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ABSTRACT 

Mobile devices continue to power high growth in online 

commerce. Web-scale commerce platforms have to engage 

hundreds of millions of shoppers who choose from more 

than a billion items offered by tens of millions of 

merchants.  In order to convert shoppers to buyers, it is 

critical to respond to their actions in real-time, offering them 

relevant next steps in their purchase journey. 

  

Consumer expectations have grown rapidly during the past 

few years. Now, they expect in-session personalization 

across multiple screens, including hyper- relevant 

advertisements that use rich context aggregated from the 

sensors they carry. 

 

Fraud detection, business activity monitoring, and so on 

have very similar needs to process data in near real time, 

glean actionable insights within seconds, and generate 

signals for immediate action. The latency inherent in a store-

and-process model makes batch-oriented systems such as 

Hadoop unsuitable. 

  

The sheer data volume and the low latency requirements 

demand in flight data processing instead of a store and 

process model as in batch oriented systems. The stream 

processing infrastructure needs to be distributed across data 

centers, yet have a programming model that does not require 

very specialized skills. The system must be highly available 

(i.e. allowing for new applications and application versions 

be deployed with zero downtime). 

 

This paper discusses the design of Pulsar, a real-time 

analytics platform that is well suited to address the class of 

problems noted above. We will discuss design choices for 

critical subsystems and components along with the rationale. 

 INTRODUCTION 1.

User behavior events contain structured information such as 

user-agent or native application identifier (IP address) 

Applications can extend to include attributes relevant to a 

specific event type. These events are captured by native or 

web applications for real-time and offline analysis. At eBay, 

we capture in the order of hundreds of thousands of events 

per second and growing fast as the number of gestures 

continue to increase, along with user growth. BOTs 

masquerading as humans generate a significant amount of 

this event traffic. BOTs are a source of valid (e.g. search 

engine crawler) and unproductive (crawlers that scrape 

pages for information) traffic. In either case, we need to 

protect resources of downstream systems by detecting them 

and quarantining those events or process them with different 

service levels. It’s important to note that BOTs can be fairly 

sophisticated when trying to mimic human behavior, and are 

known to purchase items! 

  

A class of data enrichment of user behavior events such as 

geo location lookup, device classification, demographics, 

and many others is best done as early as possible in the data 

pipeline to centralize processing logic at the cost of de-

normalizing data a bit. In other scenarios, such as Risk and 

fraud analytics, the real-time user behavior patterns need to 

be augmented by historical summary information 

accumulated over time periods, extending to years.  In such 

scenarios the system throughput demands require a very fast 

lookup that cannot be met by RDBMS. 

 

Sessionization is a key construct that allow events to 

accumulate in a data container until a user session is deemed 

complete, usually based on inactivity for a period of time. 

Many business metrics including conversion attribution 

depend on the notion of a user-session, which is best done 

once early in the data pipeline. 

  

In the area of business activity monitoring, there is a need 

for real-time aggregation of time-series metrics for 

exploratory visualization and for generating alerts based on 

random groupings of dimensions. This use case in particular 

requires even higher ingest rates that cannot be served by a 

RDBMS system. Metrics aggregation in real-time poses 

challenges, such as explosion of counters due to large 

number of dimensions and high cardinality dimensions with 

very sparse data.  

 In order to allow an ecosystem of applications to tap into a 

rich data stream, it is important to have the notion of partial 

views of original streams which filters, enriches, and mutates 

event data for lower cost processing downstream. 

 
In this paper, we propose a design for a data pipeline: build a 

highly available distributed computation system with CEP 

engines for most of our computation, processed in real-time. 

Our proposal is to treat the event stream as a database table. 

SQL queries can be executed against real-time streams to 

create aggregates just like one would do against a database 

table. We describe how we can enrich, filter, mutate and 

create partial views of the event stream in flight. 

 DATA AND PROCESSING MODEL 2.

2.1 User Behavior Data 

User behavior data is unstructured or semi-structured for the 

most part. It is made up of many tuples of information. Each 

tuple represents a dimension. User behavior data stream is 

made up of a continuous sequence of events. Each event 



                      2 
 

contains contextual data around a click and is made up of 

many dimensions (up to 40 dimensions). For example, page 

ID, IP address, geo information like city, region, and country 

or device classification data like browser type, device type, 

and many more are examples of dimensions.  

 

Many of these dimensions have high cardinality, making the 

data set sparse. One of the challenges of creating aggregates 

for a grouping of high cardinality dimensions in real-time is 

the explosion of counters. This is a very challenging problem 

to deal with in both space and time in a real-time 

computation environment. 

