From 451136f39febaac723a9f775ef6358aa747f1ed0 Mon Sep 17 00:00:00 2001 From: energyls Date: Tue, 17 Oct 2023 15:25:03 +0200 Subject: [PATCH 01/14] feat: add cost params to config --- config.default.yaml | 7 ++++++- 1 file changed, 6 insertions(+), 1 deletion(-) diff --git a/config.default.yaml b/config.default.yaml index 708e8266..d379b040 100644 --- a/config.default.yaml +++ b/config.default.yaml @@ -47,6 +47,9 @@ H2_network: false H2_network_limit: 2000 #GWkm H2_repurposed_network: false +enable: + retrieve_cost_data: true # if true, the workflow overwrites the cost data saved in data/costs again + fossil_reserves: oil: 100 #TWh Maybe reduntant @@ -76,13 +79,15 @@ custom_data: custom_sectors: false gas_grid: false +# Costs used in PyPSA-Earth-Sec. Year depends on the wildcard "planning_horizon" in the scenario section costs: + version: v0.6.2 lifetime: 25 #default lifetime # From a Lion Hirth paper, also reflects average of Noothout et al 2016 discountrate: [0.071] #, 0.086, 0.111] # [EUR/USD] ECB: https://www.ecb.europa.eu/stats/exchange/eurofxref/html/eurofxref-graph-usd.en.html # noqa: E501 USD2013_to_EUR2013: 0.7532 - + # Marginal and capital costs can be overwritten # capital_cost: # onwind: 500 From 31e3abd34b462f7ba3edf7dd40840506ee1c6e8b Mon Sep 17 00:00:00 2001 From: energyls Date: Tue, 17 Oct 2023 15:25:25 +0200 Subject: [PATCH 02/14] feat: add cost params to test config --- test/config.test1.yaml | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/test/config.test1.yaml b/test/config.test1.yaml index 3d643b73..ca37c8a7 100644 --- a/test/config.test1.yaml +++ b/test/config.test1.yaml @@ -78,13 +78,14 @@ custom_data: custom_sectors: false gas_grid: false +# Costs used in PyPSA-Earth-Sec. Year depends on the wildcard "planning_horizon" in the scenario section costs: + version: v0.6.2 lifetime: 25 #default lifetime # From a Lion Hirth paper, also reflects average of Noothout et al 2016 discountrate: [0.071] #, 0.086, 0.111] # [EUR/USD] ECB: https://www.ecb.europa.eu/stats/exchange/eurofxref/html/eurofxref-graph-usd.en.html # noqa: E501 USD2013_to_EUR2013: 0.7532 - # Marginal and capital costs can be overwritten # capital_cost: # onwind: 500 @@ -96,6 +97,7 @@ costs: H2: 0. battery: 0. + emission_prices: # only used with the option Ep (emission prices) co2: 0. From 05a503e211a7149e3574d68081516755e8297d83 Mon Sep 17 00:00:00 2001 From: energyls Date: Tue, 17 Oct 2023 15:25:45 +0200 Subject: [PATCH 03/14] feat: add rule to download cost file --- Snakefile | 17 ++++++++++++++++- 1 file changed, 16 insertions(+), 1 deletion(-) diff --git a/Snakefile b/Snakefile index 1eff61e9..39411d9a 100644 --- a/Snakefile +++ b/Snakefile @@ -1,5 +1,5 @@ from os.path import exists -from shutil import copyfile +from shutil import copyfile, move from snakemake.remote.HTTP import RemoteProvider as HTTPRemoteProvider @@ -45,6 +45,21 @@ subworkflow pypsaearth: configfile: "./config.pypsa-earth.yaml" +if config["enable"].get("retrieve_cost_data", True): + + rule retrieve_cost_data: + input: + HTTP.remote( + f"raw.githubusercontent.com/PyPSA/technology-data/{config['costs']['version']}/outputs/costs" + "_{planning_horizons}.csv", + keep_local=True, + ), + output: + costs=CDIR + "costs_{planning_horizons}.csv", + resources: + mem_mb=5000, + run: + move(input[0], output[0]) + rule prepare_sector_networks: input: From 9e3d7ca8d523063f4c358db716316c57f11fbbc2 Mon Sep 17 00:00:00 2001 From: energyls Date: Tue, 17 Oct 2023 15:29:05 +0200 Subject: [PATCH 04/14] feat: gitignore cost data --- .gitignore | 1 + 1 file changed, 1 insertion(+) diff --git a/.gitignore b/.gitignore index ccf9972e..74e419b0 100644 --- a/.gitignore +++ b/.gitignore @@ -11,6 +11,7 @@ data/energy_totals_NZ_2030.csv gadm_shapes.geojson data/energy_totals_NZ_2030 data/industry_sector_ratios_NZ_2030.csv +data/costs* # Folders /bak From 545f8c0aaa05720fc9a4910087cbff0dd434bf64 Mon Sep 17 00:00:00 2001 From: energyls Date: Tue, 17 Oct 2023 15:29:31 +0200 Subject: [PATCH 05/14] chore: delete old cost data files, now obtained via rule --- data/costs.csv | 195 ---------------- data/costs_2030.csv | 531 -------------------------------------------- 2 files changed, 726 deletions(-) delete mode 100644 data/costs.csv delete mode 100644 data/costs_2030.csv diff --git a/data/costs.csv b/data/costs.csv deleted file mode 100644 index 3c6c2dae..00000000 --- a/data/costs.csv +++ /dev/null @@ -1,195 +0,0 @@ -technology,year,parameter,value,unit,source -solar-rooftop,2030,discount rate,0.04,per unit,standard for decentral -onwind,2030,lifetime,30,years,DEA https://ens.dk/en/our-services/projections-and-models/technology-data -offwind,2030,lifetime,30,years,DEA https://ens.dk/en/our-services/projections-and-models/technology-data -solar,2030,lifetime,25,years,IEA2010 -solar-rooftop,2030,lifetime,25,years,IEA2010 -solar-utility,2030,lifetime,25,years,IEA2010 -PHS,2030,lifetime,80,years,IEA2010 -hydro,2030,lifetime,80,years,IEA2010 -ror,2030,lifetime,80,years,IEA2010 -OCGT,2030,lifetime,30,years,IEA2010 -nuclear,2030,lifetime,45,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348 -CCGT,2030,lifetime,30,years,IEA2010 -coal,2030,lifetime,40,years,IEA2010 -lignite,2030,lifetime,40,years,IEA2010 -geothermal,2030,lifetime,40,years,IEA2010 -biomass,2030,lifetime,30,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348 -oil,2030,lifetime,30,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348 -onwind,2030,investment,1040,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data -offwind,2030,investment,1640,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data -offwind-ac-station,2030,investment,250,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data -offwind-ac-connection-submarine,2030,investment,2685,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data -offwind-ac-connection-underground,2030,investment,1342,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data -offwind-dc-station,2030,investment,400,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction -offwind-dc-connection-submarine,2030,investment,2000,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf -offwind-dc-connection-underground,2030,investment,1000,EUR/MW/km,Haertel 2017; average + 13% learning reduction -solar,2030,investment,600,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348 -biomass,2030,investment,2209,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348 -geothermal,2030,investment,3392,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348 -coal,2030,investment,1300,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348 PC (Advanced/SuperC) -lignite,2030,investment,1500,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348 -solar-rooftop,2030,investment,725,EUR/kWel,ETIP PV -solar-utility,2030,investment,425,EUR/kWel,ETIP PV -PHS,2030,investment,2000,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348 -hydro,2030,investment,2000,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348 -ror,2030,investment,3000,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348 -OCGT,2030,investment,400,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348 -nuclear,2030,investment,6000,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348 -CCGT,2030,investment,800,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348 -oil,2030,investment,400,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348 -onwind,2030,FOM,2.450549,%/year,DEA https://ens.dk/en/our-services/projections-and-models/technology-data -offwind,2030,FOM,2.304878,%/year,DEA https://ens.dk/en/our-services/projections-and-models/technology-data -solar,2030,FOM,4.166667,%/year,DIW DataDoc http://hdl.handle.net/10419/80348 -solar-rooftop,2030,FOM,2,%/year,ETIP PV -solar-utility,2030,FOM,3,%/year,ETIP PV -biomass,2030,FOM,4.526935,%/year,DIW DataDoc http://hdl.handle.net/10419/80348 -geothermal,2030,FOM,2.358491,%/year,DIW DataDoc http://hdl.handle.net/10419/80348 -coal,2030,FOM,1.923076,%/year,DIW DataDoc http://hdl.handle.net/10419/80348 PC (Advanced/SuperC) -lignite,2030,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348 PC (Advanced/SuperC) -oil,2030,FOM,1.5,%/year,DIW DataDoc http://hdl.handle.net/10419/80348 -PHS,2030,FOM,1,%/year,DIW DataDoc http://hdl.handle.net/10419/80348 -hydro,2030,FOM,1,%/year,DIW DataDoc http://hdl.handle.net/10419/80348 -ror,2030,FOM,2,%/year,DIW DataDoc http://hdl.handle.net/10419/80348 -CCGT,2030,FOM,2.5,%/year,DIW DataDoc http://hdl.handle.net/10419/80348 -OCGT,2030,FOM,3.75,%/year,DIW DataDoc http://hdl.handle.net/10419/80348 -onwind,2030,VOM,2.3,EUR/MWhel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data -offwind,2030,VOM,2.7,EUR/MWhel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data -solar,2030,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order -coal,2030,VOM,6,EUR/MWhel,DIW DataDoc http://hdl.handle.net/10419/80348 PC (Advanced/SuperC) -lignite,2030,VOM,7,EUR/MWhel,DIW DataDoc http://hdl.handle.net/10419/80348 -CCGT,2030,VOM,4,EUR/MWhel,DIW DataDoc http://hdl.handle.net/10419/80348 -OCGT,2030,VOM,3,EUR/MWhel,DIW DataDoc http://hdl.handle.net/10419/80348 -nuclear,2030,VOM,8,EUR/MWhel,DIW DataDoc http://hdl.handle.net/10419/80348 -gas,2030,fuel,21.6,EUR/MWhth,IEA2011b -uranium,2030,fuel,3,EUR/MWhth,DIW DataDoc http://hdl.handle.net/10419/80348 -oil,2030,VOM,3,EUR/MWhel,DIW DataDoc http://hdl.handle.net/10419/80348 -nuclear,2030,fuel,3,EUR/MWhth,IEA2011b -biomass,2030,fuel,7,EUR/MWhth,IEA2011b -coal,2030,fuel,8.4,EUR/MWhth,IEA2011b -lignite,2030,fuel,2.9,EUR/MWhth,IEA2011b -oil,2030,fuel,50,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf -PHS,2030,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348 -hydro,2030,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348 -ror,2030,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348 -OCGT,2030,efficiency,0.39,per unit,DIW DataDoc http://hdl.handle.net/10419/80348 -CCGT,2030,efficiency,0.5,per unit,DIW DataDoc http://hdl.handle.net/10419/80348 -biomass,2030,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348 -geothermal,2030,efficiency,0.239,per unit,DIW DataDoc http://hdl.handle.net/10419/80348 -nuclear,2030,efficiency,0.337,per unit,DIW DataDoc http://hdl.handle.net/10419/80348 -gas,2030,CO2 intensity,0.187,tCO2/MWth,https://www.eia.gov/environment/emissions/co2_vol_mass.php -coal,2030,efficiency,0.464,per unit,DIW DataDoc http://hdl.handle.net/10419/80348 PC (Advanced/SuperC) -lignite,2030,efficiency,0.447,per unit,DIW DataDoc http://hdl.handle.net/10419/80348 -oil,2030,efficiency,0.393,per unit,DIW DataDoc http://hdl.handle.net/10419/80348 CT -coal,2030,CO2 intensity,0.354,tCO2/MWth,https://www.eia.gov/environment/emissions/co2_vol_mass.php -lignite,2030,CO2 intensity,0.334,tCO2/MWth,https://www.eia.gov/environment/emissions/co2_vol_mass.php -oil,2030,CO2 intensity,0.248,tCO2/MWth,https://www.eia.gov/environment/emissions/co2_vol_mass.php -geothermal,2030,CO2 intensity,0.026,tCO2/MWth,https://www.eia.gov/environment/emissions/co2_vol_mass.php -electrolysis,2030,investment,350,EUR/kWel,Palzer Thesis -electrolysis,2030,FOM,4,%/year,NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013 -electrolysis,2030,lifetime,18,years,NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013 -electrolysis,2030,efficiency,0.8,per unit,NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013 -fuel cell,2030,investment,339,EUR/kWel,NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013 -fuel cell,2030,FOM,3,%/year,NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013 -fuel cell,2030,lifetime,20,years,NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013 -fuel cell,2030,efficiency,0.58,per unit,NREL http://www.nrel.gov/docs/fy09osti/45873.pdf; budischak2013 conservative 2020 -hydrogen storage,2030,investment,11.2,USD/kWh,budischak2013 -hydrogen storage,2030,lifetime,20,years,budischak2013 -hydrogen underground storage,2030,investment,0.5,EUR/kWh,maximum from https://www.nrel.gov/docs/fy10osti/46719.pdf -hydrogen underground storage,2030,lifetime,40,years,http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Publikationen/Materialien/ESYS_Technologiesteckbrief_Energiespeicher.pdf -H2 pipeline,2030,investment,267,EUR/MW/km,Welder et al https://doi.org/10.1016/j.ijhydene.2018.12.156 -H2 pipeline,2030,lifetime,40,years,Krieg2012 http://juser.fz-juelich.de/record/136392/files/Energie%26Umwelt_144.pdf -H2 pipeline,2030,FOM,5,%/year,Krieg2012 http://juser.fz-juelich.de/record/136392/files/Energie%26Umwelt_144.pdf -H2 pipeline,2030,efficiency,0.98,per unit,Krieg2012 http://juser.fz-juelich.de/record/136392/files/Energie%26Umwelt_144.pdf -methanation,2030,investment,1000,EUR/kWH2,Schaber thesis -methanation,2030,lifetime,25,years,Schaber thesis -methanation,2030,FOM,3,%/year,Schaber thesis -methanation,2030,efficiency,0.6,per unit,Palzer; Breyer for DAC -helmeth,2030,investment,1000,EUR/kW,no source -helmeth,2030,lifetime,25,years,no source -helmeth,2030,FOM,3,%/year,no source -helmeth,2030,efficiency,0.8,per unit,HELMETH press release -DAC,2030,investment,250,EUR/(tCO2/a),Fasihi/Climeworks -DAC,2030,lifetime,30,years,Fasihi -DAC,2030,FOM,4,%/year,Fasihi -battery inverter,2030,investment,411,USD/kWel,budischak2013 -battery inverter,2030,lifetime,20,years,budischak2013 -battery inverter,2030,efficiency,0.9,per unit charge/discharge,budischak2013; Lund and Kempton (2008) http://dx.doi.org/10.1016/j.enpol.2008.06.007 -battery inverter,2030,FOM,3,%/year,budischak2013 -battery storage,2030,investment,192,USD/kWh,budischak2013 -battery storage,2030,lifetime,15,years,budischak2013 -decentral air-sourced heat pump,2030,investment,1050,EUR/kWth,HP; Palzer thesis -decentral air-sourced heat pump,2030,lifetime,20,years,HP; Palzer thesis -decentral air-sourced heat