:

• interrupt status

• raw interrupt status

• an enable register. 
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The enable register is used to determine whether or not an active interrupt source should 
generate an interrupt request to the processor.

The raw interrupt status indicates whether or not the appropriate interrupt source is 
active prior to masking and the interrupt status indicates whether or not the interrupt 
source is causing a processor interrupt.

The enable register has a dual mechanism for setting and clearing the enable bits. This 
allows enable bits to be set or cleared independently, with no knowledge of the other 
bits in the enable register.

When writing to the enable set location, each data bit that is HIGH sets the 
corresponding bit in the enable register. All other bits of the enable register are 
unaffected. Conversely, the enable clear location is used to clear bits in the enable 
register while leaving other bits unaffected.

Figure 5-2 shows the structure for a single segment of the interrupt controller.

Figure 5-2 Single bit slice of the interrupt controller
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5.1.3 Register memory map

The base address of the interrupt controller is not fixed and may be different for any 
particular system implementation. However, the offset of any particular register from 
the base address is fixed. Table 5-2 shows the register memory map.

5.1.4 Register descriptions

The following registers are provided for both FIQ and IRQ interrupt controllers:

Enable Read-only. The enable register is used to mask the interrupt input 
sources and defines which active sources will generate an 
interrupt request to the processor. This register is read-only, and its 
value can only be changed by the enable set and enable clear 
locations. If certain bits within the interrupt controller are not 
implemented, the corresponding bits in the enable register must be 
read as undefined.

Table 5-2 Register memory map of the interrupt controller APB peripheral

Address Read location Write location

IntBase + 0x000 IRQStatus -

IntBase + 0x004 IRQRawStatus -

IntBase + 0x008 IRQEnable IRQEnableSet

IntBase + 0x00C - IRQEnableClear

IntBase + 0x010 - IRQSoft

IntBase + 0x100 FIQStatus -

IntBase + 0x104 FIQRawStatus -

IntBase + 0x108 FIQEnable FIQEnableSet

IntBase + 0x10C - FIQEnableClear

IntBase + 0x014 IRQTestSource IRQTestSource

IntBase + 0x018 IRQSourceSel IRQSourceSel

IntBase + 0x114 FIQTestSource FIQTestSource

IntBase + 0x118 FIQSourceSel FIQSourceSel
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An enable bit value of 1 indicates that the interrupt is enabled and 
will allow an interrupt request to reach the processor. An enable 
bit value of 0 indicates that the interrupt is disabled. On reset, all 
interrupts are disabled.

EnableSet Write-only. This location is used to set bits in the interrupt enable 
register. When writing to this location, each data bit that is HIGH 
causes the corresponding bit in the enable register to be set. Data 
bits that are LOW have no effect on the corresponding bit in the 
enable register.

EnableClear Write-only. This location is used to clear bits in the interrupt 
enable register. When writing to this register, each data bit that is 
HIGH causes the corresponding bit in the enable register to be 
cleared. Data bits that are LOW have no effect on the 
corresponding bit in the interrupt enable register.

RawStatus Read-only. This location provides the status of the interrupt 
sources to the interrupt controller. A HIGH bit indicates that the 
appropriate interrupt request is active prior to masking.

Status Read-only. This location provides the status of the interrupt 
sources after masking. A HIGH bit indicates that the interrupt is 
active and will generate an interrupt to the processor.

Soft Write only. A write to bit 1 of this register sets or clears a 
programmed interrupt. Writing to this register with bit 1 set HIGH 
generates a programmed interrupt, while writing to it with bit 1 set 
LOW clears the programmed interrupt. The value of this register 
may be determined by reading bit 1 of the source Status register. 
Bit 0 of this register is not used.

Two extra read/write registers are defined for both FIQ and IRQ to allow testing of the 
interrupt controller module using the AMBA test methodology. They must not be 
accessed during normal operation.

TestSource Same size as RawStatus, and used to load RawStatus with test 
data.

SourceSel 1-bit wide (bit 0). When set, the value in TestSource is 
multiplexed into RawStatus.
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5.1.5 Standard configuration of registers

The FIQ interrupt controller is one bit wide and is located on bit 0. The source of this 
interrupt is implementation-dependent.

The interrupt controller will be customized to fit into each application. The following is 
an example minimum set of interrupt bits assigned in a system:

• Bits 1 to 5 in the IRQ interrupt controller are defined in the standard EASY world. 

• Bit 0 and Bits 6 up to 31 are available for use as required. Bit 0 is left available so 
that the FIQ source may also be routed to the IRQ controller in an identical bit 
position. 

Table 5-3 gives a typical example allocation of IRQ sources.

5.1.6 System description

This section describes how the HDL code for the interrupt controller is set out. A simple 
system block diagram, with information about the main parts of the HDL code, is 
followed by details of all the registers, inputs and outputs used in the system. This 
section should be read together with the HDL code.

Figure 5-3 on page 5-9 shows the interrupt controller module block diagram.

Table 5-3 Example of IRQ sources

Bit Interrupt source

0 Undefined

1 Programmed Interrupt

2 Comms Rx

3 Comms Tx

4 Timer 1

5 Timer 2
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Figure 5-3 Interrupt controller module block diagram

The interrupt controller comprises sets of interrupt registers and test registers that are 
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the interrupt inputs.
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PCLK, and use the asynchronous reset PRESETn.

Two diagrams are used to show the interrupt controller HDL file. Figure 5-4 shows the 
layout of the bit slices that are used for bit 0 of the FIQ and bits 0 and [5:2] of the IRQ.

Figure 5-4 Interrupt controller slice system diagram
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Figure 5-5 shows the layout of the whole system.

Figure 5-5 Interrupt controller module system diagram

The main sections in this module are explained in more detail in the following 
paragraphs:

• Constant definitions on page 5-11

• IRQ generation on page 5-11 

• FIQ generation on page 5-11

• Output data generation on page 5-11.
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Constant definitions

The first two constants that are specified (IRQSIZE and FIQSIZE), are used to set the 
number of IRQ and FIQ lines that are used in the system. The defaults are for eight IRQ 
lines and one FIQ line. These constants should only be changed when the number of 
interrupt input sources are changed.

The other constants are used to set the relative addresses of the interrupt controller 
registers from the base address.

IRQ generation

Figure 5-4 on page 5-9 shows the structure of the IRQ generation logic from the 
external interrupt sources.

The read/write TestSource register is used to hold the test value. This is passed through 
a multiplexor, and then used to switch between the external and internal test interrupt 
sources. This is the read-only RawStatus value, which is gated with the output of the 
enable register, and used to generate the Status output.

All of the IRQ sources are then combined to generate the active LOW nIRQ output, 
which is set LOW when any of the IRQ lines are set HIGH.

FIQ generation

The FIQ logic is similar to the IRQ logic, but in the default system is only one bit wide, 
and does not have a software programmable source. The nFIQ output is directly 
generated from the single interrupt source bit, using an inverter.

Output data generation

This section is used to decode the current address during a read, and generate the correct 
data to be driven onto the APB data bus. The address is compared with all of the register 
addresses, and the value of PRDATANext is set accordingly. This is then stored in the 
iPRDATA register to help decrease the output propagation time by using a registered 
output, rather than an output with the combinational delay of the large multiplexor. This 
register also synchronizes the reading of all raw interrupt inputs to the rising edge of the 
clock. The PRDATA output is then driven by the register.
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5.2 Remap and pause controller

The remap and pause controller is an APB slave, providing control of the system boot 
behavior and low-power wait for interrupt mode.

The main sections of this module are:

• defined boot behavior with power-on reset detection

• a wait for interrupt pause mode

• an identification register.

A block diagram of the remap and pause module is shown in Figure 5-6.