 

It is common to see user behavior data streaming at rates 

exceeding millions of events per second. The events are 

generated in unpredictable patterns. The use cases that 

operate on this data demand very low latencies. This requires 

in-memory processing of data streams as the data is flowing 

through the system. 

2.2 Data Enrichment 

The user behavior streams contain both BOT and user 

behavior activity. Our end users are only interested in user 

behavior activity events.. This requires BOT activity events 

to be detected and filtered out. Some other use cases only 

process BOT events and for them the user activity events 

need to be filtered out.  

 

Often other sources of data with very valuable information 

need to be combined with the user behavior stream. Geo 

information, device classification, demographics and 

segment data are examples of such data. The challenge is to 

design scalable data stores that can be queried at the rates 

being discussed. Many of the use cases under consideration 

require this type of data. It would be extremely expensive to 

have applications serving these use cases to independently 

access these data sources. It would be most efficient to 

provide capabilities to decorate the data streams with newer 

dimensions in-flight. This involves looking up a store using 

one of the dimensions in the event as a key. We can deploy 

strategies of caching other sources of data locally on the 

processing node or externally in a fast lookup cache. This 

decision will have to be based on how often the data changes 

and size of the data. This would be analogous to data base 

table joins.   

 

 

2.3 Sessionization 

Sessionization is a process of state management by grouping 

of related events identified by a common key. In web 

analytics, a visit or session is defined as a series of page 

requests or, in the case of tags, image requests from the same 

uniquely identified client. A visit is considered done when 

no requests have been recorded in some number of elapsed 

minutes. A 30 minute limit ("time out") is used by many 

analytics tools but can, in some tools, be changed to another 

number of minutes. 

 

A session state typically involves one or more counters of 

certain activity in that session (e.g. recording of page 

navigation). 

 

Our solution is designed to support tenant defined sessions. 

A tenant is a consumer of the sessionized data. Each tenant’s 

session has its own lifecycle. A tenant’s session is identified 

by a unique identifier made up of one or more dimensions 

from the events driving the sessionization. The session 

identifier, duration, metadata and state management logic are 

all specified through a declarative syntax.  

 

2.4 User defined partial views of original 
streams 

Typically, events sourced from applications have a large 

payload consisting of a large number of dimensions.  

Moving such large events over a distributed pipeline across a 

wide area network is very expensive. Most consumers are 

mostly interested in consuming partial views of the original 

stream. The consumers of these streams will have to make 

substantial investment to get a partial view of the original 

stream if they consumed the original stream. A subscription 

based capability needs to be provided for users to 

declaratively define partial views of the original stream. A 

user can define the dimensions in the original stream of 

interest to them and the filtering rules to be used to populate 

the view. The data populated in the view needs to be 

regulated based on a subscriber’s authorization level.  

2.5 Computing aggregates in real-time for 
groups of multiple dimensions 

Aggregation is a process of producing summary data for a 

group of dimensions. RDBMS systems or PIG or HIVE 

provide aggregation functions like COUNT, SUM, MIN, 

MAX, AVG, DISTINCT COUNT, TOP N, QUANTILES 

and many more.  

 

Consider the following statement in the RDBMS world 

select count(*) as METRIC1, column1, 
column2 from SOMETABLE group by 
column1, column2.  This statement finds a count of 

occurrences of unique groupings of column1 and column2 in 

a table called SOMETABLE. 

 

This query runs against a single database instance. In a 

sharded environment, an application would have to run this 

against each shard and then further aggregate the result set 

returned by each shard. The query can take a long time if the 

number of rows being scanned is very large. 

 

Now consider executing a similar query in real time on live 

streams. The dimensions in the event will take the place of 

columns and the event stream replaces the table. In section 

2.1 we mentioned that it is typical to be processing millions 

of events per second in Ecommerce systems. Real time data 

streams are continuously moving data unlike a database. We 

need to define the start and end point in the stream for the 
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aggregation function to process data in a continuously 

moving stream. We achieve this by defining a window of 

time over which the aggregation is performed. The window 

can either be a tumbling window or a rolling window. A 

sample SQL below shows a query applied to a data stream 

that counts unique groupings of dimensions D1 & D2 over a 

tumbling window of 10 seconds.  

