
 1

Pulsar – Real-time Analytics at Scale

 Sharad Murthy Tony Ng Bhaven Avalani

 Xinglang Wang Ken Wang Anand Gangadharan

 eBay, Inc.

ABSTRACT

Mobile devices continue to power high growth in online

commerce. Web-scale commerce platforms have to engage

hundreds of millions of shoppers who choose from more

than a billion items offered by tens of millions of

merchants. In order to convert shoppers to buyers, it is

critical to respond to their actions in real-time, offering them

relevant next steps in their purchase journey.

Consumer expectations have grown rapidly during the past

few years. Now, they expect in-session personalization

across multiple screens, including hyper- relevant

advertisements that use rich context aggregated from the

sensors they carry.

Fraud detection, business activity monitoring, and so on

have very similar needs to process data in near real time,

glean actionable insights within seconds, and generate

signals for immediate action. The latency inherent in a store-

and-process model makes batch-oriented systems such as

Hadoop unsuitable.

The sheer data volume and the low latency requirements

demand in flight data processing instead of a store and

process model as in batch oriented systems. The stream

processing infrastructure needs to be distributed across data

centers, yet have a programming model that does not require

very specialized skills. The system must be highly available

(i.e. allowing for new applications and application versions

be deployed with zero downtime).

This paper discusses the design of Pulsar, a real-time

analytics platform that is well suited to address the class of

problems noted above. We will discuss design choices for

critical subsystems and components along with the rationale.

 INTRODUCTION 1.

User behavior events contain structured information such as

user-agent or native application identifier (IP address)

Applications can extend to include attributes relevant to a

specific event type. These events are captured by native or

web applications for real-time and offline analysis. At eBay,

we capture in the order of hundreds of thousands of events

per second and growing fast as the number of gestures

continue to increase, along with user growth. BOTs

masquerading as humans generate a significant amount of

this event traffic. BOTs are a source of valid (e.g. search

engine crawler) and unproductive (crawlers that scrape

pages for information) traffic. In either case, we need to

protect resources of downstream systems by detecting them

and quarantining those events or process them with different

service levels. It’s important to note that BOTs can be fairly

sophisticated when trying to mimic human behavior, and are

known to purchase items!

A class of data enrichment of user behavior events such as

geo location lookup, device classification, demographics,

and many others is best done as early as possible in the data

pipeline to centralize processing logic at the cost of de-

normalizing data a bit. In other scenarios, such as Risk and

fraud analytics, the real-time user behavior patterns need to

be augmented by historical summary information

accumulated over time periods, extending to years. In such

scenarios the system throughput demands require a very fast

lookup that cannot be met by RDBMS.

Sessionization is a key construct that allow events to

accumulate in a data container until a user session is deemed

complete, usually based on inactivity for a period of time.

Many business metrics including conversion attribution

depend on the notion of a user-session, which is best done

once early in the data pipeline.

In the area of business activity monitoring, there is a need

for real-time aggregation of time-series metrics for

exploratory visualization and for generating alerts based on

random groupings of dimensions. This use case in particular

requires even higher ingest rates that cannot be served by a

RDBMS system. Metrics aggregation in real-time poses

challenges, such as explosion of counters due to large

number of dimensions and high cardinality dimensions with

very sparse data.

 In order to allow an ecosystem of applications to tap into a

rich data stream, it is important to have the notion of partial

views of original streams which filters, enriches, and mutates

event data for lower cost processing downstream.

In this paper, we propose a design for a data pipeline: build a

highly available distributed computation system with CEP

engines for most of our computation, processed in real-time.

Our proposal is to treat the event stream as a database table.

SQL queries can be executed against real-time streams to

create aggregates just like one would do against a database

table. We describe how we can enrich, filter, mutate and

create partial views of the event stream in flight.

 DATA AND PROCESSING MODEL 2.

2.1 User Behavior Data

User behavior data is unstructured or semi-structured for the

most part. It is made up of many tuples of information. Each

tuple represents a dimension. User behavior data stream is

made up of a continuous sequence of events. Each event

 2

contains contextual data around a click and is made up of

many dimensions (up to 40 dimensions). For example, page

ID, IP address, geo information like city, region, and country

or device classification data like browser type, device type,

and many more are examples of dimensions.

