From 51ec9714fa53af39e60b3a5c6931b43433b0cf0a Mon Sep 17 00:00:00 2001 From: Hazem-IEG Date: Mon, 24 Jun 2024 16:21:20 +0200 Subject: [PATCH 1/3] remove legacy EUR code --- scripts/plot_network_eur.py | 768 ------------------------------------ 1 file changed, 768 deletions(-) delete mode 100644 scripts/plot_network_eur.py diff --git a/scripts/plot_network_eur.py b/scripts/plot_network_eur.py deleted file mode 100644 index 7221b594..00000000 --- a/scripts/plot_network_eur.py +++ /dev/null @@ -1,768 +0,0 @@ -# -*- coding: utf-8 -*- -import cartopy.crs as ccrs -import matplotlib.pyplot as plt -import numpy as np -import pandas as pd -import pypsa -from helper import override_component_attrs -from make_summary_eur import assign_carriers -from matplotlib.legend_handler import HandlerPatch -from matplotlib.patches import Circle, Ellipse -from plot_summary_eur import preferred_order, rename_techs - -plt.style.use("ggplot") - - -def rename_techs_tyndp(tech): - tech = rename_techs(tech) - if "heat pump" in tech or "resistive heater" in tech: - return "power-to-heat" - elif tech in ["H2 Electrolysis", "methanation", "helmeth", "H2 liquefaction"]: - return "power-to-gas" - elif tech == "H2": - return "H2 storage" - elif tech in ["OCGT", "CHP", "gas boiler", "H2 Fuel Cell"]: - return "gas-to-power/heat" - elif "solar" in tech: - return "solar" - elif tech == "Fischer-Tropsch": - return "power-to-liquid" - elif "offshore wind" in tech: - return "offshore wind" - elif "CC" in tech or "sequestration" in tech: - return "CCS" - else: - return tech - - -def make_handler_map_to_scale_circles_as_in(ax, dont_resize_actively=False): - fig = ax.get_figure() - - def axes2pt(): - return np.diff(ax.transData.transform([(0, 0), (1, 1)]), axis=0)[0] * ( - 72.0 / fig.dpi - ) - - ellipses = [] - if not dont_resize_actively: - - def update_width_height(event): - dist = axes2pt() - for e, radius in ellipses: - e.width, e.height = 2.0 * radius * dist - - fig.canvas.mpl_connect("resize_event", update_width_height) - ax.callbacks.connect("xlim_changed", update_width_height) - ax.callbacks.connect("ylim_changed", update_width_height) - - def legend_circle_handler( - legend, orig_handle, xdescent, ydescent, width, height, fontsize - ): - w, h = 2.0 * orig_handle.get_radius() * axes2pt() - e = Ellipse( - xy=(0.5 * width - 0.5 * xdescent, 0.5 * height - 0.5 * ydescent), - width=w, - height=w, - ) - ellipses.append((e, orig_handle.get_radius())) - return e - - return {Circle: HandlerPatch(patch_func=legend_circle_handler)} - - -def make_legend_circles_for(sizes, scale=1.0, **kw): - return [Circle((0, 0), radius=(s / scale) ** 0.5, **kw) for s in sizes] - - -def assign_location(n): - for c in n.iterate_components(n.one_port_components | n.branch_components): - ifind = pd.Series(c.df.index.str.find(" ", start=4), c.df.index) - for i in ifind.value_counts().index: - # these have already been assigned defaults - if i == -1: - continue - names = ifind.index[ifind == i] - c.df.loc[names, "location"] = names.str[:i] - - -def plot_map( - network, - components=["links", "stores", "storage_units", "generators"], - bus_size_factor=1.7e10, - transmission=False, -): - n = network.copy() - assign_location(n) - # Drop non-electric buses so they don't clutter the plot - n.buses.drop(n.buses.index[n.buses.carrier != "AC"], inplace=True) - - costs = pd.DataFrame(index=n.buses.index) - - for comp in components: - df_c = getattr(n, comp) - df_c["nice_group"] = df_c.carrier.map(rename_techs_tyndp) - - attr = "e_nom_opt" if comp == "stores" else "p_nom_opt" - - costs_c = ( - (df_c.capital_cost * df_c[attr]) - .groupby([df_c.location, df_c.nice_group]) - .sum() - .unstack() - .fillna(0.0) - ) - costs = pd.concat([costs, costs_c], axis=1) - - print(comp, costs) - - costs = costs.groupby(costs.columns, axis=1).sum() - - costs.drop(list(costs.columns[(costs == 0.0).all()]), axis=1, inplace=True) - - new_columns = preferred_order.intersection(costs.columns).append( - costs.columns.difference(preferred_order) - ) - costs = costs[new_columns] - - for item in new_columns: - if item not in snakemake.config["plotting"]["tech_colors"]: - print("Warning!", item, "not in config/plotting/tech_colors") - - costs = costs.stack() # .sort_index() - - # hack because impossible to drop buses... - n.buses.loc["EU gas", ["x", "y"]] = n.buses.loc["DE0 0", ["x", "y"]] - - n.links.drop( - n.links.index[(n.links.carrier != "DC") & (n.links.carrier != "B2B")], - inplace=True, - ) - - # drop non-bus - to_drop = costs.index.levels[0].symmetric_difference(n.buses.index) - if len(to_drop) != 0: - print("dropping non-buses", to_drop) - costs.drop(to_drop, level=0, inplace=True, axis=0) - - # make sure they are removed from index - costs.index = pd.MultiIndex.from_tuples(costs.index.values) - - # PDF has minimum width, so set these to zero - line_lower_threshold = 500.0 - line_upper_threshold = 1e4 - linewidth_factor = 2e3 - ac_color = "gray" - dc_color = "m" - - if snakemake.wildcards["lv"] == "1.0": - # should be zero - line_widths = n.lines.s_nom_opt - n.lines.s_nom - link_widths = n.links.p_nom_opt - n.links.p_nom - title = "Transmission reinforcement" - - if transmission: - line_widths = n.lines.s_nom_opt - link_widths = n.links.p_nom_opt - linewidth_factor = 2e3 - line_lower_threshold = 0.0 - title = "Today's transmission" - else: - line_widths = n.lines.s_nom_opt - n.lines.s_nom_min - link_widths = n.links.p_nom_opt - n.links.p_nom_min - title = "Transmission reinforcement" - - if transmission: - line_widths = n.lines.s_nom_opt - link_widths = n.links.p_nom_opt - title = "Total transmission" - - line_widths[line_widths < line_lower_threshold] = 0.0 - link_widths[link_widths < line_lower_threshold] = 0.0 - - line_widths[line_widths > line_upper_threshold] = line_upper_threshold - link_widths[link_widths > line_upper_threshold] = line_upper_threshold - - fig, ax = plt.subplots(subplot_kw={"projection": ccrs.PlateCarree()}) - fig.set_size_inches(7, 6) - - n.plot( - bus_sizes=costs / bus_size_factor, - bus_colors=snakemake.config["plotting"]["tech_colors"], - line_colors=ac_color, - link_colors=dc_color, - line_widths=line_widths / linewidth_factor, - link_widths=link_widths / linewidth_factor, - ax=ax, - **map_opts - ) - - handles = make_legend_circles_for( - [5e9, 1e9], scale=bus_size_factor, facecolor="gray" - ) - - labels = ["{} bEUR/a".format(s) for s in (5, 1)] - - l2 = ax.legend( - handles, - labels, - loc="upper left", - bbox_to_anchor=(0.01, 1.01), - labelspacing=1.0, - frameon=False, - title="System cost", - handler_map=make_handler_map_to_scale_circles_as_in(ax), - ) - - ax.add_artist(l2) - - handles = [] - labels = [] - - for s in (10, 5): - handles.append( - plt.Line2D([0], [0], color=ac_color, linewidth=s * 1e3 / linewidth_factor) - ) - labels.append("{} GW".format(s)) - - l1_1 = ax.legend( - handles, - labels, - loc="upper