Figure 5-6 Remap and pause module block diagram

5.2.1 Signal descriptions

Table 5-4 describes the APB signals used and produced by the remap and pause 
controller.
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Table 5-4 APB signal descriptions for remap and pause controller

Signal Type Direction Description

PCLK Peripheral clock Input This clock times all bus transfers. Both the LOW phase and HIGH 
phase of PCLK are used to control transfers.

PRESETn Peripheral reset Input The bus reset signal is active LOW and is used to reset the system.

PENABLE Peripheral enable Input This enable signal is used to time all accesses on the peripheral 
bus. 
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5.2.2 Functions and operations of the remap and pause module

The remap and pause control is the combination of four separate functions:

Pause Defines a method of allowing the processor system to enter a 
low-power, wait for interrupt state, when the system does not 
require the processor to be active.

Identification Provides an indication of the system configuration.

Reset memory map Provides a method of overlaying the system base memory at reset.

Reset status Provides an indication of the cause of the most recent reset 
condition. A minimum implementation is defined.

PSELRPC Peripheral slave 
select

Input When HIGH, this signal indicates that this module has been 
selected by the APB bridge. This selection is a decode of the 
system address bus.

PADDR[5:2] Peripheral address 
bus

Input This is the peripheral address bus, which is used for decoding 
register accesses. The addresses become valid before PENABLE 
goes HIGH and remains valid after PENABLE goes LOW.

PWRITE Peripheral 
transfer direction

Input This signal indicates a write when HIGH and a read when LOW.

It has the same timing as the peripheral address bus. 

PWDATA[7:0] Peripheral write 
data bus

Input The write peripheral data bus is driven by the bridge at all times.

PRDATA[7:0] Peripheral read 
data bus

Output The read peripheral data bus is driven by this block during read 
cycles (when PWRITE is LOW and PSELRPC is HIGH).

nFIQ FIQ output Input FIQ interrupt input from the interrupt controller.

nIRQ IRQ output Input IRQ interrupt input from the interrupt controller.

Pause Pause mode Output HIGH when in the wait for interrupt pause mode, and LOW at all 
other times.

Remap Reset memory 
map

Output LOW when the reset memory map is in use, and HIGH when the 
normal memory map is in use.

Table 5-4 APB signal descriptions for remap and pause controller (continued)

Signal Type Direction Description
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5.2.3 Register memory map

The base address of the remap and pause controller memory is not fixed and may be 
different for any particular system implementation. However, the offset of any particular 
register from the base address is fixed. Table 5-5 shows the remap and pause controller 
memory map.

5.2.4 Remap and pause register descriptions

Pause Write-only. Writing to the pause location causes the system to 
enter a wait for interrupt state, by setting the Pause output HIGH. 

The exact effect of writing to this location is not defined, but 
typically this would prevent the processor from fetching further 
instructions until the receipt of an interrupt or a power-on reset. 
Further registers may be added to provide more sophisticated 
power-saving modes.

Identification Read-only. The identification location provides identification 
information about the system. Only a single-bit implementation 
(bit 0) is required, which is used to indicate if there is further ID 
information:

0 = no further ID information

1 = further ID information is available.

If bit zero of the identification register is set, further bits are 
required to provide more detailed system identification 
information.

Table 5-5 Memory map of the remap and pause controller APB peripheral

Address Read location Write location

RemapBase + 0x00 - Pause

RemapBase + 0x10 Identification -

RemapBase + 0x20 - ClearResetMap

RemapBase + 0x30 ResetStatus ResetStatusSet

RemapBase + 0x34 - ResetStatusClear
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ClearResetMap Write-only. Writing to the clear reset memory map location 
changes the system memory map. It changes from that required 
during boot-up to that required during normal operation. This is 
done by setting the Remap output to HIGH. Once the reset 
memory map has been cleared and the normal memory map is in 
use, there is no method of resuming the reset memory map, other 
than undergoing a power-on reset condition. A typical system 
implementation is to map the system ROM to location 
0x0000 0000 at reset, but to change the memory map after reset, 
such that RAM is located at location 0x0000 0000 for normal 
operation. In a system where such remapping does not occur, 
writing to this register has no effect.

ResetStatus Read-only. The reset status location provides the reset status. Only 
one bit of this register is defined in this specification and this is bit 
0, which provides the power-on reset status. Further bits in the 
ResetStatus register may be implemented to provide more detailed 
reset information. The ResetStatus register has a dual mechanism 
for setting and clearing bits, allowing independent bits to be 
altered with no knowledge of the other bits in the register. This is 
done by using the ResetStatusClear and the ResetStatusSet 
registers.

The single bit defined in this specification is the power-on reset 
bit, which may be used to determine if the most recent reset was 
caused by initial power-on, or if a warm reset has occurred:

0 = no POR since flag was last cleared

1 = POR.

ResetStatusClear Write-only. This location is used to clear reset status flags. When 
writing to this register each data bit that is HIGH causes the 
corresponding bit in the ResetStatus register to be cleared. Data 
bits that are LOW have no effect on the corresponding bit in the 
ResetStatus register.

ResetStatusSet Write-only. This location is used to set reset status flags. When 
writing to this register each data bit that is HIGH causes the 
corresponding bit in the ResetStatus register to be set. Data bits 
that are LOW have no effect on the corresponding bit in the 
ResetStatus register. The power-on reset status bit (bit 0) cannot 
be set by software, as it can only be set during a system reset. The 
extra bits of the register are included in the specification to ensure 
the reset status functionality can easily be expanded.
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5.2.5 System description

The following paragraphs describe how the HDL code for the remap and pause 
controller module is set out. A simple system block diagram, with information about the 
main parts of the HDL code, is followed by details of all the registers, inputs and outputs 
used in the system. This section should be read together with the HDL code.

A basic block diagram of the remap and pause controller module is shown in Figure 5-7.

Figure 5-7 Remap and pause module block diagram
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A diagram of the remap and pause HDL file is shown in Figure 5-8.

Figure 5-8 Remap and pause module system diagram

The main sections in this module are explained in more detail in the following sections:

• Constant definitions on page 5-18

• ResetStatus value generation on page 5-18

• Pause output generation on page 5-18

• Remap output generation on page 5-19

• Output data generation on page 5-19.
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Constant definitions

The constant IDENTIFICATION holds the identification information about the system. 
The default setting for this value is all zero. The maximum size for this value is the 
width of the read and write data buses of the module.

ResetStatus value generation

This register is modified through the ResetStatusSet and ResetStatusClear addresses. 
When writing to the set location, each data bit that is HIGH sets the corresponding bit 
in the ResetStatus register. All other bits of the register are unaffected. Each data bit that 
is set HIGH when writing to the clear location will clear the corresponding bit in the 
ResetStatus register, leaving all other bits unaffected.

The power-on-reset bit (bit 0) cannot be set by writing to the set location, as it is only 
set HIGH during system reset. It can be cleared in the same manner as the other register 
bits.

Pause output generation

A register is used to hold the wait for interrupt state value. The Pause output is 
synchronously set HIGH (on the rising edge of PCLK) when the Pause location is 
written to, with any value, and is asynchronously set LOW by PRESETn, nFIQ or 
nIRQ. Once set HIGH, it can only be set LOW with a reset or an interrupt.

Figure 5-9 on page 5-19 shows the operation of setting and clearing the Pause registered 
output.
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Figure 5-9 Pause signal timing

Remap output generation
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5.3 Timers

The timers module is an APB slave, providing access to two interrupt generating 
programmable 16-bit Free-Running decrementing Counters (FRCs).

The main sections of the timers module are:

• two identical instantiations of a programmable 16-bit free-running counter

• prescale for each counter clock

• interrupt generation based on counter value.

The timers module is shown in Figure 5-10.

Figure 5-10 Timer module block diagram

5.3.1 Signal descriptions

The two sets of signals associated with the timers module are: 

• the external connections to the rest of the EASY world

• the internal connections between the timers module and the two FRC modules.