Many of these dimensions have high cardinality, making the

data set sparse. One of the challenges of creating aggregates

for a grouping of high cardinality dimensions in real-time is

the explosion of counters. This is a very challenging problem

to deal with in both space and time in a real-time

computation environment.

It is common to see user behavior data streaming at rates

exceeding millions of events per second. The events are

generated in unpredictable patterns. The use cases that

operate on this data demand very low latencies. This requires

in-memory processing of data streams as the data is flowing

through the system.

2.2 Data Enrichment

The user behavior streams contain both BOT and user

behavior activity. Our end users are only interested in user

behavior activity events.. This requires BOT activity events

to be detected and filtered out. Some other use cases only

process BOT events and for them the user activity events

need to be filtered out.

Often other sources of data with very valuable information

need to be combined with the user behavior stream. Geo

information, device classification, demographics and

segment data are examples of such data. The challenge is to

design scalable data stores that can be queried at the rates

being discussed. Many of the use cases under consideration

require this type of data. It would be extremely expensive to

have applications serving these use cases to independently

access these data sources. It would be most efficient to

provide capabilities to decorate the data streams with newer

dimensions in-flight. This involves looking up a store using

one of the dimensions in the event as a key. We can deploy

strategies of caching other sources of data locally on the

processing node or externally in a fast lookup cache. This

decision will have to be based on how often the data changes

and size of the data. This would be analogous to data base

table joins.

2.3 Sessionization

Sessionization is a process of state management by grouping

of related events identified by a common key. In web

analytics, a visit or session is defined as a series of page

requests or, in the case of tags, image requests from the same

uniquely identified client. A visit is considered done when

no requests have been recorded in some number of elapsed

minutes. A 30 minute limit ("time out") is used by many

analytics tools but can, in some tools, be changed to another

number of minutes.

A session state typically involves one or more counters of

certain activity in that session (e.g. recording of page

navigation).

Our solution is designed to support tenant defined sessions.

A tenant is a consumer of the sessionized data. Each tenant’s

session has its own lifecycle. A tenant’s session is identified

by a unique identifier made up of one or more dimensions

from the events driving the sessionization. The session

identifier, duration, metadata and state management logic are

all specified through a declarative syntax.

2.4 User defined partial views of original
streams

Typically, events sourced from applications have a large

payload consisting of a large number of dimensions.

Moving such large events over a distributed pipeline across a

wide area network is very expensive. Most consumers are

mostly interested in consuming partial views of the original

stream. The consumers of these streams will have to make

substantial investment to get a partial view of the original

stream if they consumed the original stream. A subscription

based capability needs to be provided for users to

declaratively define partial views of the original stream. A

user can define the dimensions in the original stream of

interest to them and the filtering rules to be used to populate

the view. The data populated in the view needs to be

regulated based on a subscriber’s authorization level.

2.5 Computing aggregates in real-time for
groups of multiple dimensions

Aggregation is a process of producing summary data for a

group of dimensions. RDBMS systems or PIG or HIVE

provide aggregation functions like COUNT, SUM, MIN,

MAX, AVG, DISTINCT COUNT, TOP N, QUANTILES

and many more.

Consider the following statement in the RDBMS world

select count(*) as METRIC1, column1,
column2 from SOMETABLE group by
column1, column2. This statement finds a count of

occurrences of unique groupings of column1 and column2 in

a table called SOMETABLE.

This query runs against a single database instance. In a

sharded environment, an application would have to run this

against each shard and then further aggregate the result set

returned by each shard. The query can take a long time if the

number of rows being scanned is very large.

Now consider executing a similar query in real time on live

streams. The dimensions in the event will take the place of

columns and the event stream replaces the table. In section

2.1 we mentioned that it is typical to be processing millions

of events per second in Ecommerce systems. Real time data

streams are continuously moving data unlike a database. We

need to define the start and end point in the stream for the

 3

aggregation function to process data in a continuously

moving stream. We achieve this by defining a window of

time over which the aggregation is performed. The window

can either be a tumbling window or a rolling window. A

sample SQL below shows a query applied to a data stream

that counts unique groupings of dimensions D1 & D2 over a

tumbling window of 10 seconds.

create context MCContext start @now
end pattern [timer:interval(10)];

context MCContext
insert into AGGREGATE select count(*)
as METRIC1, D1, D2 FROM RAWSTREAM
group by D1,D2 output snapshot when
terminated;

select * from AGGREGATE;

Since real time stream processing is all done in memory we

are constrained by space. Since our streaming data is sparse,

we have an explosion of counters putting pressure on our

memory resources. Hence we propose to keep the window

small (10 seconds). We propose a partitioning strategy to

spread the work load across a cluster of computation nodes.