left", - bbox_to_anchor=(0.22, 1.01), - frameon=False, - labelspacing=0.8, - handletextpad=1.5, - title=title, - ) - - ax.add_artist(l1_1) - - fig.savefig(snakemake.output.map, transparent=True, bbox_inches="tight") - - -def plot_h2_map(network): - n = network.copy() - if "H2 pipeline" not in n.links.carrier.unique(): - return - - assign_location(n) - - bus_size_factor = 1e5 - linewidth_factor = 1e4 - # MW below which not drawn - line_lower_threshold = 1e3 - bus_color = "m" - link_color = "c" - - # Drop non-electric buses so they don't clutter the plot - n.buses.drop(n.buses.index[n.buses.carrier != "AC"], inplace=True) - - elec = n.links.index[n.links.carrier == "H2 Electrolysis"] - - bus_sizes = ( - n.links.loc[elec, "p_nom_opt"].groupby(n.links.loc[elec, "bus0"]).sum() - / bus_size_factor - ) - - # make a fake MultiIndex so that area is correct for legend - bus_sizes.index = pd.MultiIndex.from_product([bus_sizes.index, ["electrolysis"]]) - - n.links.drop(n.links.index[n.links.carrier != "H2 pipeline"], inplace=True) - - link_widths = n.links.p_nom_opt / linewidth_factor - link_widths[n.links.p_nom_opt < line_lower_threshold] = 0.0 - - n.links.bus0 = n.links.bus0.str.replace(" H2", "") - n.links.bus1 = n.links.bus1.str.replace(" H2", "") - - print(link_widths.sort_values()) - - print(n.links[["bus0", "bus1"]]) - - fig, ax = plt.subplots( - figsize=(7, 6), subplot_kw={"projection": ccrs.PlateCarree()} - ) - - n.plot( - bus_sizes=bus_sizes, - bus_colors={"electrolysis": bus_color}, - link_colors=link_color, - link_widths=link_widths, - branch_components=["Link"], - ax=ax, - **map_opts - ) - - handles = make_legend_circles_for( - [50000, 10000], scale=bus_size_factor, facecolor=bus_color - ) - - labels = ["{} GW".format(s) for s in (50, 10)] - - l2 = ax.legend( - handles, - labels, - loc="upper left", - bbox_to_anchor=(-0.03, 1.01), - labelspacing=1.0, - frameon=False, - title="Electrolyzer capacity", - handler_map=make_handler_map_to_scale_circles_as_in(ax), - ) - - ax.add_artist(l2) - - handles = [] - labels = [] - - for s in (50, 10): - handles.append( - plt.Line2D([0], [0], color=link_color, linewidth=s * 1e3 / linewidth_factor) - ) - labels.append("{} GW".format(s)) - - l1_1 = ax.legend( - handles, - labels, - loc="upper left", - bbox_to_anchor=(0.28, 1.01), - frameon=False, - labelspacing=0.8, - handletextpad=1.5, - title="H2 pipeline capacity", - ) - - ax.add_artist(l1_1) - - fig.savefig( - snakemake.output.map.replace("-costs-all", "-h2_network"), - transparent=True, - bbox_inches="tight", - ) - - -def plot_map_without(network): - n = network.copy() - assign_location(n) - - # Drop non-electric buses so they don't clutter the plot - n.buses.drop(n.buses.index[n.buses.carrier != "AC"], inplace=True) - - fig, ax = plt.subplots( - figsize=(7, 6), subplot_kw={"projection": ccrs.PlateCarree()} - ) - - # PDF has minimum width, so set these to zero - line_lower_threshold = 200.0 - line_upper_threshold = 1e4 - linewidth_factor = 2e3 - ac_color = "gray" - dc_color = "m" - - # hack because impossible to drop buses... - n.buses.loc["EU gas", ["x", "y"]] = n.buses.loc["DE0 0", ["x", "y"]] - - to_drop = n.links.index[(n.links.carrier != "DC") & (n.links.carrier != "B2B")] - n.links.drop(to_drop, inplace=True) - - if snakemake.wildcards["lv"] == "1.0": - line_widths = n.lines.s_nom - link_widths = n.links.p_nom - else: - line_widths = n.lines.s_nom_min - link_widths = n.links.p_nom_min - - line_widths[line_widths < line_lower_threshold] = 0.0 - link_widths[link_widths < line_lower_threshold] = 0.0 - - line_widths[line_widths > line_upper_threshold] = line_upper_threshold - link_widths[link_widths > line_upper_threshold] = line_upper_threshold - - n.plot( - bus_colors="k", - line_colors=ac_color, - link_colors=dc_color, - line_widths=line_widths / linewidth_factor, - link_widths=link_widths / linewidth_factor, - ax=ax, - **map_opts - ) - - handles = [] - labels = [] - - for s in (10, 5): - handles.append( - plt.Line2D([0], [0], color=ac_color, linewidth=s * 1e3 / linewidth_factor) - ) - labels.append("{} GW".format(s)) - l1_1 = ax.legend( - handles, - labels, - loc="upper left", - bbox_to_anchor=(0.05, 1.01), - frameon=False, - labelspacing=0.8, - handletextpad=1.5, - title="Today's transmission", - ) - ax.add_artist(l1_1) - - fig.savefig(snakemake.output.today, transparent=True, bbox_inches="tight") - - -# TODO function redefinition -# def plot_series(network, carrier="AC", name="test"): - -# n = network.copy() -# assign_location(n) -# assign_carriers(n) - -# buses = n.buses.index[n.buses.carrier.str.contains(carrier)] - -# supply = pd.DataFrame(index=n.snapshots) -# for c in n.iterate_components(n.branch_components): -# n_port = 4 if c.name == "Link" else 2 -# for i in range(n_port): -# supply = pd.concat( -# ( -# supply, -# (-1) -# * c.pnl["p" + str(i)] -# .loc[:, c.df.index[c.df["bus" + str(i)].isin(buses)]] -# .groupby(c.df.carrier, axis=1) -# .sum(), -# ), -# axis=1, -# ) - -# for c in n.iterate_components(n.one_port_components): -# comps = c.df.index[c.df.bus.isin(buses)] -# supply = pd.concat( -# ( -# supply, -# ((c.pnl["p"].loc[:, comps]).multiply(c.df.loc[comps, "sign"])) -# .groupby(c.df.carrier, axis=1) -# .sum(), -# ), -# axis=1, -# ) - -# supply = supply.groupby(rename_techs_tyndp, axis=1).sum() - -# both = supply.columns[(supply < 0.0).any() & (supply > 0.0).any()] - -# positive_supply = supply[both] -# negative_supply = supply[both] - -# positive_supply[positive_supply < 0.0] = 0.0 -# negative_supply[negative_supply > 0.0] = 0.0 - -# supply[both] = positive_supply - -# suffix = " charging" - -# negative_supply.columns = negative_supply.columns + suffix - -# supply = pd.concat((supply, negative_supply), axis=1) - -# # 14-21.2 for flaute -# # 19-26.1 for flaute - -# start = "2013-02-19" -# stop = "2013-02-26" - -# threshold = 10e3 - -# to_drop = supply.columns[(abs(supply) < threshold).all()] - -# if len(to_drop) != 0: -# print("dropping", to_drop) -# supply.drop(columns=to_drop, inplace=True) - -# supply.index.name = None - -# supply = supply / 1e3 - -# supply.rename( -# columns={"electricity": "electric demand", "heat": "heat demand"}, inplace=True -# ) -# supply.columns = supply.columns.str.replace("residential ", "") -# supply.columns = supply.columns.str.replace("services ", "") -# supply.columns = supply.columns.str.replace("urban decentral ", "decentral ") - -# preferred_order = pd.Index( -# [ -# "electric demand", -# "transmission lines", -# "hydroelectricity", -# "hydro reservoir", -# "run of river", -# "pumped hydro storage", -# "CHP", -# "onshore wind", -# "offshore wind", -# "solar PV", -# "solar thermal", -# "building retrofitting", -# "ground heat pump", -# "air heat pump", -# "resistive heater", -# "OCGT", -# "gas boiler", -# "gas", -# "natural gas", -# "methanation", -# "hydrogen storage", -# "battery storage", -# "hot