The signal descriptions for the timers module are listed in Table 5-6 on page 5-21.
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Table 5-6 APB signal descriptions for timer

Signal Type Direction Description

PCLK Peripheral clock Input This clock times all bus transfers. Both the LOW phase and 
HIGH phase of PCLK are used to control transfers.

PRESETn Peripheral reset Input The bus reset signal is active LOW and is used to reset the 
system.

PENABLE Peripheral 
enable

Input This enable signal is used to time all accesses on the peripheral 
bus. 

PSELCT Peripheral slave 
select

Input When HIGH, this signal indicates that this module has been 
selected by the APB bridge. This selection is a decode of the 
system address bus.

PADDR[5:2] Peripheral 
address bus

Input This is the peripheral address bus, which is used for decoding 
register accesses. The addresses become valid before 
PENABLE goes HIGH and remains valid after PENABLE 
goes LOW.

PWRITE Peripheral 
transfer direction

Input This signal indicates a write when HIGH and a read when LOW. 
It has the same timing as the peripheral address bus. 

PWDATA[15:0] Peripheral write 
data bus

Input The write peripheral data bus is driven by the bridge at all times.

PRDATA[15:0] Peripheral read 
data bus

Output The read peripheral data bus is driven by this block during read 
cycles (when PWRITE is LOW and PSELCT is HIGH).

INTCT Counter 1 
interrupt

Output Active HIGH interrupt signal to the interrupt controller module. 
This signal indicates an interrupt has been generated by counter 
1 having been decremented to zero.

INTCT2 Counter 2 
interrupt

Output Active HIGH interrupt signal to the interrupt controller module. 
This signal indicates an interrupt has been generated by counter 
2 having been decremented to zero.
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5.3.2 Function and operation of module

Two counters are defined as the minimum provided within a system, although this may 
easily be expanded. The same principle of simple expansion has been applied to the 
register configuration, allowing more complex counters to be used. 

Two modes of operation are available:

Free-running mode 

The counter wraps after reaching its zero value, and continues to 
count down from the maximum value. This is the default mode.

Periodic timer mode 

The counter generates an interrupt at a constant interval, reloading 
the original value after wrapping past zero.

5.3.3 Timer operation

The timer is loaded by writing to the Load register and, if enabled, counts down to zero. 
When zero is reached, an interrupt is generated. The interrupt may be cleared by writing 
to the Clear register.

After reaching a zero count, if the timer is operating in free-running mode it continues 
to decrement from its maximum value. If periodic timer mode is selected, the timer 
reloads the count value from the Load register and continues to decrement. In this mode 
the counter effectively generates a periodic interrupt. The mode is selected by a bit in 
the Control register.

At any point, the current counter value may be read from the Value register.

The counter is enabled by a bit in the Control register. At reset, the counter is disabled, 
the interrupt is cleared, and the Load register is set to zero. The mode and prescale 
values are set to free-running, and clock divide of one respectively.

Figure 5-11 on page 5-23 is a block diagram showing timer operation.
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Figure 5-11 Timer operation

The timer clock enable is generated by a prescale unit. The enable is then used by the 
counter to create a clock with a timing of one of the following:

• the system clock

• the system clock divided by 16, generated by 4 bits of prescale

• the system clock divided by 256, generated by a total of 8 bits of prescale.

Figure 5-12 shows how the timer clock frequency is selected in the prescale unit.

Figure 5-12 Prescale clock enable generation
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clock enable
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5.3.4 Register memory map

The base address of the timers module is not fixed and may be different for any 
particular system implementation. However, the offset of any particular register from 
the base address is fixed.

5.3.5 Timer register descriptions

TimerXLoad Read/write. This register contains the initial value to be loaded 
into the counter and is also used as the reload value in periodic 
mode. This register is the same width as the counter (default is 16 
bits).

TimerXValue Read-only. This location gives the current value of the counter.

TimerXClear Write-only. Writing to this location clears an interrupt generated 
by the counter.

TimerXControl Read/write. This register provides enable/disable, mode and 
prescale configurations for the counter.

Table 5-7 Memory map of the time APB peripheral

Address Read location Write location

TimerBase + 0x00 Timer1Load Timer1Load

TimerBase + 0x04 Timer1Value -

TimerBase + 0x08 Timer1Control Timer1Control

TimerBase + 0x0C - Timer1Clear

TimerBase + 0x20 Timer2Load Timer2Load

TimerBase + 0x24 Timer2Value -

TimerBase + 0x28 Timer2Control Timer2Control

TimerBase + 0x2C - Timer2Clear

TimerBase + 0x10 Timer1Test Timer1Test

TimerBase + 0x30 Timer2Test Timer2Test
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Figure 5-13 shows the control register.

Figure 5-13 The control register

TimerXTest Two special registers are provided for validation purposes, 
Timer1Test and Timer2Test. These locations should not be 
accessed during normal system operation.

Both registers are read/write and are 2 bits wide, as shown in 
Table 5-8.

The counter test mode bit is stored in a register in both FRCs. The test clock select bit 
is stored in a single register in the top-level timers module, but can be accessed from 
either test address.

0 00

Prescale

00

Mode

Enable

31 8 7 6 5 4 1 023

Undefined

Must be written as zero

Read as Undefined

Prescale bits

Mode Bit

0 - free running mode

1 - periodic timer mode

Enable Bit

0 - timer disabled

1 - timer enabled

0 0 0

Undefined

Clock
divided by

Stages of
prescale

0

4

8

Undefined

Bit 2

0

1

0

1

Bit 3

0

0

1

1

1

16

256

Undefined

...

UndefinedUndefined

Table 5-8 Test register bit functions

Bit Name Function

0 Test Counter test mode

1 TestClkSel Test clock select
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When the counter test mode bit is set, the selected 16-bit counter is divided into four 
separate 4-bit counters that continually loop round from 15 to 0. This reduces the testing 
time needed to ensure that the correct counting sequence is performed. Clearing this bit 
(default) brings the selected timer back to normal operation.

When the test clock select bit is set in either of the two test registers, a special test clock 
(NOT PENABLE ANDed with PSELCT) is fed into the prescale unit instead of the 
system clock (therefore both counters have to be using the same clock source, either 
normal or test). Clearing this bit (default) selects the system clock as the prescale clock 
input (normal operation).

5.3.6 System description

This section describes how the HDL code for the timers module is set out. A basic 
system block diagram, with information about the main parts of the HDL code, is 
followed by details of all the registers, inputs and outputs used in this module. This 
should be read together with the HDL code.

A basic block diagram of the timers module is shown in Figure 5-14. 

Figure 5-14 Timers module block diagram
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The timers module comprises two 16-bit programmable free-running counters, and 
clock prescale enable generation logic. The free-running counters comprise four linked 
4-bit counters, interrupt generation logic and counter control registers.

All registers used in the system are clocked from the rising edge of the system clock 
PCLK and use the asynchronous reset PRESETN.

5.3.7 Timer system description

A diagram of the timers module HDL file is shown in Figure 5-15.

Figure 5-15 Timers module system diagram

The main sections in this module are explained in the following paragraphs:

• Address decoder

• Test clock select generation on page 5-28

• Clock prescaler on page 5-28

• Output clock enable generation on page 5-28

• Output data generation on page 5-29.

Address decoder

This section is used to generate the TestSel signal, which is used to indicate an access 
to either of the test registers, and the Frcsel select lines to the FRCs based on the current 
address. As there are two instantiations (in the default system) of an identical FRC 
module, then part of the address decoding must be done at the previous system level.

- 1
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PADDR
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PreScale
En

Enable1

Enable2
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Test clock select generation

This register is used to store the current value of bit 1 of all counter test registers. A read 
or write to any of the test register addresses will access this single register.

