diff --git a/xarray/core/computation.py b/xarray/core/computation.py index 48015bf7541..0c21ca07744 100644 --- a/xarray/core/computation.py +++ b/xarray/core/computation.py @@ -1036,8 +1036,7 @@ def apply_ufunc( Most of NumPy's builtin functions already broadcast their inputs appropriately for use in ``apply_ufunc``. You may find helper functions such as :py:func:`numpy.broadcast_arrays` helpful in writing your function. ``apply_ufunc`` also - works well with :py:func:`numba.vectorize` and :py:func:`numba.guvectorize`. Further explanation with - examples are provided in the xarray documentation [3]_. + works well with :py:func:`numba.vectorize` and :py:func:`numba.guvectorize`. See Also -------- @@ -1047,12 +1046,12 @@ def apply_ufunc( dask.array.apply_gufunc xarray.map_blocks :ref:`dask.automatic-parallelization` + User guide describing :py:func:`apply_ufunc` and :py:func:`map_blocks`. References ---------- .. [1] http://docs.scipy.org/doc/numpy/reference/ufuncs.html .. [2] http://docs.scipy.org/doc/numpy/reference/c-api.generalized-ufuncs.html - .. [3] http://xarray.pydata.org/en/stable/computation.html#wrapping-custom-computation """ from .dataarray import DataArray from .groupby import GroupBy