water storage", -# ] -# ) - -# new_columns = preferred_order.intersection(supply.columns).append( -# supply.columns.difference(preferred_order) -# ) - -# supply = supply.groupby(supply.columns, axis=1).sum() -# fig, ax = plt.subplots() -# fig.set_size_inches((8, 5)) - -# ( -# supply.loc[start:stop, new_columns].plot( -# ax=ax, -# kind="area", -# stacked=True, -# linewidth=0.0, -# color=[ -# snakemake.config["plotting"]["tech_colors"][i.replace(suffix, "")] -# for i in new_columns -# ], -# ) -# ) - -# handles, labels = ax.get_legend_handles_labels() - -# handles.reverse() -# labels.reverse() - -# new_handles = [] -# new_labels = [] - -# for i, item in enumerate(labels): -# if "charging" not in item: -# new_handles.append(handles[i]) -# new_labels.append(labels[i]) - -# ax.legend(new_handles, new_labels, ncol=3, loc="upper left", frameon=False) -# ax.set_xlim([start, stop]) -# ax.set_ylim([-1300, 1900]) -# ax.grid(True) -# ax.set_ylabel("Power [GW]") -# fig.tight_layout() - -# fig.savefig( -# "{}{}/maps/series-{}-{}-{}-{}-{}.pdf".format( -# snakemake.config["results_dir"], -# snakemake.config["run"], -# snakemake.wildcards["lv"], -# carrier, -# start, -# stop, -# name, -# ), -# transparent=True, -# ) - - -def plot_series(network, carrier="AC", name="test"): - n = network.copy() - assign_location(n) - assign_carriers(n) - - buses = n.buses.index[n.buses.carrier.str.contains(carrier)] - - supply = pd.DataFrame(index=n.snapshots) - for c in n.iterate_components(n.branch_components): - n_port = 4 if c.name == "Link" else 2 - for i in range(n_port): - supply = pd.concat( - ( - supply, - (-1) - * c.pnl["p" + str(i)] - .loc[:, c.df.index[c.df["bus" + str(i)].isin(buses)]] - .groupby(c.df.carrier, axis=1) - .sum(), - ), - axis=1, - ) - - for c in n.iterate_components(n.one_port_components): - comps = c.df.index[c.df.bus.isin(buses)] - supply = pd.concat( - ( - supply, - ((c.pnl["p"].loc[:, comps]).multiply(c.df.loc[comps, "sign"])) - .groupby(c.df.carrier, axis=1) - .sum(), - ), - axis=1, - ) - - supply = supply.groupby(rename_techs_tyndp, axis=1).sum() - - both = supply.columns[(supply < 0.0).any() & (supply > 0.0).any()] - - positive_supply = supply[both] - negative_supply = supply[both] - - positive_supply[positive_supply < 0.0] = 0.0 - negative_supply[negative_supply > 0.0] = 0.0 - - supply[both] = positive_supply - - suffix = " charging" - - negative_supply.columns = negative_supply.columns + suffix - - supply = pd.concat((supply, negative_supply), axis=1) - - # 14-21.2 for flaute - # 19-26.1 for flaute - - start = "2013-02-19" - stop = "2013-02-26" - - threshold = 10e3 - - to_drop = supply.columns[(abs(supply) < threshold).all()] - - if len(to_drop) != 0: - print("dropping", to_drop) - supply.drop(columns=to_drop, inplace=True) - - supply.index.name = None - - supply = supply / 1e3 - - supply.rename( - columns={"electricity": "electric demand", "heat": "heat demand"}, inplace=True - ) - supply.columns = supply.columns.str.replace("residential ", "") - supply.columns = supply.columns.str.replace("services ", "") - supply.columns = supply.columns.str.replace("urban decentral ", "decentral ") - - preferred_order = pd.Index( - [ - "electric demand", - "transmission lines", - "hydroelectricity", - "hydro reservoir", - "run of river", - "pumped hydro storage", - "CHP", - "onshore wind", - "offshore wind", - "solar PV", - "solar thermal", - "building retrofitting", - "ground heat