The events are scheduled into the cluster using a consistent

hashing algorithm. The algorithm fits a hash key on a logical

ring to find the node to which the event needs to be

scheduled. The hash key is created by composing a key from

one or more event dimensions and computing a hash (H(D1,

D2,..)) of the composed key. We propose to use a 128 bit

hash function so we get a nice distribution of the events

across the cluster.

The data produced through aggregation is time series data.

Since all the aggregates are in memory there is potential to

lose the aggregate if the node dies. Our strategy is to keep

the aggregation windows short (30 seconds to 1 minute).

When the window rolls, the aggregate is emitted as a metric

event by the engine. We store this event in a time series data

store so we can create aggregates over longer windows (1

hour or 1 day) in the data base. This snapshotting approach

acts like a journal – we could store away the snapshot in a

time series database and restore the aggregate on a different

computation node to recover from a computation node

failure if we decide to. Since most of our use cases are

statistical in nature we have decided to live with the loss as it

is very small.

We also use the snapshots to drive visualization widgets in

real time. These widgets are hosted in real time dash boards

and produce visualization of the data. Several real time

visualizations have been produced in this manner in our

production environment.

This approach of aggregation produces cubes over known

dimensions. In such cases the grouping of dimensions are

known upfront. It is very well suited for real time use cases.

When the data is stored in a time series data store it can be

used for reporting use cases. However this approach by itself

is not suitable for data exploration. Data exploration

involves executing adhoc queries to create aggregates

grouping random dimensions over data spanning many

years. In section 6 of this paper we will explore an approach

to combine online with offline to show how we can take

advantage of pre-aggregation to contain cost and improve

query response of a time series data store.

2.6 Computing Top N, Percentiles. and Distinct
Count Metrics in real time

Consider the following query for finding the top 10

groupings of dimensions D1, D2 & D3 computed over a 1

minute window

create context MCContext start @now
end pattern [timer:interval(60)];

context MCContext

insert into TOPITEMS select count(*)
as totalCount, D1, D2, D3 from
RawEventStream group by D1, D2, D3
order by count(*) limit 10;

select * from TOPITEMS;

This query execution cost is proportional to the number of

unique combinations of D1,D2,D3 and the rate of event

arrival into the window. If one or more of these dimensions

has high cardinality then the number of counters will

explode putting pressure on memory resources. The ORDER

BY operator will cause sorting of the data when the window

rolls. This will consume a lot of compute resources putting

pressure on latencies. It could also cause frequent garbage

collection in our processing application which are built in

java. Other metrics like finding the distinct count and

percentiles are very useful but have similar issues as they are

memory intensive. This makes it very difficult to execute

these types of queries in real time at our volumes.

However, if we consider using approximation algorithms for

computing top N, percentiles and distinct count queries, then

we can operate within a fixed amount of memory that we

can control. We propose to use frequency estimation

techniques for computing top N. In this approach we only

keep frequently seen groupings in memory. When the

storage becomes full, the least frequently used grouping is

discarded from memory to make way for a new count. We

have implemented this algorithm as a special aggregate

function that can be used in a query as shown below.

select TopN(1000, 10, D1) as
topItems from RawEvent();

 4

The first argument to the aggregate function specifies the

capacity, second argument corresponds to the max items to

return (top N) and the last argument is the dimension from

the event.

Our proposal uses HyperLogLog[9] and TDigest[10]

algorithms for computing distinct count and percentiles. We

provide aggregate functions for these two computations

which can be used in a SQL on an event stream.

With this approach we can control both space and time for

the computation at the cost of accuracy. In our experience

we find that these approximate algorithms introduce an error

of up to 1 percent depending on the data set and the capacity

allocated to the algorithm. This is acceptable for most

statistical problems in our opinion

2.7 Dealing with out of order and delayed
events

It is very difficult to guarantee order in a distributed system.

Sometimes due to network issues we have to store events in

persistent queues and replay them later. This causes delay

and might impact order.

Mobile devices typically batch events and will send a batch

every minute. The events could travel through intermediate

queues and arrive much later than when the activity was

recorded on the mobile device. Typically we are required to

compute metrics grouped by dimensions across devices in a

specific window. We want our metrics to be as accurate as

possible to the nearest minute, hour or day.

