This repository has been archived by the owner on Sep 24, 2018. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
wmso.v
967 lines (824 loc) · 37.3 KB
/
wmso.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
(** Author: Christian Doczkal *)
From mathcomp Require Import all_ssreflect.
From RegLang Require Import misc languages dfa nfa regexp.
Set Implicit Arguments.
Unset Printing Implicit Defensive.
Unset Strict Implicit.
(** Preliminaries *)
(* to be used after simplification and rewriting with [tupleE] *)
Lemma behead_cons (T:Type) n (t : n.-tuple T) a : behead_tuple (cons_tuple a t) = t.
Proof.
rewrite /cons_tuple /behead_tuple /=.
case: t => t tP /=. set X := (behead_tupleP _). by rewrite (eq_irrelevance X tP).
Qed.
(* overly specific statement *)
Lemma count_mem1 (T : eqType) (x : T) n (s : n.-tuple T) (i : 'I_n) :
count_mem x s == 1 -> tnth s i = x -> index x s = i.
Proof.
rewrite (tnth_nth x). case: i => i /= Hi. case: s => /= s /eqP Hs. subst.
elim: s i Hi => //= a s IH i Hi. case: (ifP _) => /=.
- rewrite add1n eqSS => /eqP-> /=. destruct i as [|i] => //.
rewrite eqn0Ngt -has_count nth_cons => A B. case:notF.
rewrite -(negbTE A) -B. apply/(has_nthP x). exists i => //=.
- destruct i as [|i] => [/negbT /eqP //|/= A B C]. by rewrite (IH i).
Qed.
(** * Weak Monadic Second-Order Logic *)
(** We employ a minimal syntax for MSO formulas that permits only second-order
variables. *)
Inductive form :=
| Incl of nat & nat
| Less of nat & nat
| FF
| Imp of form & form
| Ex of form.
(** All variables are interpreted as finite sets (actually lists) of natural numbers *)
Definition valuation := nat -> seq nat.
Implicit Types (s t : form) (X Y : nat) (I : valuation) (N : seq nat).
Definition cons N I : valuation := fun k => if k is k'.+1 then I k' else N.
Fixpoint satisfies (I : valuation) (s : form) :=
match s with
| Incl X Y => {subset I X <= I Y}
| Less X Y => forall x y, x \in I X -> y \in I Y -> x < y
| FF => False
| Imp s t => satisfies I s -> satisfies I t
| Ex s => exists N, satisfies (cons N I) s
end.
Fixpoint bound (s : form) : nat :=
match s with
| Incl X Y => maxn X.+1 Y.+1
| Less X Y => maxn X.+1 Y.+1
| FF => 0
| Imp s t => maxn (bound s) (bound t)
| Ex s => (bound s).-1
end.
Definition agree n I I' := forall X, X < n -> I X =i I' X.
Lemma agree_dc n m I I' : n <= m -> agree m I I' -> agree n I I'.
Proof. move => A B X ltn_m. apply: B. exact: leq_trans A. Qed.
Lemma coincidence I I' s:
agree (bound s) I I' -> satisfies I s <-> satisfies I' s.
Proof.
elim: s I I' => [X Y|X Y||s IHs t IHt|s IHs] /= I I' C.
- split.
+ move => A B. rewrite -!C ?leq_maxl ?leq_maxr //. exact: A.
+ move => A B. rewrite !C ?leq_maxl ?leq_maxr //. exact: A.
- split => H x y;[rewrite -!C|rewrite !C]; try solve [exact: H|by rewrite ?leq_maxl ?leq_maxr].
- tauto.
- by rewrite -(IHs I I') ?(IHt I I') //; apply: agree_dc C; rewrite ?leq_maxl ?leq_maxr.
- have bound_s N : agree (bound s) (cons N I) (cons N I').
{ move => X. case: X C => //= Y A B. apply: A. rewrite -ltnS. by case: (bound s) B. }
split.
+ move => [N] sat_s. exists N. rewrite -IHs. eassumption. exact: bound_s.
+ move => [N] sat_s. exists N. rewrite IHs. eassumption. exact: bound_s.
Qed.
Lemma weak_coincidence I I' s : (forall X, I X =i I' X) -> satisfies I s -> satisfies I' s.
Proof. move => H. by rewrite (@coincidence I I' s). Qed.
(** ** Language-Theoretic Interpretation *)
Section Language.
Variables (char : finType).
Definition I_of n (v : seq (n.-tuple bool)) : valuation :=
fun X => [seq i <- iota 0 (size v) | nth false (nth [tuple of nseq n false] v i) X].
Definition vec_of (w : word char) : seq (#|char|.-tuple bool) :=
map (fun a => [tuple X == enum_rank a | X < #|char|]) w.
(* Unify these Lemmas *)
Lemma I_of_vev_max k (a:char) w:
k \in I_of (vec_of w) (enum_rank a) -> k < size w.
Proof. by rewrite /vec_of /I_of mem_filter mem_iota add0n size_map => /andP[_]. Qed.
Lemma I_of_vecP k a w: k < size w ->
(k \in I_of (vec_of w) (enum_rank a) = (nth a w k == a)).
Proof.
move => H. rewrite /vec_of /I_of mem_filter mem_iota add0n size_map /=.
rewrite (nth_map a) // H andbT.
rewrite (nth_map (enum_rank a)) ?size_tuple ?ltn_ord //.
by rewrite nth_ord_enum (inj_eq enum_rank_inj) eq_sym.
Qed.
Definition vec_lang n s := fun v : seq (n.-tuple bool) => satisfies (I_of v) s.
Definition mso_lang s := fun w => vec_lang s (vec_of w).
Lemma vec_of_hom : homomorphism vec_of.
Proof. exact: map_cat. Qed.
Lemma mso_preim s : mso_lang s =p preimage vec_of (@vec_lang #|char| s).
Proof. done. Qed.
End Language.
Notation vec n := [finType of n.-tuple bool].
(** ** Translation from MSO Formulas to NFAs *)
(** propositional connectives *)
Definition nfa_for_bot n := dfa_to_nfa (dfa_void (vec n)).
Definition nfa_for_imp n (A B : nfa (vec n)) :=
dfa_to_nfa (dfa_op implb (nfa_to_dfa A) (nfa_to_dfa B)).