 

create context MCContext start @now 
end pattern [timer:interval(10)]; 
 
context MCContext 
insert into AGGREGATE select count(*) 
as METRIC1, D1, D2 FROM RAWSTREAM  
group by D1,D2 output snapshot when 
terminated; 
 
select * from AGGREGATE; 
 
Since real time stream processing is all done in memory we 

are constrained by space. Since our streaming data is sparse, 

we have an explosion of counters putting pressure on our 

memory resources. Hence we propose to keep the window 

small (10 seconds). We propose a partitioning strategy to 

spread the work load across a cluster of computation nodes. 

The events are scheduled into the cluster using a consistent 

hashing algorithm. The algorithm fits a hash key on a logical 

ring to find the node to which the event needs to be 

scheduled. The hash key is created by composing a key from 

one or more event dimensions and computing a hash (H(D1, 

D2,..) ) of the composed key. We propose to use a 128 bit 

hash function so we get a nice distribution of the events 

across the cluster.  

 

The data produced through aggregation is time series data.  

Since all the aggregates are in memory there is potential to 

lose the aggregate if the node dies. Our strategy is to keep 

the aggregation windows short (30 seconds to 1 minute). 

When the window rolls, the aggregate is emitted as a metric 

event by the engine. We store this event in a time series data 

store so we can create aggregates over longer windows (1 

hour or 1 day) in the data base. This snapshotting approach 

acts like a journal – we could store away the snapshot in a 

time series database and restore the aggregate on a different 

computation node to recover from a computation node 

failure if we decide to. Since most of our use cases are 

statistical in nature we have decided to live with the loss as it 

is very small. 

  

We also use the snapshots to drive visualization widgets in 

real time. These widgets are hosted in real time dash boards 

and produce visualization of the data. Several real time 

visualizations have been produced in this manner in our 

production environment.    

 

This approach of aggregation produces cubes over known 

dimensions. In such cases the grouping of dimensions are 

known upfront. It is very well suited for real time use cases. 

When the data is stored in a time series data store it can be 

used for reporting use cases. However this approach by itself 

is not suitable for data exploration. Data exploration 

involves executing adhoc queries to create aggregates 

grouping random dimensions over data spanning many 

years. In section 6 of this paper we will explore an approach 

to combine online with offline to show how we can take 

advantage of pre-aggregation to contain cost and improve 

query response of a time series data store. 

  

2.6 Computing Top N, Percentiles. and Distinct 
Count Metrics in real time 

Consider the following query for finding the top 10 

groupings of dimensions D1, D2 & D3 computed over a 1 

minute window 

 

create context MCContext start @now 
end pattern [timer:interval(60)]; 
 
context MCContext 
 
insert into TOPITEMS select count(*) 
as totalCount, D1, D2, D3 from 
RawEventStream group by D1, D2, D3 
order by count(*) limit 10; 
  
select * from TOPITEMS; 
 

This query execution cost is proportional to the number of 

unique combinations of D1,D2,D3 and the rate of event 

arrival into the window. If one or more of these dimensions 

has high cardinality then the number of counters will 

explode putting pressure on memory resources. The ORDER 

BY operator will cause sorting of the data when the window 

rolls. This will consume a lot of compute resources putting 

pressure on latencies. It could also cause frequent garbage 

collection in our processing application which are built in 

java. Other metrics like finding the distinct count and 

percentiles are very useful but have similar issues as they are 

memory intensive. This makes it very difficult to execute 

these types of queries in real time at our volumes. 

  

However, if we consider using approximation algorithms for 

computing top N, percentiles and distinct count queries, then 

we can operate within a fixed amount of memory that we 

can control. We propose to use frequency estimation 

techniques for computing top N. In this approach we only 

keep frequently seen groupings in memory. When the 

storage becomes full, the least frequently used grouping is 

discarded from memory to make way for a new count. We 

have implemented this algorithm as a special aggregate 

function that can be used in a query as shown below. 

 

select TopN(1000, 10, D1) as 
topItems from RawEvent(); 
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The first argument to the aggregate function specifies the 

capacity, second argument corresponds to the max items to 

return (top N) and the last argument is the dimension from 

the event. 

Our proposal uses HyperLogLog[9] and TDigest[10] 

algorithms for computing distinct count and percentiles. We 

provide aggregate functions for these two computations 

which can be used in a SQL on an event stream. 

 

With this approach we can control both space and time for 

the computation at the cost of accuracy. In our experience 

we find that these approximate algorithms introduce an error 

of up to 1 percent depending on the data set and the capacity 

allocated to the algorithm. This is acceptable for most 

statistical problems in our opinion 
 

2.7 Dealing with out of order and delayed 
events 

It is very difficult to guarantee order in a distributed system. 

