-
-
Notifications
You must be signed in to change notification settings - Fork 2.7k
/
python_api.py
1033 lines (834 loc) · 39.5 KB
/
python_api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# mypy: allow-untyped-defs
from __future__ import annotations
from collections.abc import Callable
from collections.abc import Collection
from collections.abc import Mapping
from collections.abc import Sequence
from collections.abc import Sized
from contextlib import AbstractContextManager
from decimal import Decimal
import math
from numbers import Complex
import pprint
import re
from types import TracebackType
from typing import Any
from typing import cast
from typing import final
from typing import overload
from typing import TYPE_CHECKING
from typing import TypeVar
import _pytest._code
from _pytest.outcomes import fail
if TYPE_CHECKING:
from numpy import ndarray
def _compare_approx(
full_object: object,
message_data: Sequence[tuple[str, str, str]],
number_of_elements: int,
different_ids: Sequence[object],
max_abs_diff: float,
max_rel_diff: float,
) -> list[str]:
message_list = list(message_data)
message_list.insert(0, ("Index", "Obtained", "Expected"))
max_sizes = [0, 0, 0]
for index, obtained, expected in message_list:
max_sizes[0] = max(max_sizes[0], len(index))
max_sizes[1] = max(max_sizes[1], len(obtained))
max_sizes[2] = max(max_sizes[2], len(expected))
explanation = [
f"comparison failed. Mismatched elements: {len(different_ids)} / {number_of_elements}:",
f"Max absolute difference: {max_abs_diff}",
f"Max relative difference: {max_rel_diff}",
] + [
f"{indexes:<{max_sizes[0]}} | {obtained:<{max_sizes[1]}} | {expected:<{max_sizes[2]}}"
for indexes, obtained, expected in message_list
]
return explanation
# builtin pytest.approx helper
class ApproxBase:
"""Provide shared utilities for making approximate comparisons between
numbers or sequences of numbers."""
# Tell numpy to use our `__eq__` operator instead of its.
__array_ufunc__ = None
__array_priority__ = 100
def __init__(self, expected, rel=None, abs=None, nan_ok: bool = False) -> None:
__tracebackhide__ = True
self.expected = expected
self.abs = abs
self.rel = rel
self.nan_ok = nan_ok
self._check_type()
def __repr__(self) -> str:
raise NotImplementedError
def _repr_compare(self, other_side: Any) -> list[str]:
return [
"comparison failed",
f"Obtained: {other_side}",
f"Expected: {self}",
]
def __eq__(self, actual) -> bool:
return all(
a == self._approx_scalar(x) for a, x in self._yield_comparisons(actual)
)
def __bool__(self):
__tracebackhide__ = True
raise AssertionError(
"approx() is not supported in a boolean context.\nDid you mean: `assert a == approx(b)`?"
)
# Ignore type because of https://github.com/python/mypy/issues/4266.
__hash__ = None # type: ignore
def __ne__(self, actual) -> bool:
return not (actual == self)
def _approx_scalar(self, x) -> ApproxScalar:
if isinstance(x, Decimal):
return ApproxDecimal(x, rel=self.rel, abs=self.abs, nan_ok=self.nan_ok)
return ApproxScalar(x, rel=self.rel, abs=self.abs, nan_ok=self.nan_ok)
def _yield_comparisons(self, actual):
"""Yield all the pairs of numbers to be compared.
This is used to implement the `__eq__` method.
"""
raise NotImplementedError
def _check_type(self) -> None:
"""Raise a TypeError if the expected value is not a valid type."""
# This is only a concern if the expected value is a sequence. In every
# other case, the approx() function ensures that the expected value has
# a numeric type. For this reason, the default is to do nothing. The
# classes that deal with sequences should reimplement this method to
# raise if there are any non-numeric elements in the sequence.
def _recursive_sequence_map(f, x):
"""Recursively map a function over a sequence of arbitrary depth"""
if isinstance(x, (list, tuple)):
seq_type = type(x)
return seq_type(_recursive_sequence_map(f, xi) for xi in x)
elif _is_sequence_like(x):
return [_recursive_sequence_map(f, xi) for xi in x]
else:
return f(x)
class ApproxNumpy(ApproxBase):
"""Perform approximate comparisons where the expected value is numpy array."""
def __repr__(self) -> str:
list_scalars = _recursive_sequence_map(
self._approx_scalar, self.expected.tolist()
)
return f"approx({list_scalars!r})"
def _repr_compare(self, other_side: ndarray | list[Any]) -> list[str]:
import itertools
import math
def get_value_from_nested_list(
nested_list: list[Any], nd_index: tuple[Any, ...]
) -> Any:
"""
Helper function to get the value out of a nested list, given an n-dimensional index.