Clock prescaler

The 8-bit prescale registers are used to generate the two prescale signals of divide by 16 
and divide by 256, by decrementing the current value of the registers. The enable signal 
PreScaleEn is used to control the operation of the registers, which by default is always 
set, but in test clock mode is a combination of PENABLE and PSELCT, allowing an 
output clock pulse to be generated for each read or write access to the timers module.

Output clock enable generation

The three different clock enable signals (equivalent to the system clock, the system 
clock divided by 16, and the system clock divided by 256) enable the timer clocks in the 
two FRC modules, based on the amount of prescale that is required.

Figure 5-16 and Figure 5-17 on page 5-29 show the timing of these enable signals.

Figure 5-16 Timer module counter enable timing - system clock selected

PCLK

Enable 1/2

Enable 0
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Figure 5-17 Timer module counter enable timing - test clock selected

Output data generation

This section is used to decode the current address during a read, and generate the correct 
data to be driven onto the APB read data bus. The address is compared with all of the 
register addresses, and the value of PRDATANext is set accordingly. This is then stored 
in the iPRDATA register to help decrease the output propagation time by using a 
registered output, rather than an output with the combinational delay of the large 
multiplexor. The PRDATA output is then driven by the register.

The read data is based on the FRC data outputs, with the local Test Clock Select register 
output also used when reading from a test location.

5.3.8 FRC system description

Two identical instances of the free-running counter block are included in the timers 
module. 

PCLK

PENABLE

PSELCT

Enable0

Enable1/2
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The basic block diagram of the free-running counter block is shown in Figure 5-18.

Figure 5-18 FRC module block diagram

5.3.9 FRC signal descriptions

Table 5-9 shows descriptions for the FRC signals.

Free-
running
counter

PWRITE

PRESETn

PCLK

Enable0

Frcsel

Enable1

Intfrc

PENABLE

PADDR[4:2]

PWDATA[15:0] Dataout[15:0]

Enable2

Table 5-9 Signal descriptions for FRC

Signal Type Direction Description

PCLK Peripheral clock Input Direct connection from timers module.

PRESETn Peripheral reset Input Direct connection from timers module.

PENABLE Peripheral enable Input Direct connection from timers module.

PADDR[4:2] Peripheral address Input Direct connection from timers module.

PWRITE Peripheral transfer

direction

Input Direct connection from timers module.

PWDATA[15:0] Peripheral write

data bus

Input Direct connection from timers module.

Frcsel FRC register select Input FRC register select, driven HIGH when a register in this 
FRC is addressed. There is a select line for each counter in 
the timers module.

Enable0 Enable prescale 0 Input Counter clock enable, divide by 1.

Enable1 Enable prescale 4 Input Counter clock enable, divide by 16.
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Figure 5-19 shows the FRC HDL file. 

Figure 5-19 FRC module system diagram

Enable2 Enable prescale 8 Output Counter clock enable, divide by 256.

Intfrc Interrupt output Output Interrupt output from the counter, generated when 16-bit 
counter reaches zero. There is an interrupt output for each 
counter in the timers module.

Dataout Read data output Output Read data output used to generate PRDATA for register 
reads. There is a read data output for each counter in the 
timers module.

Table 5-9 Signal descriptions for FRC (continued)

Signal Type Direction Description

Load
15:0

Count
15:0

iIntfrc

Test

Ctrl
7:0

Enable0

Enable1

Enable2

PreEnable

IntfrcCarry(4)

DataOut

Ctrl(6)

Ctrl(7, 3:2)

- 1

CountCtrl

CountEn

Load
pulse
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The main sections in this module are described in:

• Control, Test and Load registers

• Counter enable selection

• 16-bit counter

• Interrupt generation on page 5-33

• Output data generation on page 5-34.

Control, Test and Load registers

The Control, Test (bit zero only) and Load registers only change when written to, and 
hold their values at all other times.

Counter enable selection

The enable input to use is selected according to the prescale mode setting in the control 
registers. The selected input is then used to generate an internal enable, which is also 
gated with the enable bit of the control registers. An additional signal ensures that the 
load data value is clocked into the counters when a load operation is performed.

16-bit counter

The counter is split up into four 4-bit parts (nibbles) to allow efficient testing. Each 
nibble is used to generate a carry signal (when the 4-bit counter overflows), which is 
passed to the next nibble as an enable. When Counter Test Mode is selected, all carry 
enable signals are set HIGH, forcing all four nibbles to count at the same time.

The 16-bit counter value is stored in registers, which are enabled using the externally 
generated counter enable. The input to the registers is normally the output from the four 
4-bit decrementers, but when a new value is written to the Load registers, or when the 
counter reaches zero and periodic mode is set, the current value of the Load registers is 
stored in the counter registers.

The operation of the counter is shown in Figure 5-20 on page 5-33.
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Figure 5-20 FRC module count down diagram

Interrupt generation

An interrupt is generated when the full 16-bit counter reaches zero, and is only cleared 
when the TimerClear location is written to. A register is used to hold the value until the 
interrupt is cleared. The most significant carry bit of the counter is used to detect the 
counter reaching zero. 

Count
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- 1
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Count
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15:12- 1
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Output data generation

The current address is used to generate the internal read data value for the Test, Load, 
Value and Control locations. As the Test and Control registers are not 16-bits, then the 
read values are padded out with the Load register value, minimizing the number of 
output changes when different registers are read.

This read data value is then passed to the timers module, and then driven onto the APB 
read data bus.
5-34 Copyright © 1999 ARM Limited. All rights reserved. DDI0170A



APB Modules 
5.4 Peripheral to bridge multiplexor

The peripheral to bridge multiplexor module is used to connect the read data outputs of 
the peripheral bus slaves to the peripheral bus bridge module, using the PSELx select 
signals to select the bus slave outputs to use. Figure 5-21 shows an interface diagram for 
the peripheral to bridge multiplexor module.

Figure 5-21 Peripheral to bridge multiplexor module interface diagram

This module is a simple multiplexor, with the read data buses from all peripheral bus 
slaves as the inputs, using the slave select bridge outputs as the select inputs, with a 
single read data bus as the output to the bridge module. When slaves are added to the 
system or removed, the input connections to this module must be altered to account for 
the changes.

5.4.1 Signal descriptions

Table 5-10 shows the signal descriptions for the peripheral to bridge multiplexor 
module.

5.4.2 Function and operation of module

The peripheral to bridge multiplexor controls the routing of read data from the 
peripheral bus slaves to the bridge. The bridge determines which is the currently 
selected slave, and the multiplexor is used to connect the output of the selected slave to 
the input of the bridge.

The read data is switched for the duration of an APB transfer, when the PSELx signal 
is valid.

MuxP2B

PSELx

PRDATA

PRDATAx

Table 5-10 Signal descriptions for peripheral to bridge multiplexor module

Signal Type Direction Description

PSELx Slave select Input Each APB slave has its own slave select signal, and this signal 
indicates that the current transfer is intended for the selected 
slave.

PRDATAx[31:0]

PRDATA[31:0]

Read data bus Input/ 
output

The read data bus is used to transfer data from bus slaves to the 
bridge during read operations.
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A default value of zero is used when no slaves are selected.

5.4.3 System description

The following paragraphs give a description of how the HDL code for the peripheral to 
bridge multiplexor is set out. A simple system block diagram, with information about 
the main parts of the HDL code, is followed by details of the registers, inputs, and 
outputs used in the module. This part should be read together with the HDL code.

Figure 5-22 shows the peripheral to bridge module block diagram.

Figure 5-22 Peripheral to bridge multiplexor module block diagram

The peripheral to bridge multiplexor module is comprised of a set of multiplexors for 
the slave read data.

A diagram of the peripheral to bridge multiplexor HDL file is shown in Figure 5-23.