(** MSO Primitives *)
Definition nfa_for_incl n X Y :=
{| nfa_state := [finType of unit];
nfa_s := setT;
nfa_fin := setT;
nfa_trans := fun p (v : vec n) q => nth false v X ==> nth false v Y |}.
Definition enfa_for_ltn n X Y : enfa (vec n) :=
{| enfa_s := [set false];
enfa_f := setT;
enfa_trans := fun (c : option (vec n)) p q =>
match p,c,q with
| false, Some a, false => ~~ nth false a Y
| true, Some a, true => ~~ nth false a X
| false, None, true => true
| _,_,_ => false
end; |}.
Definition nfa_for_ltn n X Y := nfa_of (enfa_for_ltn n X Y).
(** Existential Quantification *)
Definition prj0 n (w : seq (vec n.+1)) : seq (vec n) :=
map (fun v : vec (n.+1) => [tuple of behead v]) w.
Prenex Implicits prj0.
Definition trans_b0 n (A : nfa (vec n.+1)) (p q : A) :=
[exists b, nfa_trans p [tuple of b :: nseq n false] q].
Arguments trans_b0 [n] A p q.
Definition nfa_for_ex n (A : nfa (vec n.+1)) : nfa (vec n) :=
{| nfa_s := nfa_s A;
nfa_fin := [set p | [exists (q | q \in nfa_fin A), connect (trans_b0 A) p q]];
nfa_trans := fun p (v : vec n) q => [exists b, nfa_trans p [tuple of b::v] q] |}.
(** Translation to NFAs *)
Fixpoint nfa_of_form n s {struct s} : nfa (vec n) :=
match s with
| Incl X Y => nfa_for_incl n X Y
| Less X Y => nfa_for_ltn n X Y
| FF => nfa_for_bot n
| Imp s t => nfa_for_imp (nfa_of_form n s) (nfa_of_form n t)
| Ex s => nfa_for_ex (nfa_of_form n.+1 s)
end.
(** ** Correctness of the Translation *)
(** Correctness of Existential Quantification *)
Fixpoint glue (bs : seq bool) n (w : seq (vec n)) :=
match bs,w with
| b::bs,v::w => [tuple of b :: v] :: glue bs w
| b::bs,[::] => [tuple of b :: nseq n false] :: glue bs [::]
| nil,w => map (fun v : vec n => [tuple of false :: v]) w
end.
Lemma nfa_for_exI n (A : nfa (vec n.+1)) b w :
glue b w \in nfa_lang A -> w \in nfa_lang (nfa_for_ex A).
Proof.
rewrite /nfa_lang !inE.
case/exists_inP => s s1 s2. apply/exists_inP. exists s => //.
elim: b w s {s1} s2 => [w p /=|b bs IH w p].
- elim: w p => /= [|v w IHw] p.
+ rewrite /= inE => H. by apply/exists_inP; exists p.
+ apply: sub_exists => q /andP [q1 q2]. rewrite IHw // andbT.
by apply/existsP;exists false.
- case: w => [|v w] /=.
+ case/exists_inP => q q1 /IH /= q2. rewrite !inE in q2 *.
apply: sub_exists q2 => r /andP [r1 r2].
rewrite r1 (connect_trans (connect1 _) r2) // /trans_b0. by apply/existsP;exists b.
+ apply: sub_exists => q /andP [q1 q2]. rewrite IH // andbT. by apply/existsP;exists b.
Qed.
Lemma nfa_for_exE n (A : nfa (vec n.+1)) w :
w \in nfa_lang (nfa_for_ex A) -> exists b : seq bool, glue b w \in nfa_lang A.
Proof.
rewrite /nfa_lang /= !inE => H.
suff S (q:A) : @nfa_accept _ (nfa_for_ex A) q w -> exists b, nfa_accept q (glue b w).
{ case/exists_inP : H => p p1 /S [b b1]. exists b. rewrite inE. by apply/exists_inP; exists p. }
elim: w q {H} => [|v vs IH] q /=.
- rewrite inE => /exists_inP [f f1 /connectP[p]].
elim: p q => [x _ |p ps IHp q /= /andP [pth1 pth2]] /= E; first by exists nil; subst.
case: (IHp _ pth2 E) => bs Hbs. case/existsP : pth1 => b pth1. exists (b::bs).
by apply/exists_inP; exists p.
- case/exists_inP => p /= /existsP [b p1] p2. case: (IH _ p2) => bs Hbs. exists (b::bs).
by apply/exists_inP; exists p.
Qed.
Lemma size_glue b n (v : seq (vec n)) : size (glue b v) = maxn (size b) (size v).
Proof.
elim: b v => [|b bs IH] v /=; first by rewrite max0n size_map.
case: v => [|v vs]; by rewrite /= ?maxnSS IH ?maxn0.
Qed.
Lemma nth_glue0 b n (v : seq (vec n)) k :
nth false (nth [tuple of nseq n.+1 false] (glue b v) k) 0 =
nth false b k.
Proof.
elim: k v b => [|k IH] [|v vs] [|b bs] //; rewrite [glue _ _]/= ?nth_nil ?nth_cons ?IH //.
case: (ltnP k (size vs)) => A.
- by rewrite (nth_map [tuple of nseq n false]) //.
- by rewrite [_ _ _ k]nth_default // size_map.
Qed.
Lemma I_of_glue0 i b n (v : seq (vec n)) :
i \in I_of (glue b v) 0 = nth false b i.
Proof.
rewrite mem_filter mem_iota add0n leq0n andTb.
rewrite nth_glue0 size_glue leq_max andbC.
case: (ltnP i (size b)) => //= A. by rewrite nth_default ?andbF.
Qed.
Lemma nth_glueS b n (v : seq (vec n)) i k :
nth false (nth [tuple of nseq n.+1 false] (glue b v) k) i.+1 =
nth false (nth [tuple of nseq n false] v k) i.
Proof.
elim: k v b => [|k IH] [|v vs] [|b bs] //.
- by rewrite [glue _ _]/= IH !nth_nil nth_nseq if_same.
- rewrite [glue _ _]/= !nth_cons.
case: (ltnP k (size vs)) => A.