This mimics numpy's indexing, but for raw nested python lists.
"""
value: Any = nested_list
for i in nd_index:
value = value[i]
return value
np_array_shape = self.expected.shape
approx_side_as_seq = _recursive_sequence_map(
self._approx_scalar, self.expected.tolist()
)
# convert other_side to numpy array to ensure shape attribute is available
other_side_as_array = _as_numpy_array(other_side)
assert other_side_as_array is not None
if np_array_shape != other_side_as_array.shape:
return [
"Impossible to compare arrays with different shapes.",
f"Shapes: {np_array_shape} and {other_side_as_array.shape}",
]
number_of_elements = self.expected.size
max_abs_diff = -math.inf
max_rel_diff = -math.inf
different_ids = []
for index in itertools.product(*(range(i) for i in np_array_shape)):
approx_value = get_value_from_nested_list(approx_side_as_seq, index)
other_value = get_value_from_nested_list(other_side_as_array, index)
if approx_value != other_value:
abs_diff = abs(approx_value.expected - other_value)
max_abs_diff = max(max_abs_diff, abs_diff)
if other_value == 0.0:
max_rel_diff = math.inf
else:
max_rel_diff = max(max_rel_diff, abs_diff / abs(other_value))
different_ids.append(index)
message_data = [
(
str(index),
str(get_value_from_nested_list(other_side_as_array, index)),
str(get_value_from_nested_list(approx_side_as_seq, index)),
)
for index in different_ids
]
return _compare_approx(
self.expected,
message_data,
number_of_elements,
different_ids,
max_abs_diff,
max_rel_diff,
)
def __eq__(self, actual) -> bool:
import numpy as np
# self.expected is supposed to always be an array here.
if not np.isscalar(actual):
try:
actual = np.asarray(actual)
except Exception as e:
raise TypeError(f"cannot compare '{actual}' to numpy.ndarray") from e
if not np.isscalar(actual) and actual.shape != self.expected.shape:
return False
return super().__eq__(actual)
def _yield_comparisons(self, actual):
import numpy as np
# `actual` can either be a numpy array or a scalar, it is treated in
# `__eq__` before being passed to `ApproxBase.__eq__`, which is the
# only method that calls this one.
if np.isscalar(actual):
for i in np.ndindex(self.expected.shape):
yield actual, self.expected[i].item()
else:
for i in np.ndindex(self.expected.shape):
yield actual[i].item(), self.expected[i].item()
class ApproxMapping(ApproxBase):
"""Perform approximate comparisons where the expected value is a mapping
with numeric values (the keys can be anything)."""
def __repr__(self) -> str:
return f"approx({({k: self._approx_scalar(v) for k, v in self.expected.items()})!r})"
def _repr_compare(self, other_side: Mapping[object, float]) -> list[str]:
import math
approx_side_as_map = {
k: self._approx_scalar(v) for k, v in self.expected.items()
}
number_of_elements = len(approx_side_as_map)
max_abs_diff = -math.inf
max_rel_diff = -math.inf
different_ids = []
for (approx_key, approx_value), other_value in zip(
approx_side_as_map.items(), other_side.values()
):
if approx_value != other_value:
if approx_value.expected is not None and other_value is not None:
try:
max_abs_diff = max(
max_abs_diff, abs(approx_value.expected - other_value)
)
if approx_value.expected == 0.0:
max_rel_diff = math.inf
else:
max_rel_diff = max(
max_rel_diff,
abs(
(approx_value.expected - other_value)
/ approx_value.expected
),
)
except ZeroDivisionError:
pass
different_ids.append(approx_key)
message_data = [
(str(key), str(other_side[key]), str(approx_side_as_map[key]))
for key in different_ids
]
return _compare_approx(
self.expected,
message_data,
number_of_elements,
different_ids,
max_abs_diff,
max_rel_diff,
)
def __eq__(self, actual) -> bool:
try:
if set(actual.keys()) != set(self.expected.keys()):
return False
except AttributeError:
return False
return super().__eq__(actual)
def _yield_comparisons(self, actual):
for k in self.expected.keys():
yield actual[k], self.expected[k]
def _check_type(self) -> None:
__tracebackhide__ = True
for key, value in self.expected.items():
if isinstance(value, type(self.expected)):
msg = "pytest.approx() does not support nested dictionaries: key={!r} value={!r}\n full mapping={}"
raise TypeError(msg.format(key, value, pprint.pformat(self.expected)))
class ApproxSequenceLike(ApproxBase):
"""Perform approximate comparisons where the expected value is a sequence of numbers."""