pump,2030,FOM,3.5,%/year,Palzer thesis -decentral air-sourced heat pump,2030,efficiency,3,per unit,default for costs -decentral air-sourced heat pump,2030,discount rate,0.04,per unit,Palzer thesis -decentral ground-sourced heat pump,2030,investment,1400,EUR/kWth,Palzer thesis -decentral ground-sourced heat pump,2030,lifetime,20,years,Palzer thesis -decentral ground-sourced heat pump,2030,FOM,3.5,%/year,Palzer thesis -decentral ground-sourced heat pump,2030,efficiency,4,per unit,default for costs -decentral ground-sourced heat pump,2030,discount rate,0.04,per unit,Palzer thesis -central air-sourced heat pump,2030,investment,700,EUR/kWth,Palzer thesis -central air-sourced heat pump,2030,lifetime,20,years,Palzer thesis -central air-sourced heat pump,2030,FOM,3.5,%/year,Palzer thesis -central air-sourced heat pump,2030,efficiency,3,per unit,default for costs -retrofitting I,2030,discount rate,0.04,per unit,Palzer thesis -retrofitting I,2030,lifetime,50,years,Palzer thesis -retrofitting I,2030,FOM,1,%/year,Palzer thesis -retrofitting I,2030,investment,50,EUR/m2/fraction reduction,Palzer thesis -retrofitting II,2030,discount rate,0.04,per unit,Palzer thesis -retrofitting II,2030,lifetime,50,years,Palzer thesis -retrofitting II,2030,FOM,1,%/year,Palzer thesis -retrofitting II,2030,investment,250,EUR/m2/fraction reduction,Palzer thesis -water tank charger,2030,efficiency,0.9,per unit,HP -water tank discharger,2030,efficiency,0.9,per unit,HP -decentral water tank storage,2030,investment,860,EUR/m3,IWES Interaktion -decentral water tank storage,2030,FOM,1,%/year,HP -decentral water tank storage,2030,lifetime,20,years,HP -decentral water tank storage,2030,discount rate,0.04,per unit,Palzer thesis -central water tank storage,2030,investment,30,EUR/m3,IWES Interaktion -central water tank storage,2030,FOM,1,%/year,HP -central water tank storage,2030,lifetime,40,years,HP -decentral resistive heater,2030,investment,100,EUR/kWhth,Schaber thesis -decentral resistive heater,2030,lifetime,20,years,Schaber thesis -decentral resistive heater,2030,FOM,2,%/year,Schaber thesis -decentral resistive heater,2030,efficiency,0.9,per unit,Schaber thesis -decentral resistive heater,2030,discount rate,0.04,per unit,Palzer thesis -central resistive heater,2030,investment,100,EUR/kWhth,Schaber thesis -central resistive heater,2030,lifetime,20,years,Schaber thesis -central resistive heater,2030,FOM,2,%/year,Schaber thesis -central resistive heater,2030,efficiency,0.9,per unit,Schaber thesis -decentral gas boiler,2030,investment,175,EUR/kWhth,Palzer thesis -decentral gas boiler,2030,lifetime,20,years,Palzer thesis -decentral gas boiler,2030,FOM,2,%/year,Palzer thesis -decentral gas boiler,2030,efficiency,0.9,per unit,Palzer thesis -decentral gas boiler,2030,discount rate,0.04,per unit,Palzer thesis -central gas boiler,2030,investment,63,EUR/kWhth,Palzer thesis -central gas boiler,2030,lifetime,22,years,Palzer thesis -central gas boiler,2030,FOM,1,%/year,Palzer thesis -central gas boiler,2030,efficiency,0.9,per unit,Palzer thesis -decentral CHP,2030,lifetime,25,years,HP -decentral CHP,2030,investment,1400,EUR/kWel,HP -decentral CHP,2030,FOM,3,%/year,HP -decentral CHP,2030,discount rate,0.04,per unit,Palzer thesis -central CHP,2030,lifetime,25,years,HP -central CHP,2030,investment,650,EUR/kWel,HP -central CHP,2030,FOM,3,%/year,HP -decentral solar thermal,2030,discount rate,0.04,per unit,Palzer thesis -decentral solar thermal,2030,FOM,1.3,%/year,HP -decentral solar thermal,2030,investment,270000,EUR/1000m2,HP -decentral solar thermal,2030,lifetime,20,years,HP -central solar thermal,2030,FOM,1.4,%/year,HP -central solar thermal,2030,investment,140000,EUR/1000m2,HP -central solar thermal,2030,lifetime,20,years,HP -HVAC overhead,2030,investment,400,EUR/MW/km,Hagspiel -HVAC overhead,2030,lifetime,40,years,Hagspiel -HVAC overhead,2030,FOM,2,%/year,Hagspiel -HVDC overhead,2030,investment,400,EUR/MW/km,Hagspiel -HVDC overhead,2030,lifetime,40,years,Hagspiel -HVDC overhead,2030,FOM,2,%/year,Hagspiel -HVDC submarine,2030,investment,2000,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf -HVDC submarine,2030,lifetime,40,years,Hagspiel -HVDC submarine,2030,FOM,2,%/year,Hagspiel -HVDC inverter pair,2030,investment,150000,EUR/MW,Hagspiel -HVDC inverter pair,2030,lifetime,40,years,Hagspiel -HVDC inverter pair,2030,FOM,2,%/year,Hagspiel diff --git a/data/costs_2030.csv b/data/costs_2030.csv deleted file mode 100644 index 4841f691..00000000 --- a/data/costs_2030.csv +++ /dev/null @@ -1,531 +0,0 @@ -technology,parameter,value,unit,source,further description -Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", -Ammonia cracker,investment,1062107.74,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.", -Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", -BioSNG,C in fuel,0.34,per unit,Stoichiometric calculation, -BioSNG,C stored,0.66,per unit,Stoichiometric calculation, -BioSNG,CO2 stored,0.24,tCO2/MWh_th,Stoichiometric calculation, -BioSNG,FOM,1.64,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,1.7,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" -BioSNG,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.63,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" -BioSNG,investment,1600.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" -BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" -BtL,C in fuel,0.27,per unit,Stoichiometric calculation, -BtL,C stored,0.73,per unit,Stoichiometric calculation, -BtL,CO2 stored,0.27,tCO2/MWh_th,Stoichiometric calculation, -BtL,FOM,2.67,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.06,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" -BtL,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BtL,efficiency,0.38,per unit,doi:10.1016/j.enpol.2017.05.013, -BtL,investment,3000.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.35,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.2,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,2.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.58,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,830.