In order to compensate for out of order and delayed events

we propose that the data sources sending events in to our

system decorate the events with a time stamp as one of the

dimensions. In our system the time stamp will be rounded to

the nearest minute and injected back into the event. We

propose that all the metrics have the rounded timestamp as

one of the dimensions in the grouping. When the event

comes delayed or out of order we are able to attribute it to

the correct rollup window in the time series database.

 ARCHITECTURE 3.

Our Real-time Analytics Data Pipeline is a pipeline of

loosely coupled stages. Each stage is functionally separate

from its neighboring stage. Events are transported

asynchronously across a pipeline of loosely coupled stages.

This provides a better scaling model with higher reliability

and scalability. Each stage can be built and operated

independent of the neighboring stages and can adopt its own

deployment and release cycles. The topology can be changed

without a cold start.

Figure 1. Real-time Data Pipeline

The pipeline extends all the way from producing services

and applications in to our backend real time analytics

infrastructure.

Event Streams carry user activity captured at source and

published as events in to the pipeline. The events carry

contextual information which is enriched and analyzed at

various stages in the pipeline.

The events can be analyzed both in-flight and at rest. For in-

flight analytics we flow the event streams into a stream

processing infrastructure with Complex Event Processing

(CEP) capability. This infrastructure is targeted for real-time

use cases that require the output of analytics to become

available to various consuming applications with a

maximum latency of 2 seconds.

 This infrastructure is targeted for real-time web analytics,

personalization, bot detection, campaign monitoring, data

quality measurement, mobile device error monitoring,

alerting, correlation and many more such use cases.

Our approach is to treat the event stream like a database

table. We apply SQL queries on live streams to extract

summary data as events are moving. This technique is

opposite of what one would do with batch processing where

raw events are first collected in storage and then Map-

Reduce jobs process the data at rest to produce summary

data. We believe this will enable us to produce metrics much

quicker with lot less resources. It also gives us the flexibility

of deploying queries at runtime without code role out.

3.1 Complex Event Processing Framework

Our proposal uses Complex Event Processing (CEP) engines

for a lot of our processing. We will supplement CEP engines

with custom processors when CEP is not adequate for the

processing or is too heavy.

Our data pipeline is a directed acyclic graph (DAG) of

processing nodes as shown in Figure 2.

 5

 Figure 2. Processing pipeline graph

Each processing node hosts an instance of a CEP application

which itself has a DAG of stages of its own. A collection of

processing nodes in this graph performing the same

operation forms a functional stage in the pipeline. The

pipeline consumer’s processing nodes form the leaf nodes of

this DAG. The DAG keeps expanding as we add more and

more consumers in the process changing the topology. We

wanted a declarative way of stitching the pipeline so that we

could make changes to the topology at run time.

Our processing logic involves processing event streams to

compute metrics over tumbling and rolling windows,

correlating streams, filtering, decorating and mutating

streams, controlling the flow of events through the DAG,

joining multiple streams and managing state.

The expectation was for the system to be very agile where

processing logic could be written and deployed without a

need for expert programmers. Most technical staff in our

organization is usually familiar with SQL and hence we

decided to support SQL like language as a declarative

language for writing processing rules. The SQL statements

are compiled to java byte code at run time so the real-time

query processing performs very well. We also needed to

extend SQL so the pipeline became visible to SQL thus

enabling processing logic to control data flow in the

pipeline.

We wanted our applications to be deployable in the cloud.

The pipeline topology spreads across multiple data centers

so we had complete disaster recovery.

Given our unique set of complex event processing

requirement we decided to develop our own Spring[8] based

distributed complex event processing infrastructure software

called Jetstream[2]. It provides us a java complex event

processing framework and tooling to build, deploy and

manage complex event processing applications in our cloud

environment. Tooling is also provided to deploy the apps in

EC2 environment in docker containers.

Jetstream has the following capabilities:

1. Declaratively define processing logic in SQL

2. Hot deploy SQL without restarting applications

3. Annotation plugin framework to extend SQL

functionality

4. Pipeline flow routing using SQL

5. Dynamically create stream affinity using SQL

6. Declarative pipeline stitching using Spring IOC

enabling dynamic topology changes at runtime.