+ by rewrite (nth_map [tuple of nseq n false]).
+ by rewrite ![_ _ _ k]nth_default ?size_map.
- by rewrite [glue _ _]/= !nth_cons.
Qed.
Lemma I_of_glueS i b n (v : seq (vec n)) k :
i \in I_of (glue b v) k.+1 = nth false (nth [tuple of nseq n false] v i) k.
Proof.
rewrite mem_filter mem_iota add0n leq0n andTb.
rewrite nth_glueS size_glue leq_max andbC orbC.
case: (ltnP i (size v)) => //= A.
by rewrite [_ _ v i]nth_default // nth_nseq if_same andbF.
Qed.
Lemma vec_ex_glue s n (vs : seq (vec n)) :
vec_lang (Ex s) vs -> exists bs, vec_lang s (glue bs vs).
Proof.
rewrite /vec_lang /= => [[N sat_s]].
exists [seq i \in N | i <- iota 0 (\max_(k <- N) k).+1].
apply: weak_coincidence sat_s => X i.
case: X => [|X].
- rewrite I_of_glue0. case: (boolP (i < (\max_(k <- N) k).+1)) => ltn_max.
+ by rewrite (nth_map 0) ?size_iota // nth_iota.
+ rewrite nth_default ?size_map ?size_iota 1?leqNgt //.
apply: contraNF ltn_max => H. rewrite ltnS. exact: bigmax_seq_sup H _ _.
- rewrite I_of_glueS /= /I_of mem_filter mem_iota /= add0n.
case: (ltnP i (size vs)) => H; first by rewrite andbT.
rewrite andbF [nth _ _ i]nth_default //.
by rewrite nth_nseq if_same.
Qed.
Lemma vec_lang0 s n (v : seq (vec n)) k :
vec_lang s v <-> vec_lang s (v ++ nseq k [tuple of nseq n false]).
Proof.
apply coincidence => X ? i. rewrite !mem_filter !mem_iota /= !add0n size_cat nth_cat.
case: (boolP (i < size v)) => Hi; first by rewrite ltn_addr.
by rewrite andbF !(nth_nseq,if_same).
Qed.
Lemma prj_glue bs n (v : seq (vec n)) :
exists k, prj0 (glue bs v) = v ++ nseq k [tuple of nseq n false].
Proof.
exists (size bs - size v). elim: bs v => [|b bs IH] v /=.
- rewrite /prj0 -map_comp cats0 map_id_in //= => b. by rewrite !tupleE behead_cons.
- case: v => [| v vs] /=; by rewrite IH /= ?subn0 ?subss !tupleE behead_cons.
Qed.
Lemma vec_Ex_prj0 s n (w : word (vec n.+1)) : vec_lang s w -> vec_lang (Ex s) (prj0 w).
Proof.
rewrite /vec_lang => /= A.
exists [seq i <- iota 0 (size w) | nth false (nth [tuple of nseq n.+1 false] w i) 0].
apply: weak_coincidence A => X i. rewrite mem_filter mem_iota add0n /= /cons.
case: X => [|X].
+ by rewrite mem_filter mem_iota /= add0n.
+ rewrite mem_filter mem_iota add0n size_map /prj0 andTb -nth_behead.
(case: (boolP (i < _)); rewrite ?andbF ?andbT //) => A. congr nth.
by erewrite nth_map.
Qed.
Lemma nfa_for_ex_correct n s (A : nfa (vec n.+1)) v:
(forall u, reflect (vec_lang s u) (u \in nfa_lang A)) ->
reflect (vec_lang (Ex s) v) (v \in nfa_lang (nfa_for_ex A)).
Proof.
move => IHs. apply: (iffP idP).
+ case/nfa_for_exE => b. move/IHs. move/vec_Ex_prj0.
case: (prj_glue b v) => k ->. by rewrite -vec_lang0.
+ case/vec_ex_glue => b. move/IHs. exact: nfa_for_exI.
Qed.
(** Correctness of the NFAs for the primitive operations *)
Lemma nfa_for_incl_correct X Y n (v : seq (vec n)):
reflect (vec_lang (Incl X Y) v) (v \in nfa_lang (nfa_for_incl n X Y)).
Proof.
rewrite /nfa_lang inE. apply: (equivP existsP).
rewrite (_ : (exists _,_) <-> nfa_accept (tt : nfa_for_incl n X Y) v); last first.
- split => [[x]|];[case: x|exists tt]; by rewrite inE.
- rewrite (_ : vec_lang _ _ <-> (forall u, u \in v -> nth false u X -> nth false u Y)).
+ elim: v => //= v vs IH. split.
* case/exists_inP => [[/implyP A] /IH B] u /predU1P []; first by move=>?;subst.
exact: B.
* move => A. apply/exists_inP; exists tt;[apply/implyP|].
-- apply: A; exact: mem_head.
-- apply/IH => u Hu. apply: A. by rewrite inE Hu orbT.
+ rewrite /vec_lang /=. split.
* move => A u in_v u_X.
set i := index u v.
move: (A i). rewrite /I_of !mem_filter !mem_iota !add0n /=.
rewrite index_mem in_v !andbT. rewrite nth_index //. by apply.
* move => A => k. rewrite /I_of !mem_filter !mem_iota !add0n /=.
case: (boolP (_ < _)); rewrite ?andbT ?andbF // => B.
set u := nth [tuple of nseq n false] v k.
apply A. by rewrite mem_nth.
Qed.
Definition zero_at n X := forall (v : vec n), nth false v X = false.
Lemma nfa_for_ltnP {X Y n} {v : seq (vec n)} :
reflect (exists v1 v2, [/\ v = v1 ++ v2, {in v1,zero_at n Y} & {in v2,zero_at n X}])
(v \in nfa_lang (nfa_for_ltn n X Y)).
Proof.
move: v => v0. apply: (iffP (nfa_ofP _ _)).
- rewrite /enfa_lang => [[[|_]]]; first by rewrite inE.
suff S q v:
enfa_accept (N := enfa_for_ltn n X Y) q v ->
if q
then {in v, zero_at n X}
else (exists v1 v2, [/\ v = v1 ++ v2, {in v1,zero_at n Y} & {in v2,zero_at n X}]).