Figure 5-23 Peripheral to bridge multiplexor module system diagram

To allow the use of case statements for the multiplexors, the PSEL slave select inputs 
are combined to create a multi-bit bus signal. This bus is then used as the select control 
on the read data multiplexor.

One input to the PRDATA multiplexor is tied LOW, so that when no peripheral slaves 
are selected, no read data appears on PRDATA.

Peripheral to bridge
multiplexor module

Read data
multiplexers

Multiple slave
PRDATA inputs

PRDATA
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PselBus
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Chapter 6 
Behavioral Modules

This chapter describes the behavioral modules found in the Example AMBA SYstem 
(EASY). The behavioral modules are only available for use during system simulation, 
as they all read in or generate locally stored data files. This chapter contains the 
following sections:

• External RAM on page 6-2

• External ROM on page 6-5

• Internal RAM on page 6-8

• Test interface driver on page 6-12

• Tube on page 6-24.
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6.1 External RAM

The external RAM module is a simple model of a 32K x 8 off-chip SRAM, which can 
be initialized with data from a local file.

Figure 6-1 shows the external RAM module interface.

Figure 6-1 External RAM module interface diagram

The main sections of this module are:

• memory initialization from local data file

• memory read and write from external bus.

6.1.1 Signal descriptions

Table 6-1 shows the signal descriptions for the external RAM module.

ExtRAM

A

CSn

WEn

OEn

DQ

Table 6-1 Signal descriptions for the external RAM module

Signal Type Direction Description

A[14:0] External address Input The external address input.

DQ[7:0] External data I/O Input/ 
output

The external data bus, sampled during write transfers and driven 
during read transfers.

CSn Chip enable Input When LOW this signal indicates that the chip has been selected 
and should respond to the current transfer.

WEn Write enable Input When LOW this signal indicates a write transfer. 

OEn Output enable Input When LOW this signal indicates a read transfer, and enables the 
module to drive data onto DQ.
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6.1.2 User-defined settings

Table 6-2 shows the user-defined settings for the external RAM module.

6.1.3 Function and operation of module

Operations described are:

• Memory initialization from local data file

• Memory read and write from external bus.

Memory initialization from local data file

On simulation initialization, the external RAM module loads in data from the file 
specified in the instantiating top-level memory module. This must be stored as a 
two-hex character per line data file, which cannot contain more data than the model will 
support. An example file ram.dat is shown in Example 6-1.

Example 6-1

00
01
0F
F7

The default configuration for the external RAM modules is in groups of four, which are 
used to allow memory accesses of full 32-bit words, with a byte stored in each memory 
module.

Memory read and write from external bus

The external RAM is accessed by transfers through the static memory interface module, 
allowing both reads from memory and writes to memory. These are performed as 32-bit 
word transfers, with each byte connected to one of the four memory models. 

Table 6-2 User-defined settings for the external RAM module

Signal Type
Default
setting

Description

RAMDEPTH Memory depth 32 This sets the memory depth in KB. If the value is increased from the 
default setting, then the address input bus A must also be increased to 
allow all memory to be addressed.
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Refer to Static memory interface on page 4-53 in Chapter 4 AHB Modules, for timing 
diagrams showing read and write transfers to external memory.
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6.2 External ROM

The external ROM module is a simple model of a 16K x 8 off-chip EPROM, which can 
be initialized with data from a local file.

Figure 6-2 shows the external ROM module interface.

Figure 6-2 External ROM module interface diagram

The main sections of this module are:

• memory initialization from local data file

• memory read from external bus.

6.2.1 Signal descriptions

Table 6-3 shows signal descriptions for the external ROM module.

ExtROM

A

CEn

OEn

Q

Table 6-3 Signal descriptions for the external ROM module

Signal Type Direction Description

A[13:0] External address Input The external address input.

Q[7:0] External data out Output The external data bus, driven during read transfers.

CEn Chip enable Input When LOW this signal indicates that the chip has been selected 
and should respond to the current transfer.

OEn Output enable Input When LOW this signal indicates a read transfer, and enables the 
module to drive data onto Q.
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6.2.2 User-defined settings

Table 6-4 shows user-defined settings for the external ROM module

6.2.3 Function and operation of module

Operations described are:

• Memory initialization from local data file

• Memory read from external bus.

Memory initialization from local data file

On simulation initialization, the external ROM module loads in data from the file 
specified in the instantiating top-level memory module. This must be stored as a 
two-hex character per line data file, which cannot contain more data than the model will 
support. An example file rom.dat is shown in Example 6-2.

Example 6-2

00
01
0F
F7

The default configuration for the external ROM modules is in groups of four, which are 
used to allow memory accesses of full 32-bit words, with a byte stored in each memory 
module.

Memory read from external bus

The external ROM is accessed by transfers through the static memory interface module, 
allowing reads from memory. These are performed as 32-bit word transfers, with each 
byte connected to one of the four memory models.

Table 6-4 User-defined settings for the external ROM module

Signal Type
Default
setting

Description

ROMDEPTH Memory depth 16 This sets the memory depth in KB. If the value is increased from the 
default setting, then the address input bus A must also be increased to 
allow all memory to be addressed.
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Refer to Static memory interface on page 4-53 in Chapter 4 AHB Modules, for timing 
diagrams showing read and write transfers from external memory.
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6.3 Internal RAM

The internal RAM is a simple little-endian model of a 1KB x 32 on-chip SRAM, which 
can be initialized with data from a local file. As this module is connected to the main 
system bus, there are AHB and ASB versions available. The AHB version is shown in 
Figure 6-3.

Figure 6-3 AHB internal RAM module interface diagram

The main sections of this module are:

• memory initialization from local data file

• memory read and write from system bus.

6.3.1 AHB signal descriptions

Table 6-5 shows signal descriptions for the AHB internal RAM module.

IntMem

HRDATA

HREADYout

HRESP

HCLK

HRESETn

HADDR

HTRANS

HWRITE

HSIZE

HWDATA

HSELIntMem

HREADYin

Table 6-5 Signal descriptions for the AHB internal RAM module

Signal Type Direction Description

HCLK Bus clock Input This clock times all bus transfers.

HRESETn Reset Input The bus reset signal is active LOW, and is used to reset the 
system and the bus.

HADDR[31:0] Address bus Input The 32-bit system address bus.

HTRANS[1:0] Transfer type Input Indicated the type of the current transfer, which can be 
NONSEQUENTIAL, SEQUENTIAL, IDLE or BUSY.

HWRITE Transfer direction Input When HIGH this signal indicates a write transfer, and when 
LOW, a read transfer.
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6.3.2 User-defined settings

Table 6-6 shows user-defined settings for the external RAM module

.

HSIZE[2:0] Transfer size Input Indicates the size of the transfer, which is typically byte 
(8-bit), halfword (16-bit) or word (32-bit). The protocol 
allows for larger transfer sizes up to a maximum of 1024 bits.

HWDATA[31:0] Write data bus Input The write data bus is used to transfer data from the master to 
the bus slaves during write operations. A minimum data bus 
width of 32 bits is recommended. However, this may easily 
be extended to allow for higher bandwidth operation.

HSELIntMem Slave select Input Each AHB slave has its own slave select signal and this 
signal indicates that the current transfer is intended for the 
selected slave. This signal is simply a combinatorial decode 
of the address bus.

HRDATA[31:0] Read data bus Output The read data bus is used to transfer data from bus slaves to 
the bus master during read operations. A minimum data bus 
width of 32 bits is recommended. However this may easily 
be extended to allow for higher bandwidth operation.

HREADYin

HREADYout

Transfer done Input / 
output

When HIGH the HREADY signal indicates that a transfer 
has finished on the bus. This signal may be driven LOW to 
extend a transfer.

HRESP[1:0] Transfer response Output The transfer response provides additional information on the 
status of a transfer. This module will always generate the 
OKAY response.