Sometimes due to network issues we have to store events in 

persistent queues and replay them later. This causes delay 

and might impact order.  

Mobile devices typically batch events and will send a batch 

every minute. The events could travel through intermediate 

queues and arrive much later than when the activity was 

recorded on the mobile device. Typically we are required to 

compute metrics grouped by dimensions across devices in a 

specific window. We want our metrics to be as accurate as 

possible to the nearest minute, hour or day.  

In order to compensate for out of order and delayed events 

we propose that the data sources sending events in to our 

system decorate the events with a time stamp as one of the 

dimensions.  In our system the time stamp will be rounded to 

the nearest minute and injected back into the event. We 

propose that all the metrics have the rounded timestamp as 

one of the dimensions in the grouping. When the event 

comes delayed or out of order we are able to attribute it to 

the correct rollup window in the time series database.    

 ARCHITECTURE 3.

 

Our Real-time Analytics Data Pipeline is a pipeline of 

loosely coupled stages. Each stage is functionally separate 

from its neighboring stage. Events are transported 

asynchronously across a pipeline of loosely coupled stages. 

This provides a better scaling model with higher reliability 

and scalability. Each stage can be built and operated 

independent of the neighboring stages and can adopt its own 

deployment and release cycles. The topology can be changed 

without a cold start.  

 

 
 

Figure 1. Real-time Data Pipeline 

 

The pipeline extends all the way from producing services 

and applications in to our backend real time analytics 

infrastructure.  

 

Event Streams carry user activity captured at source and 

published as events in to the pipeline. The events carry 

contextual information which is enriched and analyzed at 

various stages in the pipeline. 

 

The events can be analyzed both in-flight and at rest.  For in-

flight analytics we flow the event streams into a stream 

processing infrastructure with Complex Event Processing 

(CEP) capability. This infrastructure is targeted for real-time 

use cases that require the output of analytics to become 

available to various consuming applications with a 

maximum latency of 2 seconds. 

 

 This infrastructure is targeted for real-time web analytics, 

personalization, bot detection, campaign monitoring, data 

quality measurement, mobile device error monitoring, 

alerting, correlation and many more such use cases.  

 

Our approach is to treat the event stream like a database 

table. We apply SQL queries on live streams to extract 

summary data as events are moving. This technique is 

opposite of what one would do with batch processing where  

raw events are first collected in storage and then Map-

Reduce jobs process the data at rest to produce summary 

data. We believe this will enable us to produce metrics much 

quicker with lot less resources. It also gives us the flexibility 

of deploying queries at runtime without code role out. 

3.1 Complex Event Processing Framework 

Our proposal uses Complex Event Processing (CEP) engines 

for a lot of our processing. We will supplement CEP engines 

with custom processors when CEP is not adequate for the 

processing or is too heavy. 

Our data pipeline is a directed acyclic graph (DAG) of 

processing nodes as shown in Figure 2. 
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          Figure 2. Processing pipeline graph 

  

 

Each processing node hosts an instance of a CEP application 

which itself has a DAG of stages of its own. A collection of 

processing nodes in this graph performing the same 

operation forms a functional stage in the pipeline. The 

pipeline consumer’s processing nodes form the leaf nodes of 

this DAG. The DAG keeps expanding as we add more and 

more consumers in the process changing the topology. We 

wanted a declarative way of stitching the pipeline so that we 

could make changes to the topology at run time. 

 

Our processing logic involves processing event streams to 

compute metrics over tumbling and rolling windows, 

correlating streams, filtering, decorating and mutating 

streams, controlling the flow of events through the DAG, 

joining multiple streams and managing state.  

 

The expectation was for the system to be very agile where 

processing logic could be written and deployed without a 

need for expert programmers. Most technical staff in our 

organization is usually familiar with SQL and hence we 

decided to support SQL like language as a declarative 

language for writing processing rules. The SQL statements 

are compiled to java byte code at run time so the real-time 

query processing performs very well. We also needed to 

extend SQL so the pipeline became visible to SQL thus 

enabling processing logic to control data flow in the 

pipeline.   

 

We wanted our applications to be deployable in the cloud. 

The pipeline topology spreads across multiple data centers 

so we had complete disaster recovery. 