7. CEP capabilities through Esper [1] integration.

8. Clustering with elastic scaling

9. Cloud deployment

10. Pub Sub messaging with both push and pull

models

All our real-time pipeline applications are built using

Jetstream.

3.2 Messaging

3.2.1 Ingest Messaging

On a typical day we ingest up to hundreds of thousands of

events/sec from more than 100,000 nodes. Average payload

size varies between 1000 to 3000 bytes. Our producers

operate in a polyglot environment. The event data is mostly

unstructured with unpredictable patterns. We also have a

requirement to keep the end to end latency in the system

within 2 seconds driven by some of our targeted use cases.

Our primary choice is to ingest all our ingress event traffic

via REST interfaces. Event payload is represented in either

JSON or AVRO form and is batched at source with the batch

size not exceeding 40 events. The events flow over

periodically recycled persistent http connections. Data is

compressed in-flight to optimize network bandwidth. The

REST API provides us transactional semantics ensuring that

the data made it to our collector stage. This also nicely

solves our problem of integrating with our polyglot producer

environment.

3.2.2 Push vs. Pull Messaging

For the messaging between distributed stages in our real-

time pipeline we had to decide between a push vs. pull

model.

The push messaging model offers very low latency and is

less expensive as it has no persistent queues between

distributed stages. However, its drawback is in dealing

with slow consumers. There is a potential for losing

messages if the consumer cannot keep up.

The pull model on the other hand has higher latencies and

is more expensive as it involves persistent queues. It also

causes amplification on the wire. However, this model is

very suitable for slow consumers and very reliable.

 6

3.2.3 Messaging Options

Many of the class of problems we are addressing demand

very low latencies (less than 100 milliseconds) in the

pipeline but at the same time demand very low steady state

transport loss (less than 0.01%). In a cloud deployment the

processing nodes can be spread across multiple data centers.

Since a lot of our computation maintains aggregates in

memory, we required our messaging tier to provide us a

clustering capability in order to scale. Additionally, we

wanted the messaging tier to support stream affinity to nodes

in the consumer application cluster. Since our consumers

could join and leave the pipeline at will we required a pub-

sub messaging paradigm so our distributed clusters have

loose coupling.

Jetstream offers a broker less in-memory very low latency

pub-sub cluster messaging solution. It supports stream

affinity through event schedulers that support consistent

hashing. It also supports a random scheduler to distribute

the load evenly among the cluster nodes. It provides us a

capability to deploy our application cluster across

datacenters. It has flow control semantics where by a

consumer can signal to the producer to stop sending events

to it causing traffic to be rebalanced across the cluster. It has

the ability to detect a slow consumer and send advisories

containing undelivered event. A listener can direct the

undelivered event to a persistent queue to be replayed later.

Jetstream also supports guaranteed pub-sub messaging using

Kafka which offers us at least once delivery semantics. We

combine this with our broker less messaging to store and

replay events that could not be delivered to slow consumers

or when we have processing exceptions. We also optionally

use this messaging to forward events to pipeline consumers

when the requirement is skewed towards reliable messaging

against low latency.

We picked a hybrid approach to use in-memory cluster

messaging with persistent queues in exception path. This

decision was mainly driven by cost and latency

considerations. The persistent queue approach causes

amplification on the network for the events flowing through

our distributed multistage pipeline and adds a latency of at

least 300 milliseconds between each distributed stage. The

four stages combined would have added latency to the tune

of 1.2 seconds. The latency would have been lot higher if we

factored in our cross DC deployment requirement. This was

not acceptable for many of our targeted use cases.

Our approach of combining in-memory messaging with

overflow to persistent queue for exception path has worked

very well for us. We are able to achieve less than one

hundred millisecond end to end latency in the real-time data

pipeline with steady state loss of less than 0.01%.

 REAL-TIME PIPELINE 4.

Our Real-time Analytics Pipeline is made up of the

following four distinct application stages - Collector,

Sessionizer, Distributor and Metrics Calculator. Each stage

is an application cluster.

4.1 Collector

The Collector application is a Jetstream CEP Application

deployed as a cluster in our cloud spanning multiple DCs. It

is the first stage of our real-time pipeline. It interfaces with

the producers of events on one side and then streams the

events to the downstream Sessionizer stage. This stage is

stateless. It exposes a REST interface to ingest events from

producers. As events arrive they are validated for quality

issues. Validated data is next passed through the CEP

engine. The CEP engine filters out BOT events by looking

up BOT signatures in a BOT signature cache.