Table 6-5 Signal descriptions for the AHB internal RAM module (continued)

Signal Type Direction Description

Table 6-6 User-defined settings for the external RAM module

Signal Type
Default
setting

Description

MemSize Memory size 1 This sets the memory size in KB.

FileName Input filename intram.dat This points to the local input data file that is read in after reset.
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6.3.3 Function and operation of module

Operations described are:

• Memory initialization from local data file

• Memory read and write from system bus on page 6-11.

Memory initialization from local data file

On simulation initialization, the internal RAM module loads in data from the file 
specified in the FileName setting. This must be stored as an 8-character Verilog 
$readmemh format data file (for both VHDL and Verilog format models), which cannot 
contain more data than the model will support. Address lines (starting with @) and single 
line comments (starting with //) are valid, but all other non-value characters are not 
allowed. Loading starts from address zero, and continues incrementing on word 
boundaries until an address line is found in the file. Loading then continues from that 
address. All values are initialized to zero before loading is started. An example 
intram.dat file is shown in Example 6-3.

Example 6-3

ea00000b
ea000005
// Data values stored at 0x00000200
@00000200
01234567
89ABCDEF

The internal RAM module stores data as 32-bit words, and in default configuration is 
256 words deep, which is equivalent to 1KB. This is only accessible once the normal 
memory map is in use (Remap set HIGH), and occupies the address range from 
0x0000 0000 to 0x0000 03FF. If the size of the internal memory is modified, then the 
address range that it occupies will also change. This will require the system decoder to 
be updated so that it only selects the internal RAM module over the correct address 
range.
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Memory read and write from system bus

The internal RAM module is accessed by standard system bus transfers, allowing both 
reads from memory and writes to memory. These can be performed as 32-bit word, 
16-bit halfword or 8-bit byte transfers. Each byte lane of the transfer is treated 
separately, so a byte write to byte zero will not alter the values stored in the other three 
bytes at that word address. Data reads are all treated the same, and the full 32-bit word 
at the selected word address will be driven out onto the system data bus.

All transfers are performed with zero wait states. An ERROR response is never 
generated.
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6.4 Test interface driver

The test interface driver (Ticbox) is an external module which drives the test interface 
lines to gain access to the AHB bus, and then applies test vectors from a test input file. 
This test input file is the output from a C program written with the TICTalk command 
language.

Before reading this section, you should be familiar with AMBA and its test interface 
protocol. If not, refer to the AMBA Specification for further information. Figure 6-4 
shows an interface diagram of the ticbox module.

Figure 6-4 Ticbox module interface diagram

The main sections of this module are:

• the input file reader

• output vector generation

• read data expected value checking.

TIF

C

Ticbox

nResetTESTCLK

TESTREQA

TESTREQB

TESTBUS

TESTACK

TIC

EBI

AMBA AHB system

AHB busAHB modules

TICTalk
source file

'C' compiler

Test input
file
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6.4.1 Signal descriptions

Table 6-7 shows signal descriptions for the Ticbox module

.

Table 6-7 Signal descriptions for the Ticbox module

Signal Type Direction Description

TESTCLK Test mode clock Input This is the system clock HCLK in test mode. All the test 
interface transactions are timed using this signal.

nReset External reset Input Active LOW external reset input. Used to control the operation 
of the Ticbox module.

TESTREQA Test request A Output Indicates test vector mode. Refer to the test interface chapter in 
the AMBA Specification for further information about the test 
protocol. It is driven early in the LOW phase of TESTCLK 
and held to the falling edge of TESTCLK.

TESTREQB Test request B Output Indicates test vector mode. Refer to the test interface chapter of 
the AMBA Specification for further information about the test 
protocol. It is driven early in the LOW phase of TESTCLK 
and held to the falling edge of TESTCLK.

TESTACK Test acknowledge Input Indicates that the test bus has been granted and also that a test 
access has been completed.

TESTBUS[31:0] Test data bus Input/ 
output

32-bit bidirectional test port.
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6.4.2 User-defined settings

Table 6-8 shows user-defined settings for the Ticbox module.

6.4.3 Function and operation of module

The AHB and ASB versions of the Ticbox are internally different, even though the 
external ports are identical. Due to the pipelined nature of the AHB, the read data 
becomes available one cycle later than the ASB read data relative to the generation of 
the read test vector, so the AHB Ticbox includes an extra delay stage in the read data 
checking logic.

Once the external system reset input has been de-asserted, the Ticbox requests access to 
the system. This is done by asserting TESTREQA HIGH and TESTREQB LOW. The 
Test Interface Controller (TIC) then indicates when test mode has been entered by 
asserting TESTACK HIGH. Once in test mode, the test input file is then read and 
translated by the Ticbox into AMBA test interface transactions, using the TESTREQA 
and TESTREQB signals.

The Ticbox applies test vectors to the system every time the TESTACK line indicates 
the system is ready. On read cycles the value is masked and then compared with the 
masked expected value given in the test vector file. An error message is given if the 
comparison fails. System testing ends once the end of the input vector file is reached, 
and the Ticbox indicates this by asserting both TESTREQA and TESTREQB LOW to 
end the simulation.

A typical simulation output display while running a TIC program is shown in 
Example 6-4 on page 6-15.

Table 6-8 User-defined settings for the Ticbox module

Name Type Default setting Description

FileName Input 
filename

infile.tif (VHDL)

infile.sim (Verilog)

This points to the local input vector file that is read in 
a line at a time as each vector is performed.

HaltOnMismatch Read error 
setting

FALSE This is used to control the operation of the module 
when a read error is detected. When set FALSE, a 
warning message will be displayed showing the read 
error, and if set TRUE, the simulation will be halted 
when a read error is detected.

Verbosity Comment 
display

TRUE Controls the displaying of input vector file comments. 
When set TRUE, comments are displayed, and when 
set FALSE, comments are not displayed. This does 
not affect the displaying of other system messages.
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Example 6-4

#    Time: 2603 ns Iteration: 0 Instance:/u_ticbox
# ** Note: ; Addressing location 80000614

#    Time: 2703 ns Iteration: 0 Instance:/u_ticbox
# ** Note: ; Writing data 00000005

#    Time: 3003 ns Iteration: 0 Instance:/u_ticbox
# ** Note: ; Addressing location 80000618

#    Time: 3103 ns Iteration: 0 Instance:/u_ticbox
# ** Note: ; Reading. Expected: 00000010. Mask 0000003F

#    Time: 3403 ns Iteration: 0 Instance:/u_ticbox
# ** Note: ; Addressing location 8000061c

#    Time: 3703 ns Iteration: 0 Instance:/u_ticbox
# ** Warning: Error on vector read. Expected: 00000010 Actual: 00000011 Mask: 
0000003F
#    Time: 3753 ns Iteration: 0 Instance:/u_ticbox

#    Time: 4003 ns Iteration: 0 Instance:/u_ticbox
# ** Note: ; Addressing location 80000584

#    Time: 4303 ns Iteration: 0 Instance:/u_ticbox
# ** Note: ; Writing data 00000000

#    Time: 4603 ns Iteration: 0 Instance:/u_ticbox
# ** Note: ; Addressing cycle at end

#    Time: 4903 ns Iteration: 0 Instance:/u_ticbox
# ** Note: ; Exiting Test Mode

#    Time: 5203 ns Iteration: 0 Instance:/u_ticbox
# ** Failure: Vector run completed: halting simulation
#    Time: 77703 ns Iteration: 0 Instance:/u_ticbox
# Break at ticbox.vhd line 288
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 6-15



Behavioral Modules 
In Example 6-4 on page 6-15 you will note that a read error has occurred, but the error 
message is broadcast later in the simulation. This is because there are a number of clock 
cycles between when the read is requested, and when the information is sampled by the 
Ticbox to be compared with the expected value. The example simulation has been run 
without HaltOnMismatch set, and therefore the program does not stop after the error has 
been detected. Verbosity is set, as all TIF vector comments have been displayed in the 
simulation output.