 

Given our unique set of complex event processing 

requirement we decided to develop our own Spring[8]  based 

distributed complex event processing infrastructure software 

called Jetstream[2]. It provides us a java complex event 

processing framework and tooling to build, deploy and 

manage complex event processing applications in our cloud 

environment. Tooling is also provided to deploy the apps in 

EC2 environment in docker containers. 

 

Jetstream has the following capabilities: 

 

1. Declaratively define processing logic in SQL 

2. Hot deploy SQL without restarting applications 

3. Annotation plugin framework to extend SQL 

functionality 

4. Pipeline flow routing using SQL 

5. Dynamically create stream affinity using SQL 

6. Declarative pipeline stitching using Spring IOC 

enabling dynamic topology changes at runtime. 

7. CEP capabilities through Esper [1] integration. 

8. Clustering with elastic scaling 

9. Cloud deployment 

10. Pub Sub messaging with both push and pull 

models 

 

All our real-time pipeline applications are built using 

Jetstream. 

3.2 Messaging 

3.2.1 Ingest Messaging 
 

On a typical day we ingest up to hundreds of thousands of 

events/sec from more than 100,000 nodes.  Average payload 

size varies between 1000 to 3000 bytes. Our producers 

operate in a polyglot environment. The event data is mostly 

unstructured with unpredictable patterns. We also have a 

requirement to keep the end to end latency in the system 

within 2 seconds driven by some of our targeted use cases. 

 

Our primary choice is to ingest all our ingress event traffic 

via REST interfaces. Event payload is represented in either 

JSON or AVRO form and is batched at source with the batch 

size not exceeding 40 events. The events flow over 

periodically recycled persistent http connections. Data is 

compressed in-flight to optimize network bandwidth. The 

REST API provides us transactional semantics ensuring that 

the data made it to our collector stage. This also nicely 

solves our problem of integrating with our polyglot producer 

environment. 

 

3.2.2 Push vs. Pull Messaging 
 

For the messaging between distributed stages in our real-

time pipeline we had to decide between a push vs. pull 

model.  

 

The push messaging model offers very low latency and is 

less expensive as it has no persistent queues between 

distributed stages. However, its drawback is in dealing 

with slow consumers. There is a potential for losing 

messages if the consumer cannot keep up.  

 

The pull model on the other hand has higher latencies and 

is more expensive as it involves persistent queues. It also 

causes amplification on the wire. However, this model is 

very suitable for slow consumers and very reliable. 
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3.2.3  Messaging Options 
 

Many of the class of problems we are addressing demand 

very low latencies (less than 100 milliseconds) in the 

pipeline but at the same time demand very low steady state 

transport loss (less than 0.01%).  In a cloud deployment the 

processing nodes can be spread across multiple data centers. 

Since a lot of our computation maintains aggregates in 

memory, we required our messaging tier to provide us a 

clustering capability in order to scale. Additionally, we 

wanted the messaging tier to support stream affinity to nodes 

in the consumer application cluster. Since our consumers 

could join and leave the pipeline at will we required a pub-

sub messaging paradigm so our distributed clusters have 

loose coupling.  

 

Jetstream offers a broker less in-memory very low latency 

pub-sub cluster messaging solution. It supports stream 

affinity through event schedulers that support consistent 

hashing.  It also supports a random scheduler to distribute 

the load evenly among the cluster nodes. It provides us a 

capability to deploy our application cluster across 

datacenters. It has flow control semantics where by a 

consumer can signal to the producer to stop sending events 

to it causing traffic to be rebalanced across the cluster. It has 

the ability to detect a slow consumer and send advisories 

containing undelivered event. A listener can direct the 

undelivered event to a persistent queue to be replayed later. 

 

Jetstream also supports guaranteed pub-sub messaging using 

Kafka which offers us at least once delivery semantics. We 

combine this with our broker less messaging to store and 

replay events that could not be delivered to slow consumers 

or when we have processing exceptions. We also optionally 

use this messaging to forward events to pipeline consumers 

when the requirement is skewed towards reliable messaging 

against low latency.  

 

We picked a hybrid approach to use in-memory cluster 

messaging with persistent queues in exception path. This 

decision was mainly driven by cost and latency 

considerations. The persistent queue approach causes 

amplification on the network for the events flowing through 

our distributed multistage pipeline and adds a latency of at 

least 300 milliseconds between each distributed stage. The 

four stages combined would have added latency to the tune 

of 1.2 seconds. The latency would have been lot higher if we 

factored in our cross DC deployment requirement. This was 

not acceptable for many of our targeted use cases.  