4.1.1 Geo and Device Classification Enrichment

Bot filtered events are enriched with geo location

information. A lookup is performed on a hosted in-memory

geo-location database using the IP address in the event to

find the geo location information like city, country,

continent, region and line speed. One of the fields in the

event contains an IP address. The geo-location database is

populated by processing periodic feeds from a geo location

feed vendor. This data is compressed into a bucketized

binary tree making it extremely efficient for spatial searches.

We are able to lookup geo information in less than 150

micro seconds.

The collector also hosts a device classifier which parses the

user agent string to determine the device type, OS version

and other device classification information.

The Agent String in the tracking event will be processed by

the device classifier to identify the device associated with

the user agent. The event will be decorated with the device

tags for analysis downstream.

4.2 Bot Detector

In our environment, BOT signatures are looked up in our

application tier way up in the producing applications.

Signature of self-declared bots and those detected during

offline processing is uploaded in a cache that is looked up.

However BOTs that do not fall in this category will typically

pass through to the real-time pipeline. These BOTs need to

be detected as early as possible in the real- time pipeline so

that we can filter the events associated with these BOTs

before they start consuming valuable resources.

BOTs exhibit a certain pattern for accessing our site. Our

concern is mostly with detecting BOTs that can consume a

lot of our site resources, primarily compute, network and

backend resources. Such BOTs can be detected by observing

the rates at which the BOTs are accessing the site using

specific signatures. Our approach is to use probabilistic

frequency estimation techniques measured over rolling

windows of time. In our opinion CEP, engines are best at

detecting these patterns – it’s like finding a needle in a

haystack.

 7

As the engine detects BOT signatures it will update the BOT

signature cache. This is looked up by the Collector to

enforce BOT filtering.

4.3 Sessionizer

The Sessionizer is the second stage of the Real Time

Pipeline. Its primary function is to support tenancy based

sessionization.

Sessionization is a process of temporal grouping of events

containing a specific identifier referred to as session

duration. Each window starts when an event is first detected

with the unique identifier. The window terminates when no

events have arrived with that specific identifier for the

specified duration referred to as session duration.

4.3.1 Session Meta Data, Counters and State

The data extracted from the events flowing into the session

are stored in the session record in the form of session Meta

data. Some examples of session meta data are SessionId,

Page id, Geo-location (city, region, country, continent,

longitude, latitude, and ISP, Browser, OS and Device type.

As events arrive we will maintain a count of the occurrence

of user defined fields in those events or count the events.

These counters are maintained in our session store. We also

have capability to maintain state per session. We have the

capability to set and reset state as we process events. All the

processing logic is written in SQL.

4.3.2 Session Store

The session records are stored in a local off-heap cache

which is backed up in a backing store. We had a requirement

to be able to set the TTL on a cache entry and receive

notifications with good precision when the entry expired.

Since we did not find a COTS solution which could deliver

this feature we developed a special off-heap cache with a

runner so we can monitor when a cache entry expires and

send notifications. Since the cache entries can be lost on

node failure we store the entries in the off-heap cache also in

an external backing store.

4.3.3 Session Backing Store

We used the following criteria for selecting the Session

backing store:

a. Support local read, writes & deletes

b. Support both local and cross data center replication

c. Support for eventual consistency

d. Manage lifecycle of store entries (TTL support)

e. Support writes to read ratio of 10:4

f. Scale to 1M read &writes per second.

g. Scale well with variable size payloads from 200

bytes to 50000 bytes

h. Preferably deployable in the Cloud

i. Create secondary indexes for lookup of a range of

keys inserted from a given client node

The session data is stored in off-heap cache and a backing

store. We provide a storage abstraction for interfacing with

different backing stores.

Our use case demands extremely high write and delete

workloads. Any disk based solution will require compaction

to handle deletes. This will require very large clusters and

very expensive storage solutions. For our workloads a

completely in-memory store with replication will scale best.

We evaluated Cassandra[3], Couch base and a home grown

store. We found both Cassandra and Couch base are disk

based solutions and compaction becomes a bottleneck. Our

choice was to go with a home grown solution which operates

completely in-memory and provides cross DC replication

with a fair degree of consistency.

4.3.4 SQL extensions

Jetstream provides an annotation plugin framework which

enables users to write their own annotations to extend

Esper’s SQL like language. We have exploited this feature in

Jetstream and developed special annotation to augment SQL.