6.4.4 TICTalk command language

TICTalk is a very simple set of commands that allows the development of validation 
programs for the AMBA blocks. The TICTalk language is a small library of C functions. 
Once a TICTalk program is compiled and run, it produces a test input file in what is 
called the TIC Interface Format (TIF) which may be applied using the Ticbox module 
to test the desired block.

The AMBA test interface is able to perform the following actions:

• address vector

• write vector

• burst of write vectors

• read vector

• burst of read vectors

• change from write to read and read to write.

The TICTalk language performs these actions by combining together a number of basic 
commands. These commands are described in the following sections.

6.4.5 TICTalk commands

The basic TICTalk commands are described in the following sections:

• Write address vector (A) on page 6-17

• Write test vector (W) on page 6-17

• Read test vector (R) on page 6-17

• Burst read test vector (B) on page 6-17

• Repeat last command (L) on page 6-17

• Include the string message into the TIF (C) on page 6-17

• Exit test mode (E) on page 6-17.
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Write address vector (A)

The A(int32 address_vector) command is used to address a new location in the system. 
It will always be followed by a write test vector, or a read test vector command in order 
to perform the required action (write or read data) at that location. 

Write test vector (W)

The W(int32 write_vector) command generates a data vector write. It can be used after 
an address vector (single write), another write test vector (burst write) or a read test 
vector (change from reads to writes).

Read test vector (R)

The R(int32 expected_value, int32 mask_value) command generates a data vector 
read. The read value is masked with the specified mask_value and compared with the 
expected_value. If the comparison is false, an error message will be broadcast. It can be 
used after an address vector (single read), or a write test vector (change from writes to 
reads), and to indicate the last read on a burst, but it cannot be used after another read 
test vector. To signal a burst sequence of reads, the burst read vector command should 
be used instead.

Burst read test vector (B)

The B(int32 expected_value, int32 mask_value) command is similar to the read test 
vector. The only difference is that it can only be used if the next action is another read. 
This is because, in this case, a change of bus direction is not needed. Otherwise the 
function performed is the same.

Repeat last command (L)

The L(int32 number_of_loops) command signals that the last action should be repeated 
the specified number of times. This is useful when, for example, a burst of reads or 
writes from the same address location needs to be performed.

Include the string message into the TIF (C)

The C(char * message) command is used to add extra simulation comments.

Exit test mode (E)

The E() command should always be used at the end of a program so the Ticbox can 
signal the end of the test.
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6.4.6 Programming with TICTalk commands

The possible combinations that are available when using the TICTalk commands are:

Single writes The command sequence will be: A-W A-W A-W, and so on.

Single reads The command sequence will be: A-R A-R A-R, and so on.

Burst of writes The command sequence will be: A-W-W-W, and so on. 

If the value to be written is always the same, the command 
sequence could also be A-W-L, specifying on the L command the 
number of writes required.

Burst of reads This is a special case. After the A command, B (burst read vector) 
should be used on consecutive reads, and only on the last read of 
the burst do we apply the R command. Therefore the sequence will 
be: A-B-B-B-R A-B-B-....-B-R, and so on.

If the value to be read is expected always to be the same, or there 
is no need to check it against an expected value, the sequence 
could also be A-B-L-R, with the L command specifying the number 
of reads required.

Change from read to write 

This change can only be made after a R command (R-W), and not 
after a B command.

Change from write to read 

If the change is for a single read, the sequence W-R is used. On the 
other hand if the change is for a read burst, the W-B sequence is 
used (W-B-B-...-B-R).
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6.4.7 The TICTalk file

An example C program using the TICTalk commands is shown in Example 6-5.

Example 6-5

#define CT1Load Counter_Base + 0x00
#define CT1Value Counter_Base + 0x04
#define CT1Control Counter_Base + 0x08
#define CT1Clear Counter_Base + 0x0C 
#define CT1Test Counter_Base + 0x10 

#define MaskAll     0x00000000
#define NoMask      0xFFFFFFFF
#define MaskControl 0x000000CC
#define MaskValue   0x0000FFFF
#define DUMMY       0x12345678

#include “header.h”
#include “ticmacros.h”

int main()
{
  A(CT1Load)
  W(0x55555555)
  A(CT1Control)
  W(0x000000C0) /* Counter Enabled, Periodic Mode, Prescale 0 */
  A(CT1Value)
  R(0x55555547, MaskValue)
  A(CT1Load)
  W(0xDADADADA)
  B(0xDADADADA, MaskValue)    /* Read CT1Value */
  R(0x000000C0, MaskControl)  /* Read CT1Control */
  A(CT1Value)
  R(0xAAAAAAB8, MaskAll)
  W(0x000000C4)          /* Write to CT1Control */
  W(DUMMY)               /* Write to CT1Clear   */
  L(5)                   /* Repeat last write 5 times */
  E()
}
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Example 6-5 on page 6-19 shows the TICTalk commands accept 32-bit integers as 
arguments. These can be specified using the #define directive, immediate values or 
normal C variables. This C-like approach provides the flexibility to develop more 
elaborate tests and new extended functions. For example, the basic commands could be 
used to build a pair of functions for reading and writing vectors that automatically take 
care of bus turnaround and address vectors.

The ticmacros.h file includes all the macro definitions for each command. These 
macros are expanded to generate a test input file in a format that can be read by the 
Ticbox.

The header.h file contains the base address definitions for the different blocks in the 
system. This is where the Counter_Base constant should be defined. This ensures 
portability of the test program to other systems with different peripheral address 
mapping.

6.4.8 Generating a test input format file

To generate a TIF file, the TICTalk program should be C compiled (using gcc for 
example) in the following way:

gcc -ansi source_file ticmacros.c -o object_file

Afterwards the object_file should be run and its output redirected to a file with the same 
name as the generic variable FileName defined in the Ticbox, for example:

object_file > infile.tif

This output file should then be copied or linked to the directory where the Ticbox 
simulation model exists.

6.4.9 TIF format file

The TIF file is very similar to the TICTalk file as shown in Example 6-6 on page 6-21, 
with the difference that all the constant definitions have been substituted with their 
hexadecimal values and each line reflects a single test cycle. The previous example 
compiled and executed will output the following TIF. Lines preceded with a semicolon 
(;) are comments that the simulator will print on the screen while the test is being 
executed.
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Example 6-6

; Addressing location 84000000
A 84000000
; Writing data 55555555
W 55555555
; Addressing location 84000008
A 84000008
; Writing data 000000C0
W 000000C0
; Addressing location 84000004
A 84000004
; Reading. Expected: 55555547. Mask: 0000FFFF
R 55555547 0000FFFF
A ZZZZZZZZ
; Addressing location 84000000
A 84000000
; Writing data DADADADA
W DADADADA
; Reading. Expected: DADADADA. Mask: 0000FFFF
R DADADADA 0000FFFF
; Reading. Expected: 000000C0. Mask: 000000CC
R 000000C0 000000CC
A ZZZZZZZZ
; Addressing location 84000004
A 84000004
; Reading. Expected: AAAAAAB8. Mask: 00000000
R AAAAAAB8 00000000
A ZZZZZZZZ
; Writing data 000000C4
W 000000C4
; Writing data 12345678
W 12345678
; Looping for 5 cycles
L 5
; Addressing cycle at end
A 00000000
; Exiting Test Mode
E ZZZZZZZZ
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6.4.10 SIM format file

The Verilog Ticbox requires the input file to be in the SIM format, which is formatted 
as a Verilog ̀ include input file, with each test vector calling a task in the Verilog Ticbox 
behavioral module.

A SIM file is generated from a TIF file using the conversion script tif2sim in the 
following manner:

tif2sim infile.tif > infile.sim

Comments use the Verilog style double slash (//), and due to the properties of Verilog 
`include files, are not displayed in the simulation output. The Verilog Ticbox directly 
generates the simulation comments based on the test vector that is being run.