pump", - "air heat pump", - "resistive heater", - "OCGT", - "gas boiler", - "gas", - "natural gas", - "methanation", - "hydrogen storage", - "battery storage", - "hot water storage", - ] - ) - - new_columns = preferred_order.intersection(supply.columns).append( - supply.columns.difference(preferred_order) - ) - - supply = supply.groupby(supply.columns, axis=1).sum() - fig, ax = plt.subplots() - fig.set_size_inches((8, 5)) - - ( - supply.loc[start:stop, new_columns].plot( - ax=ax, - kind="area", - stacked=True, - linewidth=0.0, - color=[ - snakemake.config["plotting"]["tech_colors"][i.replace(suffix, "")] - for i in new_columns - ], - ) - ) - - handles, labels = ax.get_legend_handles_labels() - - handles.reverse() - labels.reverse() - - new_handles = [] - new_labels = [] - - for i, item in enumerate(labels): - if "charging" not in item: - new_handles.append(handles[i]) - new_labels.append(labels[i]) - - ax.legend(new_handles, new_labels, ncol=3, loc="upper left", frameon=False) - ax.set_xlim([start, stop]) - ax.set_ylim([-1300, 1900]) - ax.grid(True) - ax.set_ylabel("Power [GW]") - fig.tight_layout() - - fig.savefig( - "{}{}/maps/series-{}-{}-{}-{}-{}.pdf".format( - snakemake.config["results_dir"], - snakemake.config["run"], - snakemake.wildcards["lv"], - carrier, - start, - stop, - name, - ), - transparent=True, - ) - - -if __name__ == "__main__": - if "snakemake" not in globals(): - from helpers import mock_snakemake - - snakemake = mock_snakemake( - "plot_network", - simpl="", - clusters=4, - planning_horizons=2030 - # lv=1.5, - # opts='', - # sector_opts='Co2L0-168H-T-H-B-I-solar+p3-dist1', - ) - - overrides = override_component_attrs(snakemake.input.overrides) - n = pypsa.Network(snakemake.input.network, override_component_attrs=overrides) - - map_opts = snakemake.config["plotting"]["map"] - - plot_map( - n, - components=["generators", "links", "stores", "storage_units"], - bus_size_factor=1.5e10, - transmission=False, - ) - - plot_h2_map(n) - plot_map_without(n) - - plot_series(n, carrier="AC", name="suffix") - # plot_series(n, carrier="heat", name=suffix) From 16bd459fddc33a2a072848b7565f194c5d2d5770 Mon Sep 17 00:00:00 2001 From: Hazem-IEG Date: Mon, 24 Jun 2024 16:22:48 +0200 Subject: [PATCH 2/3] remove legacy params form config --- test/config.test1.yaml | 53 +----------------------------------------- 1 file changed, 1 insertion(+), 52 deletions(-) diff --git a/test/config.test1.yaml b/test/config.test1.yaml index b55a6b2e..ba2ce555 100644 --- a/test/config.test1.yaml +++ b/test/config.test1.yaml @@ -111,51 +111,6 @@ costs: # Costs used in PyPSA-Earth-Sec. Year depends on the wildcard planning_ho industry: - St_primary_fraction: 0.9 # fraction of steel produced via primary route versus secondary route (scrap+EAF); today fraction is 0.6 - # 2020: 0.6 - # 2025: 0.55 - # 2030: 0.5 - # 2035: 0.45 - # 2040: 0.4 - # 2045: 0.35 - # 2050: 0.3 - DRI_fraction: 0.5 # fraction of the primary route converted to DRI + EAF - # 2020: 0 - # 2025: 0 - # 2030: 0.05 - # 2035: 0.2 - # 2040: 0.4 - # 2045: 0.7 - # 2050: 1 - H2_DRI: 1.7 #H2 consumption in Direct Reduced Iron (DRI), MWh_H2,LHV/ton_Steel from 51kgH2/tSt in Vogl et al (2018) doi:10.1016/j.jclepro.2018.08.279 - elec_DRI: 0.322 #electricity consumption in Direct Reduced Iron (DRI) shaft, MWh/tSt HYBRIT brochure https://ssabwebsitecdn.azureedge.net/-/media/hybrit/files/hybrit_brochure.pdf - Al_primary_fraction: 0.2 # fraction of