This allows us to write statements in SQL to perform the

following operations:

a. Create sessions for a tenant specifying session

duration and session identifier

b. Store meta data in session

c. Maintain counters in Session

d. Store & Manipulate state in session

For example, the following SQL is used to create a session

and define the identifier and session duration.

@Session("WebSession")
 select si as _pk_, _ct as
timestamp, 30 as _duration_
 from RawEvent(si is not null
and _ct is not null);

 To update a counter named “pageviews” in the session we

use the following SQL

@UpdateCounter("pageviews")
 select * from

RawEvent(pageGroup = 'HomePage');

4.4 Event Distributor

This is the third stage in the pipeline and its primary function

is to create custom views for pipeline subscribers. The views

are created by mutating, filtering and routing sessionized

streams. Pipeline subscribers use a pub-sub interface to

subscribe to the events sourced by the distributor. The

subscription is authorized by an authorization system

enforcing that a subscriber’s view is populated with data that

the subscriber is authorized to see. Subscribers can join and

leave the pipeline at will. When a subscriber joins the

 8

pipeline their view becomes active. They start receiving

events from the time the view became active.

4.4.1 Event filtering, Mutation and Routing

The rules for mutation, filtering and routing are all written in

SQL and can be changed at run time. A sample SQL for

mutation, filtering and routing is shown below.

insert into PSTREAM select D1, D2,
D3, D4 from RawEvent where D1 =
2045573 or D2 = 2047936 or D3 =
2051457 or D4 = 2053742;

@PublishOn(topics=“Trkng.Aconsumer/

pEvent")
@OutputTo(“OutboundMessageChannel”)
 @ClusterAffinityTag(column = D1)
select * FROM PSTREAM;

All the mutation and filtering is done in SQL syntax.

Jetstream provides us annotation extensions to SQL which

gives us visibility to the pipeline. We use these annotations

to specify the route the event takes in the data pipeline once

the select statement executes.

4.5 Metrics calculator for Multi-dimensional
OLAP

Metrics Calculator is a real-time metrics computation engine

which computes user defined metrics over various

dimensions and produces time series data. It provides a SQL

interface for users to submit SQL queries to harvest metrics

by grouping multiple dimensions over tumbling windows of

time. The metric event, an output produced by the engine,

can be routed to one or more destinations - all controlled

through SQL. The destination could be a time series data

base or a visualization widget connected through a web

socket interface or a consumer that needs to be alerted on a

threshold crossing of a metric.

4.5.1 Harvesting Metrics

Events can be scheduled into the Metrics Calculator

application cluster using either random scheduling or affinity

based scheduling. For affinity based scheduling, an affinity

is created between the event stream and one of the metrics

calculator’s processing nodes. An affinity key is composed

using one or more dimensions in the event. The affinity key

binds the event stream to a processing node in the cluster.

This guarantees that events with same affinity key always

land on the same processing node in the cluster, enabling us

to maintain aggregates in memory.

The metrics are harvested from live streams over short

tumbling windows (ten seconds). When the window rolls it

produces a metric event for each of the unique dimension

grouping.

A sample SQL query for harvesting metrics is shown below.

create context MCContext start @now
end pattern [timer:interval(10) or
EsperEndEvent];

context MCContext
insert into aggregate1
 select count(*) as count, D1, D2,
D3, _timestamp as tag_time, 'M1' as
metricName from RawEvent(D1 is not
null and D2 is not null and D3 is not
null) group by D1, D2, D3 output
snapshot when terminated;

4.5.2 Aggregating across the Metrics
Calculator cluster

The metric computation shown in section 6.1 is complete as

long as the affinity key is composed using one of the

dimensions in the dimension grouping for the metric.

However, this computation is not complete in cases where

events are scheduled using random scheduling or when the

affinity key for affinity scheduling is composed from

dimensions that are not part of the dimension grouping.

The expected result of the computation is for the engine to

produce 1 metric event for a unique grouping of the

dimensions. For scenarios discussed above for a single

metric to be produced in the cluster, all the individual metric

events produced in each of the cluster nodes has to be

directed to the same cluster node in the cluster for a unique

grouping of the dimensions. A stream affinity needs to be

created by composing an affinity key using the dimensions

constituting the grouping. This is accomplished with

Jetstream SQL annotations as shown below.