The TIF file above is shown in Example 6-7 in SIM format:

Example 6-7

// Addressing location 84000000 
A(32'h84000000);

// Writing data 55555555 
W(32'h55555555);

// Addressing location 84000008 
A(32'h84000008);

// Writing data 000000C0 
W(32'h000000C0);

// Addressing location 84000004 
A(32'h84000004);

// Reading. Expected: 55555547. Mask: 0000FFFF 
R(32'h55555547, 32'h0000FFFF);
A(32'hZZZZZZZZ);

// Addressing location 84000000 
A(32'h84000000);

// Writing data DADADADA 
W(32'hDADADADA);

// Reading. Expected: DADADADA. Mask: 0000FFFF 
R(32'hDADADADA, 32'h0000FFFF);
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// Reading. Expected: 000000C0. Mask: 000000CC 
R(32'h000000C0, 32'h000000CC);
A(32'hZZZZZZZZ);

// Addressing location 84000004 
A(32'h84000004);

// Reading. Expected: AAAAAAB8. Mask: 00000000 
R(32'hAAAAAAB8, 32'h00000000);
A(32'hZZZZZZZZ);

// Writing data 000000C4 
W(32'h000000C4);

// Writing data 12345678 
W(32'h12345678);

// Looping for 5 cycles 
L(32'd5);

// Addressing cycle at end 
A(32'h00000000);

// Exiting Test Mode 
E(32'hZZZZZZZZ);
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 6-23



Behavioral Modules 
6.5 Tube

The tube is a simple method of passing system messages from a test program to the 
display, and allows a test program to stop the simulation.

Figure 6-5 shows the tube module interface.

Figure 6-5 Tube module interface diagram

The main sections of this module are:

• message output to simulator

• message output to file

• simulation termination control.

6.5.1 Signal descriptions

Table 6-9 shows signal descriptions for the tube module.

TUBE

XD

XCSN

XWEN

Simulator display
and text file

Table 6-9 Signal descriptions for the tube module

Signal Type Direction Description

XD[31:0] External data Input This is the external data bus, which is sampled by this module 
during write transfers.

XCSN[3:0] External chip select Input These signals are active LOW chip enables. 

XWEN[3:0] External write enable Input This is the active LOW memory write enable. For 
little-endian systems, XWEN[0] controls writes to the least 
significant byte and XWEN[3], the most significant. The 
example system is configured to be little-endian.
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6.5.2 User-defined settings

Table 6-10 shows user-defined settings for the tube module.

6.5.3 Function and operation of module

The tube module is used to perform program message and simulation termination 
control. It acts as a one-way communications port through which ASCII information 
can be passed.

Messages are written, one byte at a time, to the tube model location. In the default 
system this is address range 0x2000 0000 to 0x2FFF FFFF, detected by the model using the 
external enable XCSN[2]. These bytes are buffered until a terminating control character 
is written to the tube, or the buffer overflows (default buffer length is 80 characters). The 
message is then printed by the simulator, and written to the output text file. An example 
message is:

# ** Note: TUBE: Hard Reset

In this example the message Hard Reset has been passed to the tube. The program 
running on the microcontroller can also terminate simulation by writing a control 
character to the tube with no message to produce the following assertion:

# ** Failure: TUBE: Program exit

All user messages sent to the simulator display are also recorded in the output text file.

The tube module only accepts the ASCII control characters shown in Table 6-11.

Table 6-10 User-defined settings for the tube module

Signal Type
Default
setting

Description

OutFile Output filename Tube.txt This points to the local output data file that is written to during 
simulation when messages are passed to the tube.

Table 6-11 Valid tube ASCII control characters

ASCII 
character

Decimal 
value

Tube 
function

Control D (^D) 04 Exit test 

Linefeed 10 Print output

Carriage return 13 Print output
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Other standard alphanumeric characters will be stored in the buffer until displayed. The 
values for commonly used display characters are shown in Table 6-12.

Table 6-12 Commonly used ASCII alphanumeric characters

ASCII 
character

Decimal 
value

0-9 48-57

a-z 97-122

A-Z 65-90

space 32

_ 95

# 35
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Chapter 7 
Designer’s Guide

This chapter briefly describes adding new modules to the EASY microcontroller. Since 
AMBA has been designed specifically to be modular, little change needs to be made to 
other elements when a component is added or removed. The chapter contains the 
following sections:

• Adding bus masters on page 7-2

• Adding AHB slaves on page 7-3

• Adding APB peripherals on page 7-4.
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7.1 Adding bus masters

For bus masters, the arbiter is the only block that requires changes.

The arbiter currently has facilities for up to two more masters without any modification. 
A new master needs to be connected to the appropriate HBUSREQx and HGRANTx 
signals. This can be done by altering the top-level HDL file, which connects all AHB 
modules together. 

Note
 If a system requires more than four masters, the arbiter HDL file will also need to be 
modified.

7.1.1 Arbiter modifications

When modifying the arbiter the following rules must be followed:

• The ARM core should be the default master (granted on reset), and granted when 
no masters are requesting the bus.

• The Test Interface Controller (TIC) should have the highest priority (to allow test 
access under all conditions).

• Only one master should tie its HBUSREQx permanently HIGH.

• Currently the ARM bus master always asserts HBUSREQx, thus no other bus 
master should constantly request the bus. Consequently the ARM must be the 
lowest priority master, as masters of lower priority than the ARM will never get 
granted.

If more sophisticated round-robin type arbitration schemes are used, the latter point will 
no longer be valid. Alternative arbitration schemes are not considered further in this 
document.

7.1.2 Bus master requirements

New designs of bus master must drive all the relevant signals at appropriate times. For 
more information consult the AMBA Specification.
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7.2 Adding AHB slaves

When a slave is added, the decoder needs to be modified. This will add an HSELx 
signal for the new slave. The central slave to master multiplexor must also have extra 
connections added for the new slave.

7.2.1 AHB slave modifications

When adding new AHB slaves, care should be taken to:

• plan the slave position in the memory map

• consider any issues concerning the remapping of memory to allow the external 
boot ROM to appear at location zero

• decode as few address lines as possible, to keep the slave address decode section 
gate count low

• ensure that all areas of address space have one, and only one, slave selected.

The default slave must be set so that all holes in the memory map are filled. If any holes 
are left without a slave to drive the HREADY line, then any accesses to this area will 
cause the system to lock, with HREADY staying LOW until a system reset.

7.2.2 Slave requirements

These vary according to the function of the slave. Special cases like external bus 
interfaces (which must also consider the requirements of the TIC), or the AHB to APB 
bridge interface have more complex requirements. For more information consult the 
AMBA Specification.
DDI0170A Copyright © 1999 ARM Limited. All rights reserved. 7-3



Designer’s Guide 
7.3 Adding APB peripherals

When adding a peripheral, the APB bridge needs to be modified. This will add a new 
PSELx signal for the new peripheral. The central peripheral to bridge multiplexor must 
also have extra connections added for the new peripheral.

7.3.1 APB bridge modifications

When adding new PSELx lines similar steps should be taken to those outlined in AHB 
slave modifications on page 7-3, although reset memory map will not be an issue for 
APB peripherals.

7.3.2 Peripheral requirements 

When designing APB peripherals, ensure that the resulting hardware has a low power 
consumption. The following guidelines should be followed where possible:

• Do not use PCLK in peripherals unless absolutely necessary as its use will 
dramatically increase power consumption.

• Ensure that peripherals cannot drive PRDATA[31:0] during reset (by including a 
PRESETn term on the output enable control).

Designers familiar with conventional circuits connected to free-running clocks may find 
this design approach difficult. However, it will result in small circuits with low power 
consumption.
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