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" -CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station., -CH4 (g) fill compressor station,investment,1498.95,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.", -CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station., -CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology)., -CH4 (g) pipeline,investment,79.0,EUR/MW/km,Guesstimate., -CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology)., -CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.", -CH4 (g) submarine pipeline,investment,114.89,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 ., -CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.", -CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 (l) transport ship,investment,151000000.0,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 evaporation,investment,87.6,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,investment,232.13,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., -CO2 liquefaction,investment,16.03,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., -CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.", -CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .", -CO2 storage tank,investment,2528.17,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.", -CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .", -CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,investment,31700578.34,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -Fischer-Tropsch,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -Fischer-Tropsch,efficiency,0.8,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", -Fischer-Tropsch,investment,650711.26,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.", -Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .", -General liquid hydrocarbon storage (crude),investment,135.83,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .", -General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", -General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .", -General liquid hydrocarbon storage (product),investment,169.79,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .", -General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", -H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)", -H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).", -H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", -H2 (g) pipeline,FOM,3.17,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.", -H2 (g) pipeline,investment,226.47,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf., -H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.", -H2 (g) pipeline repurposed,FOM,3.17,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.", -H2 (g) pipeline repurposed,investment,105.88,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf., -H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.", -H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline., -H2 (g) submarine pipeline,investment,329.37,EUR/MW/km,"Assume similar cost as for CH4 (g) submarine pipeline but with the same factor as between onland CH4 (g) pipeline and H2 (g) pipeline (2.86). This estimate is comparable to a 36in diameter pipeline calaculated based on d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material (=251 EUR/MW/km).", -H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline., -H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.", -H2 (l) storage tank,investment,750.08,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.", -H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.", -H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,investment,361223561.58,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 evaporation,investment,143.64,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.", -H2 evaporation,lifetime,20.0,years,Guesstimate., -H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 liquefaction,investment,870.56,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.", -H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions -H2 pipeline,investment,267.0,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions -H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions -HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVAC overhead,investment,432.97,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,investment,162364.82,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,investment,432.97,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., -HVDC submarine,investment,471.16,EUR/MW/km,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., -HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 ., -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M -Haber-Bosch,investment,1297.43,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.", -LNG storage tank,investment,611.59,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).", -LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.", -LOHC chemical,investment,2264.33,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", -LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", -LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC dehydrogenation,investment,50728.03,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", -LOHC dehydrogenation (small scale),investment,759908.15,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", -LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", -LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,investment,51259.54,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC loaded DBT storage,FOM,6.25,%/year,, -LOHC loaded DBT storage,investment,149.27,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.", -LOHC loaded DBT storage,lifetime,30.0,years,, -LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,investment,31700578.34,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC unloaded DBT storage,FOM,6.25,%/year,, -LOHC unloaded DBT storage,investment,132.26,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.", -LOHC unloaded DBT storage,lifetime,30.0,years,, -MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,investment,31700578.34,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -Methanol steam reforming,FOM,4.0,%/year,"Niermann et al (2021): 10.1016/j.rser.2020.110171 , table 4.", -Methanol steam reforming,investment,16318.43,EUR/MW_H2,"Niermann et al (2021): 10.1016/j.rser.2020.110171 , table 4.", -Methanol steam reforming,lifetime,20.0,years,"Niermann et al (2021): 10.1016/j.rser.2020.110171 , table 4.", -NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.", -NH3 (l) storage tank incl. liquefaction,investment,161.93,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.", -NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290", -NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,investment,74461941.34,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -OCGT,FOM,1.78,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,435.24,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime -PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR,investment,493470.4,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90% -SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR CC,investment,572425.66,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", -Steam methane reforming,investment,470085.47,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", -Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.", -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -air separation unit,investment,729306.18,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.34,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,160.