def __repr__(self) -> str:
seq_type = type(self.expected)
if seq_type not in (tuple, list):
seq_type = list
return f"approx({seq_type(self._approx_scalar(x) for x in self.expected)!r})"
def _repr_compare(self, other_side: Sequence[float]) -> list[str]:
import math
if len(self.expected) != len(other_side):
return [
"Impossible to compare lists with different sizes.",
f"Lengths: {len(self.expected)} and {len(other_side)}",
]
approx_side_as_map = _recursive_sequence_map(self._approx_scalar, self.expected)
number_of_elements = len(approx_side_as_map)
max_abs_diff = -math.inf
max_rel_diff = -math.inf
different_ids = []
for i, (approx_value, other_value) in enumerate(
zip(approx_side_as_map, other_side)
):
if approx_value != other_value:
try:
abs_diff = abs(approx_value.expected - other_value)
max_abs_diff = max(max_abs_diff, abs_diff)
# Ignore non-numbers for the diff calculations (#13012).
except TypeError:
pass
else:
if other_value == 0.0:
max_rel_diff = math.inf
else:
max_rel_diff = max(max_rel_diff, abs_diff / abs(other_value))
different_ids.append(i)
message_data = [
(str(i), str(other_side[i]), str(approx_side_as_map[i]))
for i in different_ids
]
return _compare_approx(
self.expected,
message_data,
number_of_elements,
different_ids,
max_abs_diff,
max_rel_diff,
)
def __eq__(self, actual) -> bool:
try:
if len(actual) != len(self.expected):
return False
except TypeError:
return False
return super().__eq__(actual)
def _yield_comparisons(self, actual):
return zip(actual, self.expected)
def _check_type(self) -> None:
__tracebackhide__ = True
for index, x in enumerate(self.expected):
if isinstance(x, type(self.expected)):
msg = "pytest.approx() does not support nested data structures: {!r} at index {}\n full sequence: {}"
raise TypeError(msg.format(x, index, pprint.pformat(self.expected)))
class ApproxScalar(ApproxBase):
"""Perform approximate comparisons where the expected value is a single number."""
# Using Real should be better than this Union, but not possible yet:
# https://github.com/python/typeshed/pull/3108
DEFAULT_ABSOLUTE_TOLERANCE: float | Decimal = 1e-12
DEFAULT_RELATIVE_TOLERANCE: float | Decimal = 1e-6
def __repr__(self) -> str:
"""Return a string communicating both the expected value and the
tolerance for the comparison being made.
For example, ``1.0 ± 1e-6``, ``(3+4j) ± 5e-6 ∠ ±180°``.
"""
# Don't show a tolerance for values that aren't compared using
# tolerances, i.e. non-numerics and infinities. Need to call abs to
# handle complex numbers, e.g. (inf + 1j).
if (
isinstance(self.expected, bool)
or (not isinstance(self.expected, (Complex, Decimal)))
or math.isinf(abs(self.expected) or isinstance(self.expected, bool))
):
return str(self.expected)
# If a sensible tolerance can't be calculated, self.tolerance will
# raise a ValueError. In this case, display '???'.
try:
if 1e-3 <= self.tolerance < 1e3:
vetted_tolerance = f"{self.tolerance:n}"
else:
vetted_tolerance = f"{self.tolerance:.1e}"
if (
isinstance(self.expected, Complex)
and self.expected.imag
and not math.isinf(self.tolerance)
):
vetted_tolerance += " ∠ ±180°"
except ValueError:
vetted_tolerance = "???"
return f"{self.expected} ± {vetted_tolerance}"
def __eq__(self, actual) -> bool:
"""Return whether the given value is equal to the expected value
within the pre-specified tolerance."""
asarray = _as_numpy_array(actual)
if asarray is not None:
# Call ``__eq__()`` manually to prevent infinite-recursion with
# numpy<1.13. See #3748.
return all(self.__eq__(a) for a in asarray.flat)
# Short-circuit exact equality, except for bool
if isinstance(self.expected, bool) and not isinstance(actual, bool):
return False
elif actual == self.expected:
return True
# If either type is non-numeric, fall back to strict equality.
# NB: we need Complex, rather than just Number, to ensure that __abs__,
# __sub__, and __float__ are defined. Also, consider bool to be
# nonnumeric, even though it has the required arithmetic.
if isinstance(self.expected, bool) or not (
isinstance(self.expected, (Complex, Decimal))
and isinstance(actual, (Complex, Decimal))
):
return False
# Allow the user to control whether NaNs are considered equal to each
# other or not. The abs() calls are for compatibility with complex
# numbers.
if math.isnan(abs(self.expected)):
return self.nan_ok and math.isnan(abs(actual))
# Infinity shouldn't be approximately equal to anything but itself, but
# if there's a relative tolerance, it will be infinite and infinity
# will seem approximately equal to everything. The equal-to-itself
# case would have been short circuited above, so here we can just
# return false if the expected value is infinite. The abs() call is
# for compatibility with complex numbers.
if math.isinf(abs(self.expected)):
return False
# Return true if the two numbers are within the tolerance.
result: bool = abs(self.expected - actual) <= self.tolerance
return result
# Ignore type because of https://github.com/python/mypy/issues/4266.
__hash__ = None # type: ignore
@property
def tolerance(self):
"""Return the tolerance for the comparison.