{ by move/S. }
elim => // {v0 v} [||].
+ case => // _. by do 2 exists nil.
+ move => [|] a [|] //= v.
* move => A _ B u. case/predU1P => [->|]; by [rewrite (negbTE A)| apply: B].
* move => A _ [v1] [v2] [C D E].
exists (a :: v1); exists v2; split => //; first by rewrite C.
apply/all1s. split => //. by rewrite (negbTE A).
+ move => [|] [|] // v. by exists nil; exists v.
- move => [v1] [v2] [->] A B. exists false; first by rewrite inE.
elim: v1 A => /= [_|a v1 IH A].
+ (apply: EnfaNone; first instantiate (1 := true)) => //.
elim: v2 B {v0} => [_|a s IH B].
* constructor. by rewrite inE.
* (apply: EnfaSome; first instantiate (1 := true)) => //=.
-- by rewrite B ?inE ?eqxx.
-- apply: IH => u C. apply B. by rewrite inE C orbT.
+ apply: EnfaSome; first instantiate (1 := false).
* by rewrite /= A ?inE ?eqxx.
* apply IH => u C. apply A. by rewrite inE C orbT.
Qed.
Lemma mem_I_of n (v : seq (vec n)) X k :
(k \in I_of v X) = (k < size v) && nth false (nth [tuple of nseq n false] v k) X.
Proof. by rewrite mem_filter mem_iota add0n /= andbC. Qed.
Lemma nfa_for_ltn_correct X Y n (v : seq (vec n)):
reflect (vec_lang (Less X Y) v) (v \in nfa_lang (nfa_for_ltn n X Y)).
Proof.
apply: (iffP nfa_for_ltnP).
- move => [v1] [v2] [A B C] i j.
rewrite /I_of !mem_filter !mem_iota !add0n /= ![_ && (_ < _)]andbC.
case: (boolP (_ < _)) => //= D. case: (boolP (_ < _)) => //= E F G.
have Hi : i < size v1.
{ move: F. rewrite A nth_cat. case: (ifP _) => // /negbT H.
rewrite C ?mem_nth //. rewrite -leqNgt in H.
by rewrite -subSn // leq_subLR -size_cat -A. }
have : size v1 <= j.
{ move: G. rewrite A nth_cat. case: (ltnP j (size v1)) => // H.
by rewrite B ? mem_nth. }
exact: leq_trans.
- rewrite /vec_lang /= => A.
case: (boolP (has predT (I_of v X))).
+ case/hasP => x0 /max_mem k_in_X _.
set k := (\max_(i <- I_of v X) i) in k_in_X.
have size_k: k < size v by move: k_in_X; rewrite mem_I_of => /andP[].
have size_tk: size (take k.+1 v) = k.+1.
{ rewrite size_take.
case: (ltnP k.+1 (size v)) size_k => // H1 H2.
apply/eqP. by rewrite eqn_leq H1 H2. }
exists (take k.+1 v); exists (drop k.+1 v); split; first by rewrite cat_take_drop.
* move => u B. apply/negbTE/negP => D.
pose i := index u (take k.+1 v).
have E: i <= k by rewrite -ltnS -size_tk index_mem B.
move: (A k i). case/(_ _ _)/Wrap => //; last by rewrite leqNgt ltnS E.
rewrite mem_I_of (leq_ltn_trans E size_k) /=.
rewrite /i index_take // nth_index //. exact: mem_take B.
* move => u B. apply/negbTE/negP => D.
pose i := k.+1 + index u (drop k.+1 v).
have i_in_X : i \in I_of v X.
{ rewrite mem_I_of.
rewrite -[v](cat_take_drop k.+1) size_cat size_tk.
rewrite -addnS leq_add2l index_mem B andTb.
rewrite nth_cat size_tk leqNgt leq_addr /= /i.
by rewrite addnC -addnBA // subnn addn0 nth_index. }
have: i <= k by apply: bigmax_seq_sup i_in_X _ _.
by rewrite /i addSn -ltn_subRL subnn.
+ move/hasPn => /= B. exists nil; exists v; split => // u in_v.
apply/negbTE/negP => D.
pose i := index u v. move: (B i). case/(_ _)/Wrap => //.
by rewrite mem_I_of index_mem in_v nth_index.
Qed.
Theorem nfa_of_form_correct n (v : seq (n.-tuple bool)) s :
reflect (vec_lang s v) (v \in nfa_lang (nfa_of_form n s)).
Proof.
elim: s n v => [X Y|X Y||s IHs t IHt|s IHs] /= n v.
- exact: nfa_for_incl_correct.
- exact: nfa_for_ltn_correct.
- rewrite -dfa_to_nfa_correct in_simpl (negbTE (dfa_void_correct _ _)).
by constructor.
- rewrite -dfa_to_nfa_correct dfa_op_correct -!nfa_to_dfa_correct.
by apply: (iffP implyP) => A /IHs/A/IHt.
- exact: nfa_for_ex_correct.
Qed.
(** Greatest number used in first n variables *)
Definition lim I n := \max_(X < n) \max_(n <- I X) n.
Definition vec_of_val I n : seq (n.-tuple bool) :=
[seq [tuple i \in I X | X < n] | i <- iota 0 (lim I n).+1].
Lemma vec_of_val_agrees : forall I n, agree n I (I_of (vec_of_val I n)).
Proof.
move => I n X lt_n i.
rewrite mem_filter mem_iota /= add0n size_map size_iota.
case: (boolP (i < _)); rewrite ?(andbT,andbF) => A.
+ rewrite /vec_of_val.
rewrite (nth_map 0) ?size_iota // nth_iota // add0n.
by rewrite (nth_map (Ordinal lt_n)) ?size_enum_ord ?nth_enum_ord.
+ apply: contraNF A => A. rewrite ltnS. rewrite /lim.
apply: bigmax_sup => //. instantiate (1 := Ordinal lt_n) => /=.
exact: bigmax_seq_sup A _ _ .
Qed.
Lemma vec_of_valP I s : satisfies I s <-> satisfies (I_of (vec_of_val I (bound s))) s.
Proof. apply: coincidence. exact: vec_of_val_agrees. Qed.
Corollary satisfies_dec I s : decidable (satisfies I s).