@OutputTo("outboundMessageChannel")
@ClusterAffinityTag(dimension=@Create
Dimension(name="groupdimen",
dimensionspan="D1, metricName, D2,
D3, tag_time"))
@PublishOn(topics="Trkng.MC/clusterLe
velAggregate")
select * from aggregate1;

4.5.3 Creating rollups in time series database

We compute the cluster level aggregate for the metric over

another thirty second window. When the window rolls, the

aggregated metric is output as a metric event. The engine is

now producing time series data.

 9

Sample SQL for creating cluster level aggregate and metric

event directed to a time series database is shown below.

create context CAContext start @now
end pattern [timer:interval(30) or
EsperEndEvent];

context CAContext
insert into clusteraggregate select
SUM(count) as count, D1, D2, D3,
tag_time, metricName from aggregate1
group by D1, D2, D3, tag_time,
metricName;

@OutputTo("timeseriesdatabase,
visualizer") select * from
clusteraggregate output snapshot when
terminated;

The time series data produced can be recorded in a time

series database or drive visualization widgets in a real time

dashboard.

4.5.4 Metric Store

Our time series data store requirements were to ingest at a

very high rate (a few hundred thousand events/sec), create

rollups over different time windows (min, hour, day), submit

adhoc queries to create aggregates grouped by any random

combination of dimensions, query scan ranges spanning

multiple years, query latencies under a few seconds for most

cases, support over a hundred concurrent queries without

impacting ingest rate and query latencies, highly available

and support the following aggregate functions like SUM, ,

AVG, COUNT, TOP N, DISTINCT COUNT,

PERCENTILES.

We evaluated Open TSDB[4], Cassandra[3] and DRUID[7].

Open TSDB supports high ingest and can support some of

the aggregate functions we wanted. However, it does not

allow us to create rollups and it also does not support

creation of new aggregates from existing aggregates.

Cassandra can also support high ingest. We can create

rollups for different time windows using the Cassandra

counter column family. However Cassandra does not support

GROUP BY and the aggregate functions we want. Our

choice is DRUID as it supports all our requirements.

 CONCLUDING REMARKS 5.

In this paper we have described the data and processing

model for a class of problems related to user behavior

analytics in real time. We describe some of the design

considerations for Pulsar. Pulsar has been in production in

the eBay cloud for over a year. We process hundreds of

thousands of events/sec with a steady state loss of less than

0.01%. Our pipeline end to end latency is less than a

hundred milliseconds measured at the 95
th
 percentile. We

have successfully operated the pipeline over this time at

99.99%availability. Several teams within eBay have

successfully built solutions leveraging our platform, solving

problems like in-session personalization, advertising,

internet marketing, billing, business monitoring and many

more.

Although we focus mostly on user behavior analytics which

is our primary use case, we envision Pulsar to be used for

many other use cases that require real-time processing.

REFERENCES

[1] Esper -

http://esper.codehaus.org/esper/documentation/docu

mentation.html

[2] Jetstream -

https://github.com/pulsarIO/jetstream/wiki

[3] Apache Cassandra - http://cassandra.apache.org

[4] Open TSDB - http://opentsdb.net/

[5] Apache Kafka - http://kafka.apache.org/

[6] Efficient Computation of Frequent and Top-k

Elements in DataStreams -

https://icmi.cs.ucsb.edu/research/tech_reports/report

s/2005-23.pdf

[7] DRUID - http://static.druid.io/docs/druid.pdf

The 8 Requirements of Real-Time Stream

Processing -

http://cs.brown.edu/~ugur/8rulesSigRec.pdf

[8] Spring - https://spring.io/

[9] HyperLogLog: the analysis of a near-optimal

cardinality estimation algorithm -

http://algo.inria.fr/flajolet/Publications/FlFuGaMe0

7.pdf

[10] Computing extremely accurate quantiles using T-

Digest -

https://github.com/tdunning/t-

digest/blob/master/docs/t-digest-paper/histo.pdf

http://cassandra.apache.org/
http://opentsdb.net/
http://kafka.apache.org/
https://icmi.cs.ucsb.edu/research/tech_reports/reports/2005-23.pdf
https://icmi.cs.ucsb.edu/research/tech_reports/reports/2005-23.pdf
http://static.druid.io/docs/druid.pdf
http://cs.brown.edu/~ugur/8rulesSigRec.pdf
https://spring.io/