aluminium produced via the primary route versus scrap; today fraction is 0.4 - # 2020: 0.4 - # 2025: 0.375 - # 2030: 0.35 - # 2035: 0.325 - # 2040: 0.3 - # 2045: 0.25 - # 2050: 0.2 - MWh_CH4_per_tNH3_SMR: 10.8 # 2012's demand from https://ec.europa.eu/docsroom/documents/4165/attachments/1/translations/en/renditions/pdf - MWh_elec_per_tNH3_SMR: 0.7 # same source, assuming 94-6% split methane-elec of total energy demand 11.5 MWh/tNH3 - MWh_H2_per_tNH3_electrolysis: 6.5 # from https://doi.org/10.1016/j.joule.2018.04.017, around 0.197 tH2/tHN3 (>3/17 since some H2 lost and used for energy) - MWh_elec_per_tNH3_electrolysis: 1.17 # from https://doi.org/10.1016/j.joule.2018.04.017 Table 13 (air separation and HB) - NH3_process_emissions: 24.5 # in MtCO2/a from SMR for H2 production for NH3 from UNFCCC for 2015 for EU28 - petrochemical_process_emissions: 25.5 # in MtCO2/a for petrochemical and other from UNFCCC for 2015 for EU28 - HVC_primary_fraction: 1. # fraction of today's HVC produced via primary route - HVC_mechanical_recycling_fraction: 0. # fraction of today's HVC produced via mechanical recycling - HVC_chemical_recycling_fraction: 0. # fraction of today's HVC produced via chemical recycling - HVC_production_today: 52. # MtHVC/a from DECHEMA (2017), Figure 16, page 107; includes ethylene, propylene and BTX - MWh_elec_per_tHVC_mechanical_recycling: 0.547 # from SI of https://doi.org/10.1016/j.resconrec.2020.105010, Table S5, for HDPE, PP, PS, PET. LDPE would be 0.756. - MWh_elec_per_tHVC_chemical_recycling: 6.9 # Material Economics (2019), page 125; based on pyrolysis and electric steam cracking - chlorine_production_today: 9.58 # MtCl/a from DECHEMA (2017), Table 7, page 43 - MWh_elec_per_tCl: 3.6 # DECHEMA (2017), Table 6, page 43 - MWh_H2_per_tCl: -0.9372 # DECHEMA (2017), page 43; negative since hydrogen produced in chloralkali process - methanol_production_today: 1.5 # MtMeOH/a from DECHEMA (2017), page 62 - MWh_elec_per_tMeOH: 0.167 # DECHEMA (2017), Table 14, page 65 - MWh_CH4_per_tMeOH: 10.25 # DECHEMA (2017), Table 14, page 65 - hotmaps_locate_missing: false reference_year: 2015 solar_thermal: @@ -208,13 +163,7 @@ sector: # 2040: 0.16 # 2045: 0.21 # 2050: 0.29 - retrofitting: # co-optimises building renovation to reduce space heat demand - retro_endogen: false # co-optimise space heat savings - cost_factor: 1.0 # weight costs for building renovation - interest_rate: 0.04 # for investment in building components - annualise_cost: true # annualise the investment costs - tax_weighting: false # weight costs depending on taxes in countries - construction_index: true # weight costs depending on labour/material costs per country + tes: true tes_tau: # 180 day time constant for centralised, 3 day for decentralised decentral: 3 From 9f95f3ab114993acb80701ad44b4e8b8e3889d09 Mon Sep 17 00:00:00 2001 From: Hazem-IEG Date: Mon, 24 Jun 2024 16:22:56 +0200 Subject: [PATCH 3/3] remove legacy params form config --- config.default.yaml | 53 +-------------------------------------------- 1 file changed, 1 insertion(+), 52 deletions(-) diff --git a/config.default.yaml b/config.default.yaml index 233f6011..08cb590e 100644 --- a/config.default.yaml +++ b/config.default.yaml @@ -111,51 +111,6 @@ costs: # Costs used in PyPSA-Earth-Sec. Year depends on the wildcard planning_ho industry: - St_primary_fraction: 0.9 # fraction of steel produced via primary route versus secondary route (scrap+EAF); today