Proof. apply: dec_iff (vec_of_valP I s). exact: decP (nfa_of_form_correct _ _). Qed.
Corollary mso_dec s : decidable (exists I, satisfies I s).
Proof.
pose n := bound s.
case: (nfa_inhabP (nfa_of_form n s)) => A;[left|right].
- case: A => w /(@nfa_of_form_correct n) Hw. by exists (I_of w).
- move => [I sat_I_s]. apply A.
exists (vec_of_val I n). apply/nfa_of_form_correct.
by rewrite /vec_lang -vec_of_valP.
Qed.
Corollary vec_lang_regular n s : regular (@vec_lang n s).
Proof.
apply/nfa_regular. exists (nfa_of_form n s) => x.
apply: rwP. exact: nfa_of_form_correct.
Qed.
(** ** Regularity of the Language of an MSO formula *)
Corollary mso_regular (char: finType) s : regular (@mso_lang char s).
Proof.
apply: regular_ext (mso_preim s).
exact: preim_regular (@vec_of_hom _) (vec_lang_regular _ _).
Qed.
(** ** Translation from NFAs to WMSO *)
(** In order to translate NFAs to formulas, we define a number of defined
operations on top of the minimal syntax employed above. In particular, we make
use of the fact that [satisfies I s] is decidable and, hence, the logic behaves
classically. *)
Notation "I |= s" := (satisfies I s) (at level 50).
(** Propositional Connectives *)
Lemma satNNPP I s : ~ ~ I |= s -> I |= s.
Proof. case: (satisfies_dec I s); tauto. Qed.
Notation "s --> t" := (Imp s t) (at level 49, right associativity).
Definition Not s := Imp s FF.
Lemma satDN I s : I |= Not (Not s) <-> I |= s.
Proof. move: (@satNNPP I s) => /= ; tauto. Qed.
Lemma sat_imp I s t : I |= Imp s t <-> (I |= s -> I |= t).
Proof. done. Qed.
Lemma sat_not I s : I |= Not s <-> ~ I |= s.
Proof. done. Qed.
Definition TT := FF --> FF.
Lemma sat_true I : I |= TT.
Proof. done. Qed.
Definition And s t := Not (Imp s (Not t)).
Notation "s :/\: t" := (And s t) (at level 45).
Lemma sat_and I s t : I |= And s t <-> (I |= s /\ I |= t).
Proof.
rewrite /And /Not /=. split => [A|]; last tauto.
split; apply: satNNPP; tauto.
Qed.
Definition Or s t := Not s --> t.
Notation "s :\/: t" := (Or s t) (at level 47).
Lemma sat_or I s t : I |= s :\/: t <-> I |= s \/ I |= t.
Proof. rewrite /Or /Not /=. split;[case: (satisfies_dec I s)|];tauto. Qed.
Opaque And Or.
Definition Iff s t := (s --> t) :/\: (t --> s).
Notation "s <--> t" := (Iff s t) (at level 50).
Definition All s := Not (Ex (Not s)).
Lemma sat_all I s :
I |= All s <-> (forall N, satisfies (cons N I) s).
Proof.
split => [A N|A].
- apply: satNNPP => B. apply: A. by exists N.
- case: (satisfies_dec I (Ex (Not s))) => //= [[N B]].
exfalso. exact: B.
Qed.
Opaque All.
(** Emptiness and Singletons *)
Definition empty X := All (Incl (X.+1) 0).
Lemma sat_empty I X :
I |= empty X <-> I X =i pred0.
Proof.
rewrite sat_all; split => [/= /(_ [::]) A k|A N k]; last by rewrite A.
rewrite inE. apply: negbTE. apply/negP. by move/A.
Qed.
Lemma sat_emptyN I X :
I |= Not (empty X) <-> (exists n, n \in I X).
Proof.
rewrite satDN; split => [[N]|] /=.
- case: (I X) => [|x IX _].
+ by case/(_ _)/Wrap.
+ by exists x; rewrite mem_head.
- case => n A. exists [:: n.+1]. move/(_ _ A). by rewrite inE ltn_eqF.
Qed.
Definition single X := Not(empty X) :/\: All (Not(empty 0) --> Incl 0 X.+1 --> Incl X.+1 0).
Lemma sat_singles I X :
I |= single X <-> exists n, I X =i [:: n].
Proof.
rewrite sat_and sat_emptyN. split.
- move => [[n A] B].
exists n. move => m. rewrite inE. apply/idP/eqP => [H|-> //].
move/sat_all/(_ [:: n]): B. rewrite 2!sat_imp. case/(_ _ _)/Wrap.
+ rewrite sat_emptyN. exists n. by rewrite inE.
+ move => k /=. by rewrite inE => /eqP->.
+ move/(_ _ H). by rewrite inE => /eqP->.
- case => n A. split; first by exists n;rewrite A.
apply/sat_all => N. rewrite 2!sat_imp sat_emptyN => /= [[k Hk] D] m E.
move: (D _ Hk). rewrite A inE => /eqP ?; subst.
rewrite A inE in E. by rewrite (eqP E).
Qed.
(** Big Operatiors *)
Notation "\or_ ( i <- r ) F" := (\big [Or/FF]_(i <- r) F)
(at level 42, F at level 42, i at level 0,
format "'[' \or_ ( i <- r ) '/ ' F ']'").
Notation "\or_ ( i \in A ) F" := (\big [Or/FF]_(i <- enum A) F)
(at level 42, F at level 42, i at level 0,
format "'[' \or_ ( i \in A ) '/ ' F ']'").
Notation "\and_ ( i <- r ) F" := (\big [And/TT]_(i <- r) F)
(at level 41, F at level 41, i at level 0,
format "'[' \and_ ( i <- r ) '/ ' F ']'").
Notation "\and_ ( i \in A ) F" := (\big [And/TT]_(i <- enum A) F)
(at level 41, F at level 41, i at level 0,
format "'[' \and_ ( i \in A ) '/ ' F ']'").
Lemma sat_orI (T:eqType) (s : seq T) x F I :
x \in s -> I |= F x -> I |= \or_(i <- s) F i.
Proof. elim: s => // a s IH /predU1P [<-|/IH A]; rewrite big_cons sat_or; tauto. Qed.