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,142.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime -biogas,CO2 stored,0.09,tCO2/MWh_th,Stoichiometric calculation, -biogas,FOM,12.84,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" -biogas,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,1539.62,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,investment,756.0,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,2.49,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " -biogas upgrading,VOM,3.18,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" -biogas upgrading,investment,381.0,EUR/kW input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" -biomass,FOM,4.53,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,efficiency,0.47,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions -biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.58,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.46,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,3210.28,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,2700000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.58,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.46,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,3210.28,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.75,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,2.78,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,1.03,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,832.63,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.49,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.86,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,649.3,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.54,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,2600000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.23,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.51,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.6,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,856.25,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.63,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.84,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.52,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1860.47,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.32,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.2,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,560.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas boiler,FOM,3.8,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.39,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,1.25,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.73,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,507.6,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central resistive heater,FOM,1.7,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime -central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions -central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions -central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.87,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.58,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.35,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.82,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3349.49,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central water tank storage,FOM,0.55,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.54,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime -clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -clean water tank storage,investment,67.63,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -coal,CO2 intensity,0.34,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, -coal,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,fuel,8.15,EUR/MWh_th,BP 2019, -coal,investment,3845.51,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -csp-tower,FOM,1.1,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power), -csp-tower,investment,98.15,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/)., -csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power), -csp-tower TES,FOM,1.1,%/year,see solar-tower., -csp-tower TES,investment,13.15,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/)., -csp-tower TES,lifetime,30.0,years,see solar-tower., -csp-tower power block,FOM,1.1,%/year,see solar-tower., -csp-tower power block,investment,687.6,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/)., -csp-tower power block,lifetime,30.0,years,see solar-tower., -decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions -decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions -decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,3.0,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M -decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.6,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,850.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.69,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M -decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.98,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,296.82,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,185.51,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.82,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M -decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,3.9,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1400.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime -decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral oil boiler,investment,156.01,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions -decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,investment,100.0,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions -decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions -decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral solar thermal,investment,270000.0,EUR/1000m2,HP, from old pypsa cost assumptions -decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions -decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral water tank storage,investment,18.38,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions -decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions -digestible biomass,fuel,15.