fraction is 0.6 - # 2020: 0.6 - # 2025: 0.55 - # 2030: 0.5 - # 2035: 0.45 - # 2040: 0.4 - # 2045: 0.35 - # 2050: 0.3 - DRI_fraction: 0.5 # fraction of the primary route converted to DRI + EAF - # 2020: 0 - # 2025: 0 - # 2030: 0.05 - # 2035: 0.2 - # 2040: 0.4 - # 2045: 0.7 - # 2050: 1 - H2_DRI: 1.7 #H2 consumption in Direct Reduced Iron (DRI), MWh_H2,LHV/ton_Steel from 51kgH2/tSt in Vogl et al (2018) doi:10.1016/j.jclepro.2018.08.279 - elec_DRI: 0.322 #electricity consumption in Direct Reduced Iron (DRI) shaft, MWh/tSt HYBRIT brochure https://ssabwebsitecdn.azureedge.net/-/media/hybrit/files/hybrit_brochure.pdf - Al_primary_fraction: 0.2 # fraction of aluminium produced via the primary route versus scrap; today fraction is 0.4 - # 2020: 0.4 - # 2025: 0.375 - # 2030: 0.35 - # 2035: 0.325 - # 2040: 0.3 - # 2045: 0.25 - # 2050: 0.2 - MWh_CH4_per_tNH3_SMR: 10.8 # 2012's demand from https://ec.europa.eu/docsroom/documents/4165/attachments/1/translations/en/renditions/pdf - MWh_elec_per_tNH3_SMR: 0.7 # same source, assuming 94-6% split methane-elec of total energy demand 11.5 MWh/tNH3 - MWh_H2_per_tNH3_electrolysis: 6.5 # from https://doi.org/10.1016/j.joule.2018.04.017, around 0.197 tH2/tHN3 (>3/17 since some H2 lost and used for energy) - MWh_elec_per_tNH3_electrolysis: 1.17 # from https://doi.org/10.1016/j.joule.2018.04.017 Table 13 (air separation and HB) - NH3_process_emissions: 24.5 # in MtCO2/a from SMR for H2 production for NH3 from UNFCCC for 2015 for EU28 - petrochemical_process_emissions: 25.5 # in MtCO2/a for petrochemical and other from UNFCCC for 2015 for EU28 - HVC_primary_fraction: 1. # fraction of today's HVC produced via primary route - HVC_mechanical_recycling_fraction: 0. # fraction of today's HVC produced via mechanical recycling - HVC_chemical_recycling_fraction: 0. # fraction of today's HVC produced via chemical recycling - HVC_production_today: 52. # MtHVC/a from DECHEMA (2017), Figure 16, page 107; includes ethylene, propylene and BTX - MWh_elec_per_tHVC_mechanical_recycling: 0.547 # from SI of https://doi.org/10.1016/j.resconrec.2020.105010, Table S5, for HDPE, PP, PS, PET. LDPE would be 0.756. - MWh_elec_per_tHVC_chemical_recycling: 6.9 # Material Economics (2019), page 125; based on pyrolysis and electric steam cracking - chlorine_production_today: 9.58 # MtCl/a from DECHEMA (2017), Table 7, page 43 - MWh_elec_per_tCl: 3.6 # DECHEMA (2017), Table 6, page 43 - MWh_H2_per_tCl: -0.9372 # DECHEMA (2017), page 43; negative since hydrogen produced in chloralkali process - methanol_production_today: 1.5 # MtMeOH/a from DECHEMA (2017), page 62 - MWh_elec_per_tMeOH: 0.167 # DECHEMA (2017), Table 14, page 65 - MWh_CH4_per_tMeOH: 10.25 # DECHEMA (2017), Table 14, page 65 - hotmaps_locate_missing: false reference_year: 2015 solar_thermal: @@ -208,13 +163,7 @@ sector: # 2040: 0.16 # 2045: 0.21 # 2050: 0.29 - retrofitting: # co-optimises building renovation to reduce space heat demand - retro_endogen: false # co-optimise space heat savings - cost_factor: 1.0 # weight costs for building renovation - interest_rate: 0.04 # for investment in building components - annualise_cost: true # annualise the investment costs - tax_weighting: false # weight costs depending on taxes in countries - construction_index: true # weight costs depending on labour/material costs per country + tes: true tes_tau: # 180 day time constant for centralised, 3 day for decentralised decentral: 3