Lemma sat_orE (T:eqType) (s : seq T) F I :
I |= \or_(i <- s) F i -> exists2 x, x \in s & I |= F x.
Proof.
elim: s => // [|a s IH]; first by rewrite big_nil.
rewrite big_cons sat_or. case => [A|/IH [x A B]]; first by exists a.
exists x => //. by rewrite inE A orbT.
Qed.
Lemma sat_bigand (T:eqType) (s : seq T) F I :
I |= \and_(i <- s) F i <-> forall x, x \in s -> I |= F x.
Proof.
elim: s => [|a s IH]; first by rewrite big_nil; split => // _; apply.
rewrite big_cons sat_and IH. split => [[A B]x/predU1P[->//|]|A]. exact: B.
split => [|x B]; apply: A => //. by rewrite inE B orbT.
Qed.
(** First-oder Quantification *)
(** Note that "first-order" variables are interpreted as one-element lists
rather than directly as numbers. Hence we need the lemmas [seq1P] and [sub1P] *)
Definition All1 s := All (single 0 --> s).
Lemma sat_all1 I s :
I |= All1 s <-> (forall n, cons [:: n] I |= s).
Proof.
rewrite sat_all; split.
- move => H n. move: (H [:: n]) => {H} /=. apply. rewrite sat_singles. by exists n.
- move => H N. rewrite sat_imp sat_singles => [[n Hn]].
apply: weak_coincidence (H n). by case.
Qed.
Definition Ex1 s := Ex (single 0 :/\: s).
Lemma sat_ex1 I s :
I |= Ex1 s <-> (exists n, cons [:: n] I |= s).
Proof.
rewrite /Ex1; split.
- case => N. rewrite -/satisfies => /sat_and [/sat_singles [n] /= B C]. exists n.
apply: weak_coincidence C. by case.
- case => n A. exists [:: n]. apply/sat_and;split => //.
apply/sat_singles. by exists n.
Qed.
(* Successor relation and Zero Predicate *)
Lemma nat_succ x y : y = x.+1 <-> x < y /\ ~ exists k, x < k /\ k < y.
Proof.
split.
- move => ->. rewrite leqnn. split=>//.
move => [k] [A B]. move:(leq_trans A B). by rewrite ltnn.
- move => [A B]. apply/eqP. rewrite eqn_leq leqNgt A andbT.
apply/negP. apply: impliesPn B. constructor.
exists x.+1. by rewrite leqnn H.
Qed.
Definition succ X Y :=
Less X Y :/\: Not (Ex1 (Less X.+1 0 :/\: Less 0 Y.+1)).
Lemma sat_succ I X x Y y : I X =i [:: x] -> I Y =i [:: y] ->
I |= succ X Y <-> y = x.+1.
Proof.
move => A B. rewrite sat_and sat_not sat_ex1 nat_succ.
split => [[C D]|[C D]].
- split; first apply C; rewrite ?A ?B //.
apply: impliesPn D; constructor => [[k [k1 k2]]]. exists k.
rewrite sat_and /=; split => ? ?; by rewrite ?A ?B => /seq1P-> /seq1P->.
- split. move => ? ? ; by rewrite ?A ?B => /seq1P-> /seq1P->.
apply: impliesPn D; constructor => [[k] /sat_and [k1 k2]]. exists k.
split; [apply k1|apply k2]; by rewrite /= ?A ?B.
Qed.
Definition zero X := single X :/\: Not (Ex1 (succ 0 X.+1)).
Lemma sat_zero I X : I X =i [:: 0] <-> I |= zero X.
Proof.
rewrite sat_and sat_singles sat_not sat_ex1.
split.
- move => A. split; first by exists 0.
move => [n]. move/sat_succ. move/(_ 0 n) => /=. by case/(_ _ _)/Wrap.
- move => [[n A] B] k. rewrite A !inE.
suff S : n == 0. apply/idP/idP => /eqP->; by rewrite // eq_sym.
destruct n as [|n] => //. exfalso. apply B.
exists n. by rewrite (sat_succ (x := n) (y := n.+1)).
Qed.
Definition Leq X Y := All1 (succ Y.+1 0 --> Less X.+1 0).
Lemma sat_leq I X x Y y : I X =i [:: x] -> I Y =i [:: y] ->
I |= Leq X Y <-> x <= y.
Proof.
move => A B. rewrite sat_all1. split.
- move/(_ y.+1). rewrite sat_imp. case/(_ _)/Wrap.
+ by rewrite (sat_succ (x := y) (y := y.+1)).
+ move/(_ x y.+1). rewrite /= A !inE ltnS. by apply.
- move => C n. rewrite sat_imp. rewrite (sat_succ (x := y) (y := n)) // => ->.
move => ? ? /=. rewrite A !inE => /eqP-> /eqP->. by rewrite ltnS.
Qed.
(** Interated existential quantification *)
Definition cat (Ns: seq (seq nat)) I :=
fun x => if x < size Ns then nth [::] Ns x else I (x - size Ns).
Lemma cat_prefix I n (Ns : n.-tuple (seq nat)) X : X < n -> cat Ns I X = nth [::] Ns X.
Proof. move => A. by rewrite /cat size_tuple A. Qed.
Lemma cat_beyond I n (Ns : n.-tuple (seq nat)) X : n <= X -> cat Ns I X = I (X - n).
Proof. move => A. by rewrite /cat size_tuple ltnNge A. Qed.
Lemma cat_size I n (Ns : n.-tuple (seq nat)) : cat Ns I n = I 0.
Proof. by rewrite cat_beyond ?subnn. Qed.
Definition exn n s := iter n Ex s.
Lemma sat_exn n s I :
(I |= exn n s) <-> (exists Ns : n.-tuple (seq nat), cat Ns I |= s).
Proof.
elim: n I => [|n IH] I.
- split.
+ exists [tuple]. rewrite /cat /=. apply: weak_coincidence H => X. by rewrite subn0.
+ case => Ns. rewrite tuple0 /cat /=.
apply: weak_coincidence => X. by rewrite subn0.
- have agr Ns N X : cat (rcons Ns N) I X =i cat Ns (cons N I) X.
{ rewrite /cat /= !size_rcons ltnS.
case: (ltngtP X (size Ns)) => B.