 

Our approach of combining in-memory messaging with 

overflow to persistent queue for exception path has worked 

very well for us. We are able to achieve less than one 

hundred millisecond end to end latency in the real-time data 

pipeline with steady state loss of less than 0.01%.  

 REAL-TIME PIPELINE 4.

Our Real-time Analytics Pipeline is made up of the 

following four distinct application stages - Collector, 

Sessionizer, Distributor and Metrics Calculator.  Each stage 

is an application cluster. 

4.1 Collector 

The Collector application is a Jetstream CEP Application 

deployed as a cluster in our cloud spanning multiple DCs. It 

is the first stage of our real-time pipeline. It interfaces with 

the producers of events on one side and then streams the 

events to the downstream Sessionizer stage. This stage is 

stateless.  It exposes a REST interface to ingest events from 

producers. As events arrive they are validated for quality 

issues. Validated data is next passed through the CEP 

engine. The CEP engine filters out BOT events by looking 

up BOT signatures in a BOT signature cache.  

4.1.1 Geo and Device Classification Enrichment 

Bot filtered events are enriched with geo location 

information. A lookup is performed on a hosted in-memory 

geo-location database using the IP address in the event to 

find the geo location information like city, country, 

continent, region and line speed. One of the fields in the 

event contains an IP address. The geo-location database is 

populated by processing periodic feeds from a geo location 

feed vendor. This data is compressed into a bucketized 

binary tree making it extremely efficient for spatial searches. 

We are able to lookup geo information in less than 150 

micro seconds.  

The collector also hosts a device classifier which parses the 

user agent string to determine the device type, OS version 

and other device classification information. 

 

The Agent String in the tracking event will be processed by 

the device classifier to identify the device associated with 

the user agent. The event will be decorated with the device 

tags for analysis downstream.   

4.2 Bot Detector 

In our environment, BOT signatures are looked up in our 

application tier way up in the producing applications. 

Signature of self-declared bots and those detected during 

offline processing is uploaded in a cache that is looked up. 

However BOTs that do not fall in this category will typically 

pass through to the real-time pipeline. These BOTs need to 

be detected as early as possible in the real- time pipeline so 

that we can filter the events associated with these BOTs 

before they start consuming valuable resources. 

BOTs exhibit a certain pattern for accessing our site. Our 

concern is mostly with detecting BOTs that can consume a 

lot of our site resources, primarily compute, network and 

backend resources. Such BOTs can be detected by observing 

the rates at which the BOTs are accessing the site using 

specific signatures. Our approach is to use probabilistic 

frequency estimation techniques measured over rolling 

windows of time. In our opinion CEP, engines are best at 

detecting these patterns – it’s like finding a needle in a 

haystack.  
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As the engine detects BOT signatures it will update the BOT 

signature cache. This is looked up by the Collector to 

enforce BOT filtering. 

4.3 Sessionizer 

The Sessionizer is the second stage of the Real Time 

Pipeline. Its primary function is to support tenancy based 

sessionization.  

Sessionization is a process of temporal grouping of events 

containing a specific identifier referred to as session 

duration. Each window starts when an event is first detected 

with the unique identifier. The window terminates when no 

events have arrived with that specific identifier for the 

specified duration referred to as session duration.  

4.3.1 Session Meta Data, Counters and State 

The data extracted from the events flowing into the session 

are stored in the session record in the form of session Meta 

data. Some examples of session meta data are SessionId, 

Page id, Geo-location (city, region, country, continent, 

longitude, latitude, and ISP, Browser, OS and Device type. 

As events arrive we will maintain a count of the occurrence 

of user defined fields in those events or count the events. 

These counters are maintained in our session store. We also 

have capability to maintain state per session. We have the 

capability to set and reset state as we process events. All the 

processing logic is written in SQL. 

 

4.3.2 Session Store 

The session records are stored in a local off-heap cache 

which is backed up in a backing store. We had a requirement 

to be able to set the TTL on a cache entry and receive 

notifications with good precision when the entry expired. 

Since we did not find a COTS solution which could deliver 

this feature we developed a special off-heap cache with a 

runner so we can monitor when a cache entry expires and 

send notifications.  Since the cache entries can be lost on 

node failure we store the entries in the off-heap cache also in 

an external backing store.   

