Skip to content

public-salaries/public_salaries

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Public Sector Salaries

Aim

To build a comprehensive (geographic coverage, over time) database of salaries of public employees, along with relevant contextual information, for instance, average income of people living in the same area, people working in similar professions or jobs, etc.

Why?

A couple working as custodians for the city of Richmond, California in 2015 would have had a higher family income (before any benefits) than the median family income of the wealthiest county in California. This kind of a fact takes additional gravity given the dire financial straits Richmond, the second poorest among the hundred plus cities in the Bay Area, found itself in 2015---Moody downgraded Richmond's bond rating, costing the city millions of dollars.

About 75%--80% of Richmond's budget goes toward personnel costs. This figure itself is not unusual across cities. And highlights the importance of investigating public employee salaries if we want to understand problems with fiscal governance at the local level. Aside from the first order concerns, the fact that public employee unions fund council members' campaign to the tune of millions suggests other reasons to scrutinize public employee salaries.

In all, our aim is to investigate the extent to which compensation for different public employees is fair and rational.

Analyses

see the latest at: https://github.com/public-salaries/pub_sal_analyses

Data

State State City County k12 Higher Ed.
Alabama 2010
Alaska 2009--2016
Arizona UA 2011--2014
ASU 2008
Arkansas 2017
California 2009--2016 2009--2016 2009--2016 2009--2016 2009--2016
Colorado
Connecticut 2010--2017 2010--2017
Delaware 2007--2013
District of Columbia 2016--2017
Florida 1995--2014 1997--2011 1997--2014 1997--2014 2014
Georgia 2010--2016
Hawaii 2016
Idaho 2008, 2013--2014, 2017--2018
Illinois 2009--2012
Indiana
Iowa 2006--2016
Kansas 2009--2016 2009--2016 2010--2016 2008--2017
Kentucky
Maine 2008
Louisiana 2009--2013 2009--2012 2009--2013
Maine 2008
Maryland 2012--2017
Massachusetts 2010--2017
Michigan 2014--2016 2014--2016 2014--2016
Minnesota 2011--2016
Mississippi
Missouri 2007--2017
Montana 2017 2011--2017
Nebraska
Nevada 2007--2016 2007--2016 with some holes 2007--2016 with some holes 2010--2016 with some holes 2009--2016
New Hampshire 2012--2016
New Jersey 2010--2017
New Mexico 2013--2018
New York
North Carolina 2017 2017
North Dakota
Ohio 2010--2016 2006--2016
Oklahoma 2010--2016 2010--2016
Oregon 2016--2017
Pennsylvania 2015--2017
Rhode Island 2011--2017
South Carolina 2017
South Dakota
Tennessee
Texas
Utah 2009--2018
Vermont 2017
Virginia 2016--2017 2016--2017
Washington 2012--2016 2011--2015
West Virginia 2006 2015
Wisconsin 2012--2014
Wyoming

Besides this:

Authors

Gaurav Sood and Chris Muir

Contribute to the project

If you see an inconsistency in the data, or have a suggestion, or some data that you would like to contribute to the project, please create a pull request or open an issue.

License

Analyses Released under CC BY 2.0. Data is released under the MIT License.