* by rewrite (ltnW B) nth_rcons B.
* rewrite leqNgt B /=. by rewrite -[X - size Ns]prednK ?subn_gt0 //= subnS.
* by rewrite B leqnn subnn nth_rcons ltnn eqxx. }
rewrite /=. split => [[N] /IH [Ns A]|].
+ exists [tuple of rcons Ns N]. apply: weak_coincidence A => X k. by rewrite agr.
+ case. case => Ns /=. elim/last_ind : Ns => // Ns N _.
rewrite size_rcons eqSS => A B.
exists N. apply/IH. exists (Tuple A) => /=.
exact: weak_coincidence _ B.
Qed.
Section NFAtoMSO.
Variables (T : finType) (A : nfa T).
Let n := #|A|.
Notation rank := enum_rank.
Notation val := enum_val.
Definition max :=
All1 (Less 0 1 <--> \or_(a \in T) Incl 0 (rank a).+2).
Lemma sat_max (w : word T) m :
cons [:: m] (I_of (vec_of w)) |= max <-> m = size w.
Proof.
split.
- move/sat_all1 => B.
apply/eqP. rewrite eqn_leq [_ <= m]leqNgt [m <= _]leqNgt.
apply/andP; split; apply/negP => C.
+ case: m C B => // m C /(_ m). case/sat_and => [/sat_imp B _]. move: B.
case/(_ _)/Wrap; first by move => ? ? /seq1P-> /seq1P->.
case/sat_orE => a _ /= /sub1P /I_of_vev_max => D. rewrite ltnS in C.
move: (leq_trans D C). by rewrite ltnn.
+ move/(_ m) : B. case/sat_and => _. move/sat_imp.
case/(_ _)/Wrap.
* set a := (tnth (in_tuple w) (Ordinal C)).
apply: (sat_orI (x := a)); first by rewrite mem_enum.
apply/sub1P => /=. by rewrite I_of_vecP // {2}/a (tnth_nth a).
* move/(_ m m) => /=. rewrite !mem_head ltnn. by case/(_ _ _)/Wrap.
- move->.
rewrite sat_all1 => k.
rewrite sat_and; split.
+ rewrite /= => H.
move: H => /(_ k (size w)). case/(_ _ _)/Wrap => // H.
pose a0 := tnth (in_tuple w) (Ordinal H).
apply (sat_orI (x := nth a0 w k)); first by rewrite mem_enum.
rewrite /= => ? /seq1P->. by rewrite I_of_vecP ?(set_nth_default a0).
+ case/sat_orE => a _ /sub1P /=.
rewrite /vec_of /I_of mem_filter => /andP [_].
by rewrite mem_iota add0n size_map /= => H ? ? /seq1P-> /seq1P->.
Qed.
Definition part X :=
All1 (Leq 0 X.+1 -->
(\or_(q \in A) (Incl 0 (rank q).+1 :/\:
\and_(q' \in [pred x | q != x]) Not (Incl 0 (rank q').+1)))).
Lemma sat_part X I k :
I X =i [:: k] ->
I |= part X <-> forall n, n <= k -> exists! q:A, n \in I (rank q).
Proof.
move => H0. split.
- move => H1 m Hm. move/sat_all1 : H1 => /(_ m) /sat_imp. case/(_ _)/Wrap.
+ rewrite sat_leq ; first apply Hm; done.
+ case/sat_orE => q _ /sat_and [/= /sub1P q1 /sat_bigand q2].
exists q; split => // q' B. apply/eqP. apply/negPn/negP => C.
apply: (q2 q'); by [rewrite mem_enum inE|apply/sub1P].
- move => H1.
apply/sat_all1 => m. rewrite sat_imp => /sat_leq H2.
have/H1 {H2} : m <= k by apply: H2.
case => q [q1 q2]. apply: (sat_orI (x := q)); first by rewrite mem_enum.
rewrite sat_and; split; first by move => ? /seq1P ->.
apply/sat_bigand => q'. rewrite mem_enum inE => qq' /sub1P /q2 ?.
subst. by rewrite eqxx in qq'.
Qed.
(* forall y x -> succ(x,y) -> x < max -> \or_( ... ) ... *)
(* 1 0 *)
Definition run X : form :=
All1 (All1(succ 0 1 --> Less 0 X.+2 -->
\or_(paq \in [pred x : A * T * A | nfa_trans x.1.1 x.1.2 x.2])
let: (p,a,q) := paq in
Incl 0 ((rank a).+1 + X).+2 (* a at pos x *)
:/\: Incl 0 (rank p).+2 (* state p active at time x *)
:/\: Incl 1 (rank q).+2 (* state q is next state of run *)
)).
Lemma sat_run (Ns : n.-tuple (seq nat)) m I :
cat Ns (cons [:: m] I) |= run n <->
(forall k, k < m -> exists (p:A) (a:T) (q:A), nfa_trans p a q /\
k \in I (rank a) /\
k \in tnth Ns (rank p) /\
k.+1 \in tnth Ns (rank q)).
Proof.
split.
- move => H k lt_m. move/sat_all1/(_ k.+1) : H. move/sat_all1/(_ k).
rewrite 2!sat_imp. case/(_ _ _)/Wrap.
+ by apply/(sat_succ (x := k) (y := k.+1)).
+ move => /= ? y /seq1P ->. rewrite cat_beyond // subnn /=.
by move/seq1P->.
+ case/sat_orE => [[[p a] q]]. rewrite mem_enum inE /= => B.
rewrite !sat_and. (do 2 case) => /= /sub1P C /sub1P D /sub1P E.
exists p. exists a. exists q. repeat split => //.
* by rewrite cat_beyond ?leq_addl -?addnBA // subnn addn0 in C.
* by rewrite cat_prefix // -tnth_nth in D.
* by rewrite cat_prefix // -tnth_nth in E.
- move => H. apply/sat_all1 => k'. apply/sat_all1 => k. rewrite !sat_imp => B C.
move/sat_succ : B => /(_ k' k). case/(_ _ _)/Wrap => // ?;subst.
case: (H _ (C k m _ _)) => //=; first by rewrite cat_size //=.
move => p [a] [q] [paq [D [E F]]].
apply: (sat_orI (x := (p,a,q))); first by rewrite mem_enum.
rewrite !sat_and; repeat split.