4.3.3 Session Backing Store 
 

We used the following criteria for selecting the Session 

backing store: 

 

a. Support local read, writes & deletes 

b. Support both local and cross data center replication 

c. Support for eventual consistency 

d. Manage lifecycle of store entries (TTL support) 

e. Support writes to read ratio of 10:4 

f. Scale to 1M read &writes per second. 

g. Scale well with variable size payloads from 200 

bytes to 50000 bytes 

h. Preferably deployable in the Cloud 

i. Create secondary indexes for lookup of a range of 

keys inserted from a given client node 

 

The session data is stored in off-heap cache and a backing 

store.  We provide a storage abstraction for interfacing with 

different backing stores.   

 

Our use case demands extremely high write and delete 

workloads. Any disk based solution will require compaction 

to handle deletes. This will require very large clusters and 

very expensive storage solutions. For our workloads a 

completely in-memory store with replication will scale best. 

We evaluated Cassandra[3], Couch base and a home grown 

store.  We found both Cassandra and Couch base are disk 

based solutions and compaction becomes a bottleneck. Our 

choice was to go with a home grown solution which operates 

completely in-memory and provides cross DC replication 

with a fair degree of consistency.  

 

4.3.4 SQL extensions 
 

Jetstream provides an annotation plugin framework which 

enables users to write their own annotations to extend 

Esper’s SQL like language. We have exploited this feature in 

Jetstream and developed special annotation to augment SQL. 

This allows us to write statements in SQL to perform the 

following operations: 

 

a. Create sessions for a tenant specifying session 

duration and session identifier 

b. Store meta data in session 

c. Maintain counters in Session 

d. Store & Manipulate state in session 

 

For example, the following SQL is used to create a session 

and define the identifier and session duration. 

 

@Session("WebSession") 
 select si as _pk_, _ct as 
_timestamp_, 30 as _duration_ 
 from RawEvent(si is not null 
and _ct is not null); 

 

 To update a counter named “pageviews” in the session we 

use the following SQL 

 

@UpdateCounter("pageviews") 
    select * from 

RawEvent(pageGroup = 'HomePage'); 
 

4.4 Event Distributor 

This is the third stage in the pipeline and its primary function 

is to create custom views for pipeline subscribers. The views 

are created by mutating, filtering and routing sessionized 

streams. Pipeline subscribers use a pub-sub interface to 

subscribe to the events sourced by the distributor. The 

subscription is authorized by an authorization system 

enforcing that a subscriber’s view is populated with data that 

the subscriber is authorized to see. Subscribers can join and 

leave the pipeline at will. When a subscriber joins the 
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pipeline their view becomes active. They start receiving 

events from the time the view became active. 

 

4.4.1 Event filtering, Mutation and Routing 
 

The rules for mutation, filtering and routing are all written in 

SQL and can be changed at run time. A sample SQL for 

mutation, filtering and routing is shown below. 

 

insert into PSTREAM select D1, D2, 
D3, D4  from RawEvent where D1 = 
2045573 or D2 = 2047936 or D3 = 
2051457 or D4 = 2053742; 
 
@PublishOn(topics=“Trkng.Aconsumer/

pEvent")  
@OutputTo(“OutboundMessageChannel”)  
 @ClusterAffinityTag(column = D1)  
select *  FROM PSTREAM; 
 

All the mutation and filtering is done in SQL syntax. 

Jetstream provides us annotation extensions to SQL which 

gives us visibility to the pipeline. We use these annotations 

to specify the route the event takes in the data pipeline once 

the select statement executes. 

4.5 Metrics calculator for Multi-dimensional 
OLAP 

 

Metrics Calculator is a real-time metrics computation engine 

which computes user defined metrics over various 

dimensions and produces time series data. It provides a SQL 

interface for users to submit SQL queries to harvest metrics 

by grouping multiple dimensions over tumbling windows of 

time. The metric event, an output produced by the engine, 

can be routed to one or more destinations - all controlled 

through SQL. The destination could be a time series data 

base or a visualization widget connected through a web 

socket interface or a consumer that needs to be alerted on a 

threshold crossing of a metric. 

 

4.5.1 Harvesting Metrics 
 

Events can be scheduled into the Metrics Calculator 

application cluster using either random scheduling or affinity 

based scheduling. For affinity based scheduling, an affinity 

is created between the event stream and one of the metrics 

calculator’s processing nodes. An affinity key is composed 

using one or more dimensions in the event. The affinity key 

binds the event stream to a processing node in the cluster. 

This guarantees that events with same affinity key always 

land on the same processing node in the cluster, enabling us 

to maintain aggregates in memory. 

 

The metrics are harvested from live streams over short 

tumbling windows (ten seconds). When the window rolls it 

produces a metric event for each of the unique dimension 

grouping.  