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040", -digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -digestible biomass to hydrogen,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -digestible biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,electricity-input,0.32,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,heat-input,2.0,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,heat-output,1.0,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,6000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -electric boiler steam,FOM,1.46,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.88,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime -electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions -electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions -electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions -electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions -electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M -electrolysis,efficiency,0.68,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen -electrolysis,investment,450.0,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment -electrolysis,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,1100.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -gas,CO2 intensity,0.2,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, -gas,fuel,20.1,EUR/MWh_th,BP 2019, -gas boiler steam,FOM,4.18,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,45.45,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime -gas storage,FOM,3.59,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" -gas storage,investment,0.03,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" -gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" -gas storage charger,investment,14.34,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" -gas storage discharger,investment,4.78,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" -geothermal,CO2 intensity,0.03,tCO2/MWhth,https://www.eia.gov/environment/emissions/co2_vol_mass.php, from old pypsa cost assumptions -geothermal,FOM,2.36,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -geothermal,efficiency,0.24,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -geothermal,investment,3392.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -geothermal,lifetime,40.0,years,IEA2010, from old pypsa cost assumptions -helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions -helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions -helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions -helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.34,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,228.06,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,202.9,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,25.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime -hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -hydrogen storage tank,investment,11.2,USD/kWh,budischak2013, from old pypsa cost assumptions -hydrogen storage tank,lifetime,20.0,years,budischak2013, from old pypsa cost assumptions -hydrogen storage tank incl. compressor,FOM,1.11,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M -hydrogen storage tank incl. compressor,investment,44.91,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment -hydrogen storage tank incl. compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M -hydrogen storage underground,investment,2.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.09,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M -industrial heat pump high temperature,VOM,3.2,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M -industrial heat pump high temperature,efficiency,3.05,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" -industrial heat pump high temperature,investment,934.56,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.11,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M -industrial heat pump medium temperature,VOM,3.2,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M -industrial heat pump medium temperature,efficiency,2.7,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" -industrial heat pump medium temperature,investment,778.8,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime -lignite,CO2 intensity,0.41,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, -lignite,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,fuel,2.9,EUR/MWh_th,DIW, -lignite,investment,3845.51,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", -methanation,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -methanation,efficiency,0.8,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", -methanation,investment,628.6,"EUR/MW_CH4; and -EUR/kW_CH4","Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", -methanation,lifetime,20.0,years,Guesstimate., -methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank by DEA.", -methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10)., -methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank by DEA.", -methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -methanolisation,investment,650711.26,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.", -methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.11,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.35,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.61,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,7410.27,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime -nuclear,FOM,1.4,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,investment,7940.45,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -offwind,FOM,2.32,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" -offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1523.55,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" -offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] -offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions -offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions -offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions -oil,CO2 intensity,0.26,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.46,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" -oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,343.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.22,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.35,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,1035.56,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime -ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,investment,3312.24,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -seawater desalination,electricity-input,3.03,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", -seawater desalination,investment,32882.05,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", -seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -solar,FOM,1.95,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -solar,investment,492.11,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-rooftop,FOM,1.42,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions -solar-rooftop,investment,636.66,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-rooftop commercial,FOM,1.57,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,512.47,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.27,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,760.86,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.48,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,347.56,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] -solid