+ apply/sub1P. rewrite /= cat_beyond ?leq_addl //.
rewrite -addnBA // subnn addn0. done.
+ apply/sub1P. by rewrite /= cat_prefix // -tnth_nth.
+ apply/sub1P. by rewrite /= cat_prefix // -tnth_nth.
Qed.
Definition init : form :=
All1 (zero 0 --> \or_(q \in nfa_s A) Incl 0 (rank q).+1).
Lemma sat_init (Ns : n.-tuple (seq nat)) I :
cat Ns I |= init <-> exists2 q, q \in nfa_s A & 0 \in tnth Ns (rank q).
Proof.
split.
- move/sat_all1/(_ 0)/sat_imp. case/(_ _)/Wrap; first exact/sat_zero.
case/sat_orE => s. rewrite mem_enum /= => B /sub1P C. exists s => //.
by rewrite cat_prefix // -tnth_nth in C.
- case => q q1 q2. apply/sat_all1 => m. rewrite sat_imp. move/sat_zero => /= B.
have -> : m = 0. move: (B 0). by rewrite !inE eqxx => /eqP.
apply (sat_orI (x := q)); first by rewrite mem_enum.
apply/sub1P. by rewrite /= cat_prefix -?tnth_nth.
Qed.
Definition accept X := \or_(q \in nfa_fin A) Incl X (rank q).
Lemma sat_accept (Ns : n.-tuple (seq nat)) m I :
cat Ns (cons [:: m] I) |= accept n <->
exists2 q, q \in nfa_fin A & m \in tnth Ns (rank q).
Proof.
split.
- case/sat_orE => q.
rewrite mem_enum /= cat_size ?cat_prefix // -tnth_nth.
move => B /sub1P C. by exists q.
- case => q q1 q2. apply: (sat_orI (x := q)); first by rewrite mem_enum.
rewrite /= cat_size ?cat_prefix // -tnth_nth. exact/sub1P.
Qed.
(** underneath of [exn], [#|A|] refers to the length of the word (i.e. "max") *)
Definition form_of :=
Ex1 (max :/\: exn #|A| (
part #|A| :/\: init :/\: run #|A| :/\: accept #|A|)).
Theorem form_ofP w : reflect (@mso_lang T form_of w) (w \in nfa_lang A).
Proof.
apply: (iffP nfaP).
- move =>[s] [r] [r1 r2].
rewrite /mso_lang /vec_lang sat_ex1. exists (size w).
set I' := cons _ _.
have Hmax : I' |= max by apply/sat_max.
rewrite sat_and sat_exn. split => //.
pose pos (i : 'I_#|A|) := [seq n <- iota 0 (size r).+1 | nth s (s::r) n == enum_val i].
pose t := [tuple pos i | i < #|A|].
exists t.
have tP k N (i : 'I_#|A|) :
k \in nth N t i = (k <= size r) && (nth s (s::r) k == val i).
{ by rewrite -tnth_nth tnth_mktuple mem_filter mem_iota /= add0n ltnS andbC. }
rewrite !sat_and; repeat split.
+ apply/(sat_part (k := (size w))). by rewrite cat_size.
move => k Hk. exists (nth s (s::r) k) ;split.
* by rewrite cat_prefix // tP -(run_size r2) Hk enum_rankK eqxx.
* move => q'. rewrite cat_prefix //.
rewrite tP -(run_size r2) Hk enum_rankK. by move/eqP.
+ apply/sat_init. exists s => //. by rewrite tP /= enum_rankK.
+ apply/sat_run => k Hk. have Hk': k < size r by rewrite -(run_size r2).
exists (nth s (s::r) k).
exists (tnth (in_tuple w) (Ordinal Hk)).
exists (nth s (s :: r) k.+1). repeat split.
* exact: run_trans.
* rewrite I_of_vecP //. set X := tnth _ _. by rewrite {2}/X (tnth_nth X).
* by rewrite tP ltnW // enum_rankK eqxx.
* by rewrite tP enum_rankK Hk' eqxx.
+ apply/sat_accept. exists (last s r); first exact: run_last r2.
rewrite tP. by rewrite (run_size r2) leqnn enum_rankK nth_last /=.
- rewrite /mso_lang /vec_lang sat_ex1 => [[m] /sat_and [/sat_max B /sat_exn [Ns]]].
repeat case/sat_and. subst. set I' := cat _ _.
move => /sat_part B /sat_init [s s1 s2] /sat_run D /sat_accept E.
move: {B} (B (size w)).
case/(_ _)/Wrap => [k|B]; first by rewrite /I' cat_size.
have exP (i : 'I_(size w)) : exists q : A, i.+1 \in I' (rank q).
{ case: (B i.+1)=> // q [q1 q2]. by exists q. }
exists s. pose r := [tuple xchoose (exP i) | i < size w]. exists r. split => //.
have tP k p : k <= size w -> k \in tnth Ns (rank p) -> nth s (s::r) k = p.
{ case: k => [_|k lt_w] H /=.
- case: (B 0 _) => // q' [q1 q2].
by rewrite -[p]q2 -1?[s]q2 // /I' cat_prefix // -tnth_nth.
- rewrite (nth_map (Ordinal lt_w)) ?size_enum_ord //.
set m := nth _ _ _. move: (exP _) => F. move: (xchooseP F) => G.
case: (B m.+1 _) => // q' [q1 q2].
rewrite -[xchoose F]q2 -1?[p]q2 //.
rewrite /I' cat_prefix // -tnth_nth.
by rewrite /m nth_enum_ord.
}
apply: runI.
+ by rewrite size_tuple.
+ case: E => f f1 f2. rewrite (_ : last s r = f) //.
by rewrite (last_nth s) size_tuple (tP _ _ _ f2).
+ move => i. move: (D _ (ltn_ord i)) => [p] [a] [q] [pq [Ha [Hp Hq]]].
rewrite I_of_vecP // in Ha. rewrite (tnth_nth a) (eqP Ha) //.
by rewrite (tP _ _ _ Hp) 1?ltnW // (tP _ _ _ Hq).
Qed.
End NFAtoMSO.