 

A sample SQL query for harvesting metrics is shown below. 

 

create context MCContext start @now 
end pattern [timer:interval(10) or 
EsperEndEvent]; 

 

context MCContext 
insert into aggregate1 
   select count(*) as count, D1, D2, 
D3, _timestamp as tag_time, 'M1' as 
metricName from RawEvent(D1 is not 
null and D2 is not null and D3 is not 
null) group by D1, D2, D3 output 
snapshot when terminated; 

 

4.5.2 Aggregating across the Metrics 
Calculator cluster 

 

The metric computation shown in section 6.1 is complete as 

long as the affinity key is composed using one of the 

dimensions in the dimension grouping for the metric. 

However, this computation is not complete in cases where 

events are scheduled using random scheduling or when the 

affinity key for affinity scheduling is composed from 

dimensions that are not part of the dimension grouping.  

 

The expected result of the computation is for the engine to 

produce 1 metric event for a unique grouping of the 

dimensions.  For scenarios discussed above for a single 

metric to be produced in the cluster, all the individual metric 

events produced in each of the cluster nodes has to be 

directed to the same cluster node in the cluster for a unique 

grouping of the dimensions. A stream affinity needs to be 

created by composing an affinity key using the dimensions 

constituting the grouping. This is accomplished with 

Jetstream SQL annotations as shown below. 

 

@OutputTo("outboundMessageChannel") 
@ClusterAffinityTag(dimension=@Create
Dimension(name="groupdimen", 
dimensionspan="D1, metricName, D2, 
D3, tag_time")) 
@PublishOn(topics="Trkng.MC/clusterLe
velAggregate") 
select * from aggregate1; 
 
4.5.3 Creating rollups in time series database 
 

We compute the cluster level aggregate for the metric over 

another thirty second window. When the window rolls, the 

aggregated metric is output as a metric event. The engine is 

now producing time series data. 
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Sample SQL for creating cluster level aggregate and metric 

event directed to a time series database is shown below. 

 

create context CAContext start @now 
end pattern [timer:interval(30) or 
EsperEndEvent]; 
 
context CAContext 
insert into clusteraggregate select 
SUM(count) as count, D1, D2, D3, 
tag_time, metricName from aggregate1 
group by D1, D2, D3, tag_time, 
metricName; 
 
@OutputTo("timeseriesdatabase, 
visualizer") select * from 
clusteraggregate output snapshot when 
terminated; 
 
The time series data produced can be recorded in a time 

series database or drive visualization widgets in a real time 

dashboard.   

 

4.5.4 Metric Store  
 

Our time series data store requirements were to ingest at a 

very high rate (a few  hundred thousand events/sec), create 

rollups over different time windows (min, hour, day), submit 

adhoc queries to create aggregates grouped by any random 

combination of dimensions, query scan ranges spanning 

multiple years, query latencies under a few seconds for most 

cases, support over a hundred concurrent queries without 

impacting ingest rate and query latencies, highly available 

and support the following aggregate functions like SUM, , 

AVG,  COUNT, TOP N, DISTINCT COUNT, 

PERCENTILES.  

We evaluated Open TSDB[4], Cassandra[3] and DRUID[7]. 

Open TSDB supports high ingest and can support some of 

the aggregate functions we wanted. However, it does not 

allow us to create rollups and it also does not support 

creation of   new aggregates from existing aggregates. 

Cassandra can also support high ingest. We can create 

rollups for different time windows using the Cassandra 

counter column family. However Cassandra does not support 

GROUP BY and the aggregate functions we want. Our 

choice is DRUID as it supports all our requirements. 

 

  CONCLUDING REMARKS 5.

In this paper we have described the data and processing 

model for a class of problems related to user behavior 

analytics in real time. We describe some of the design 

considerations for Pulsar. Pulsar has been in production in 

the eBay cloud for over a year. We process hundreds of 

thousands of events/sec with a steady state loss of less than 

0.01%. Our pipeline end to end latency is less than a 

hundred milliseconds measured at the 95
th
 percentile. We 

have successfully operated the pipeline over this time at 

99.99%availability. Several teams within eBay have 

successfully built solutions leveraging our platform, solving 

problems like in-session personalization, advertising, 

internet marketing, billing, business monitoring and many 

more. 

 

Although we focus mostly on user behavior analytics which 

is our primary use case, we envision Pulsar to be used for 

many other use cases that require real-time processing. 
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