biomass,CO2 intensity,0.37,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, -solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,6.08,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.82,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,590.91,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -solid biomass to hydrogen,capture rate,0.98,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -solid biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -water tank charger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) From 7c5cf7905ff7c74fb5e7c96fad771ac0a794a167 Mon Sep 17 00:00:00 2001 From: "pre-commit-ci[bot]" <66853113+pre-commit-ci[bot]@users.noreply.github.com> Date: Tue, 17 Oct 2023 13:33:50 +0000 Subject: [PATCH 06/14] [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --- Snakefile | 4 +++- config.default.yaml | 4 ++-- 2 files changed, 5 insertions(+), 3 deletions(-) diff --git a/Snakefile b/Snakefile index 39411d9a..de295ebd 100644 --- a/Snakefile +++ b/Snakefile @@ -45,12 +45,14 @@ subworkflow pypsaearth: configfile: "./config.pypsa-earth.yaml" + if config["enable"].get("retrieve_cost_data", True): rule retrieve_cost_data: input: HTTP.remote( - f"raw.githubusercontent.com/PyPSA/technology-data/{config['costs']['version']}/outputs/costs" + "_{planning_horizons}.csv", + f"raw.githubusercontent.com/PyPSA/technology-data/{config['costs']['version']}/outputs/costs" + + "_{planning_horizons}.csv", keep_local=True, ), output: diff --git a/config.default.yaml b/config.default.yaml index d379b040..76f22b25 100644 --- a/config.default.yaml +++ b/config.default.yaml @@ -47,7 +47,7 @@ H2_network: false H2_network_limit: 2000 #GWkm H2_repurposed_network: false -enable: +enable: retrieve_cost_data: true # if true, the workflow overwrites the cost data saved in data/costs again fossil_reserves: @@ -87,7 +87,7 @@ costs: discountrate: [0.071] #, 0.086, 0.111] # [EUR/USD] ECB: https://www.ecb.europa.eu/stats/exchange/eurofxref/html/eurofxref-graph-usd.en.html # noqa: E501 USD2013_to_EUR2013: 0.7532 - + # Marginal and capital costs can be overwritten # capital_cost: # onwind: 500 From 2b0d343144e59969a2486aa56932849f0c9ee226 Mon Sep 17 00:00:00 2001 From: energyls Date: Tue, 17 Oct 2023 15:39:58 +0200 Subject: [PATCH 07/14] fix: add enable to test config --- test/config.test1.yaml | 2 ++ 1 file changed, 2 insertions(+) diff --git a/test/config.test1.yaml b/test/config.test1.yaml index ca37c8a7..b5b31dc7 100644 --- a/test/config.test1.yaml +++ b/test/config.test1.yaml @@ -53,6 +53,8 @@ fossil_reserves: hydrogen_underground_storage: false +enable: + retrieve_cost_data: true # if true, the workflow overwrites the cost data saved in data/costs again export: h2export: [120] # Yearly export demand in TWh From 0ae70fc9889b9cc57d16dffa31fdab00ff2b88c8 Mon Sep 17 00:00:00 2001 From: "pre-commit-ci[bot]" <66853113+pre-commit-ci[bot]@users.noreply.github.com> Date: Tue, 17 Oct 2023 13:40:17 +0000 Subject: [PATCH 08/14] [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --- test/config.test1.yaml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/test/config.test1.yaml b/test/config.test1.yaml index b5b31dc7..885dfb91 100644 --- a/test/config.test1.yaml +++ b/test/config.test1.yaml @@ -53,7 +53,7 @@ fossil_reserves: hydrogen_underground_storage: false -enable: +enable: retrieve_cost_data: true # if true, the workflow overwrites the cost data saved in data/costs again export: From fd38229a78f809658422f843f724c936ccd674be Mon Sep 17 00:00:00 2001 From: "pre-commit-ci[bot]" <66853113+pre-commit-ci[bot]@users.noreply.github.com> Date: Mon, 30 Oct 2023 17:45:21 +0000 Subject: [PATCH 09/14] [pre-commit.ci] pre-commit autoupdate MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit updates: - [github.com/pre-commit/pre-commit-hooks: v4.4.0 → v4.5.0](https://github.com/pre-commit/pre-commit-hooks/compare/v4.4.0...v4.5.0) - [github.com/psf/black: 23.7.0 → 23.10.1](https://github.com/psf/black/compare/23.7.0...23.10.1) - [github.com/macisamuele/language-formatters-pre-commit-hooks: v2.10.0 → v2.11.0](https://github.com/macisamuele/language-formatters-pre-commit-hooks/compare/v2.10.0...v2.11.0) - [github.com/snakemake/snakefmt: v0.8.4 → v0.8.5](https://github.com/snakemake/snakefmt/compare/v0.8.4...v0.8.5) --- .pre-commit-config.yaml | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index 94d501cf..b40ccdbd 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -9,7 +9,7 @@ exclude: ^(LICENSES|README.md) repos: - repo: https://github.com/pre-commit/pre-commit-hooks - rev: v4.4.0 + rev: v4.5.0 hooks: - id: check-merge-conflict - id: end-of-file-fixer @@ -36,7 +36,7 @@ repos: # Formatting with "black" coding style - repo: https://github.com/psf/black - rev: 23.7.0 + rev: 23.10.1 hooks: # Format Python files - id: black @@ -45,7 +45,7 @@ repos: # Do YAML formatting (before the linter checks it for misses) - repo: https://github.com/macisamuele/language-formatters-pre-commit-hooks - rev: v2.10.0 + rev: v2.11.0 hooks: - id: pretty-format-yaml args: [--autofix, --indent, '2', --preserve-quotes] @@ -59,7 +59,7 @@ repos: # Format Snakemake rule / workflow files - repo: https://github.com/snakemake/snakefmt - rev: v0.8.4 + rev: v0.8.5 hooks: - id: snakefmt From 8256eb0cf3e0710f9ba8d5ac0bff95a64e38e713 Mon Sep 17 00:00:00 2001 From: energyls Date: Tue, 31 Oct 2023 09:10:54 +0100 Subject: [PATCH 10/14] fix: add ft efficiency in capital cost calculation --- scripts/prepare_sector_network.py | 5 ++++- 1 file changed, 4 insertions(+), 1 deletion(-) diff --git a/scripts/prepare_sector_network.py b/scripts/prepare_sector_network.py index 87684f29..d5c088e4 100644 --- a/scripts/prepare_sector_network.py +++ b/scripts/prepare_sector_network.py @@ -209,7 +209,10 @@ def H2_liquid_fossil_conversions(n, costs): bus2=spatial.co2.nodes, carrier="Fischer-Tropsch", efficiency=costs.at["Fischer-Tropsch", "efficiency"], - capital_cost=costs.at["Fischer-Tropsch", "fixed"], + capital_cost=costs.at["Fischer-Tropsch", "fixed"] + * costs.at[ + "Fischer-Tropsch", "efficiency" + ], # Use efficiency to convert from EUR/MW_FT/a to EUR/MW_H2/a efficiency2=-costs.at["oil", "CO2 intensity"] * costs.at["Fischer-Tropsch", "efficiency"], p_nom_extendable=True, From 04c1eb86a21a71beb4d759befcaf8ddd8f54312a Mon Sep 17 00:00:00 2001 From: energyls Date: Tue, 31 Oct 2023 09:30:21 +0100 Subject: [PATCH 11/14] feat: add option to include ft min load --- scripts/prepare_sector_network.py | 9 +++++---- 1 file changed, 5 insertions(+), 4 deletions(-) diff --git a/scripts/prepare_sector_network.py b/scripts/prepare_sector_network.py index 87684f29..f3f7d201 100644 --- a/scripts/prepare_sector_network.py +++ b/scripts/prepare_sector_network.py @@ -213,6 +213,7 @@ def H2_liquid_fossil_conversions(n, costs): efficiency2=-costs.at["oil", "CO2 intensity"] * costs.at["Fischer-Tropsch", "efficiency"], p_nom_extendable=True, + p_min_pu=options.get("min_part_load_fischer_tropsch", 0), lifetime=costs.at["Fischer-Tropsch", "lifetime"], ) @@ -2316,13 +2317,13 @@ def add_rail_transport(n, costs): snakemake = mock_snakemake( "prepare_sector_network", simpl="", - clusters="14", + clusters="4", ll="c1.0", - opts="Co2L", + opts="Co2L0.10", planning_horizons="2030", - sopts="24H", + sopts="6H", discountrate="0.071", - demand="XX", + demand="DF", ) # Load population layout From 6b38ccdc29da3a333ee01e2ee33f5a4ef43c60c6 Mon Sep 17 00:00:00 2001 From: energyls Date: Tue, 31 Oct 2023 09:30:41 +0100 Subject: [PATCH 12/14] feat: add config option part load ft --- config.default.yaml | 2 +- test/config.test1.yaml | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/config.default.yaml b/config.default.yaml index 708e8266..ae626f82 100644 --- a/config.default.yaml +++ b/config.default.yaml @@ -273,7 +273,7 @@ sector: space_heat_share: 0.6 # the share of space heating from all heating. Remainder goes to water heating. airport_sizing_factor: 3 - + min_part_load_fischer_tropsch: 0.9 conventional_generation: # generator : carrier OCGT: gas diff --git a/test/config.test1.yaml b/test/config.test1.yaml index 3d643b73..5623ebcf 100644 --- a/test/config.test1.yaml +++ b/test/config.test1.yaml @@ -277,7 +277,7 @@ sector: space_heat_share: 0.6 # the share of space heating from all heating. Remainder goes to water heating. airport_sizing_factor: 3 - + min_part_load_fischer_tropsch: 0.9 conventional_generation: # generator : carrier OCGT: gas From 86ead90724c2f46a3fbf95379b089e749f003fa7 Mon Sep 17 00:00:00 2001 From: energyls Date: Tue, 7 Nov 2023 17:14:33 +0100 Subject: [PATCH 13/14] fix: adjust hydrogen storage name to new technology-data --- config.default.yaml | 2 +- scripts/add_export.py | 2 +- scripts/prepare_sector_network.py | 2 +- test/config.test1.yaml | 2 +- 4 files changed, 4 insertions(+), 4 deletions(-) diff --git a/config.default.yaml b/config.default.yaml index 76f22b25..0a870c7c 100644 --- a/config.default.yaml +++ b/config.default.yaml @@ -59,7 +59,7 @@ hydrogen_underground_storage: false export: h2export: [120] # Yearly export demand in TWh store: true # [True, False] # specifies wether an export store to balance demand is implemented - store_capital_costs: "no_costs" # ["standard_costs", "no_costs"] # specifies the costs of the export store. "standard_costs" takes CAPEX of "hydrogen storage tank incl. compressor" + store_capital_costs: "no_costs" # ["standard_costs", "no_costs"] # specifies the costs of the export store. "standard_costs" takes CAPEX of "hydrogen storage tank type 1 including compressor" export_profile: "ship" # use "ship" or "constant" ship: ship_capacity: 0.4 # TWh # 0.05 TWh for new ones, 0.003 TWh for Susio Frontier, 0.4 TWh according to Hampp2021: "Corresponds to 11360 t H2 (l) with LHV of 33.3333 Mwh/t_H2. Cihlar et al 2020 based on IEA 2019, Table 3-B" diff --git a/scripts/add_export.py b/scripts/add_export.py index 8819fa2e..13fca426 100644 --- a/scripts/add_export.py +++ b/scripts/add_export.py @@ -96,7 +96,7 @@ def add_export(n, hydrogen_buses_ports, export_profile): if snakemake.config["export"]["store_capital_costs"] == "no_costs": capital_cost = 0 elif snakemake.config["export"]["store_capital_costs"] == "standard_costs": - capital_cost = costs.at["hydrogen storage tank incl. compressor", "fixed"] + capital_cost = costs.at["hydrogen storage tank type 1 including compressor", "fixed"] else: logger.error( f"Value {snakemake.config['export']['store_capital_costs']} for ['export']['store_capital_costs'] is not valid" diff --git a/scripts/prepare_sector_network.py b/scripts/prepare_sector_network.py index 87684f29..a2af6ccb 100644 --- a/scripts/prepare_sector_network.py +++ b/scripts/prepare_sector_network.py @@ -310,7 +310,7 @@ def add_hydrogen(n, costs): ) # hydrogen stored overground (where not already underground) - h2_capital_cost = costs.at["hydrogen storage tank incl. compressor", "fixed"] + h2_capital_cost = costs.at["hydrogen storage tank type 1 including compressor", "fixed"] nodes_overground = cavern_nodes.index.symmetric_difference(nodes) n.madd( diff --git a/test/config.test1.yaml b/test/config.test1.yaml index 885dfb91..b6ea9845 100644 --- a/test/config.test1.yaml +++ b/test/config.test1.yaml @@ -59,7 +59,7 @@ enable: export: h2export: [120] # Yearly export demand in TWh store: true # [True, False] # specifies wether an export store to balance demand is implemented - store_capital_costs: "no_costs" # ["standard_costs", "no_costs"] # specifies the costs of the export store + store_capital_costs: "no_costs" # ["standard_costs", "no_costs"] # specifies the costs of the export store "standard_costs" takes CAPEX of "hydrogen storage tank type 1 including compressor" export_profile: "ship" # use "ship" or "constant" ship: ship_capacity: 0.4 # TWh # 0.05 TWh for new ones, 0.003 TWh for Susio Frontier, 0.4 TWh according to Hampp2021: "Corresponds to 11360 t H2 (l) with LHV of 33.3333 Mwh/t_H2. Cihlar et al 2020 based on IEA 2019, Table 3-B" From 6717b4123c384aed8dd8b0f99ca89125620d98de Mon Sep 17 00:00:00 2001 From: "pre-commit-ci[bot]" <66853113+pre-commit-ci[bot]@users.noreply.github.com> Date: Tue, 7 Nov 2023 16:17:46 +0000 Subject: [PATCH 14/14] [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --- scripts/add_export.py | 4 +++- scripts/prepare_sector_network.py | 4 +++- 2 files changed, 6 insertions(+), 2 deletions(-) diff --git a/scripts/add_export.py b/scripts/add_export.py index 13fca426..2297e83e 100644 --- a/scripts/add_export.py +++ b/scripts/add_export.py @@ -96,7 +96,9 @@ def add_export(n, hydrogen_buses_ports, export_profile): if snakemake.config["export"]["store_capital_costs"] == "no_costs": capital_cost = 0 elif snakemake.config["export"]["store_capital_costs"] == "standard_costs": - capital_cost = costs.at["hydrogen storage tank type 1 including compressor", "fixed"] + capital_cost = costs.at[ + "hydrogen storage tank type 1 including compressor", "fixed" + ] else: logger.error( f"Value {snakemake.config['export']['store_capital_costs']} for ['export']['store_capital_costs'] is not valid" diff --git a/scripts/prepare_sector_network.py b/scripts/prepare_sector_network.py index a2af6ccb..5ad49ba1 100644 --- a/scripts/prepare_sector_network.py +++ b/scripts/prepare_sector_network.py @@ -310,7 +310,9 @@ def add_hydrogen(n, costs): ) # hydrogen stored overground (where not already underground) - h2_capital_cost = costs.at["hydrogen storage tank type 1 including compressor", "fixed"] + h2_capital_cost = costs.at[ + "hydrogen storage tank type 1 including compressor", "fixed" + ] nodes_overground = cavern_nodes.index.symmetric_difference(nodes) n.madd(