This could be either an absolute tolerance or a relative tolerance,
depending on what the user specified or which would be larger.
"""
def set_default(x, default):
return x if x is not None else default
# Figure out what the absolute tolerance should be. ``self.abs`` is
# either None or a value specified by the user.
absolute_tolerance = set_default(self.abs, self.DEFAULT_ABSOLUTE_TOLERANCE)
if absolute_tolerance < 0:
raise ValueError(
f"absolute tolerance can't be negative: {absolute_tolerance}"
)
if math.isnan(absolute_tolerance):
raise ValueError("absolute tolerance can't be NaN.")
# If the user specified an absolute tolerance but not a relative one,
# just return the absolute tolerance.
if self.rel is None:
if self.abs is not None:
return absolute_tolerance
# Figure out what the relative tolerance should be. ``self.rel`` is
# either None or a value specified by the user. This is done after
# we've made sure the user didn't ask for an absolute tolerance only,
# because we don't want to raise errors about the relative tolerance if
# we aren't even going to use it.
relative_tolerance = set_default(
self.rel, self.DEFAULT_RELATIVE_TOLERANCE
) * abs(self.expected)
if relative_tolerance < 0:
raise ValueError(
f"relative tolerance can't be negative: {relative_tolerance}"
)
if math.isnan(relative_tolerance):
raise ValueError("relative tolerance can't be NaN.")
# Return the larger of the relative and absolute tolerances.
return max(relative_tolerance, absolute_tolerance)
class ApproxDecimal(ApproxScalar):
"""Perform approximate comparisons where the expected value is a Decimal."""
DEFAULT_ABSOLUTE_TOLERANCE = Decimal("1e-12")
DEFAULT_RELATIVE_TOLERANCE = Decimal("1e-6")
def approx(expected, rel=None, abs=None, nan_ok: bool = False) -> ApproxBase:
"""Assert that two numbers (or two ordered sequences of numbers) are equal to each other
within some tolerance.
Due to the :doc:`python:tutorial/floatingpoint`, numbers that we
would intuitively expect to be equal are not always so::
>>> 0.1 + 0.2 == 0.3
False
This problem is commonly encountered when writing tests, e.g. when making
sure that floating-point values are what you expect them to be. One way to
deal with this problem is to assert that two floating-point numbers are
equal to within some appropriate tolerance::
>>> abs((0.1 + 0.2) - 0.3) < 1e-6
True
However, comparisons like this are tedious to write and difficult to
understand. Furthermore, absolute comparisons like the one above are
usually discouraged because there's no tolerance that works well for all
situations. ``1e-6`` is good for numbers around ``1``, but too small for
very big numbers and too big for very small ones. It's better to express
the tolerance as a fraction of the expected value, but relative comparisons
like that are even more difficult to write correctly and concisely.
The ``approx`` class performs floating-point comparisons using a syntax
that's as intuitive as possible::
>>> from pytest import approx
>>> 0.1 + 0.2 == approx(0.3)
True
The same syntax also works for ordered sequences of numbers::
>>> (0.1 + 0.2, 0.2 + 0.4) == approx((0.3, 0.6))
True
``numpy`` arrays::
>>> import numpy as np # doctest: +SKIP
>>> np.array([0.1, 0.2]) + np.array([0.2, 0.4]) == approx(np.array([0.3, 0.6])) # doctest: +SKIP
True
And for a ``numpy`` array against a scalar::
>>> import numpy as np # doctest: +SKIP
>>> np.array([0.1, 0.2]) + np.array([0.2, 0.1]) == approx(0.3) # doctest: +SKIP
True
Only ordered sequences are supported, because ``approx`` needs
to infer the relative position of the sequences without ambiguity. This means
``sets`` and other unordered sequences are not supported.
Finally, dictionary *values* can also be compared::
>>> {'a': 0.1 + 0.2, 'b': 0.2 + 0.4} == approx({'a': 0.3, 'b': 0.6})
True
The comparison will be true if both mappings have the same keys and their
respective values match the expected tolerances.
**Tolerances**
By default, ``approx`` considers numbers within a relative tolerance of
``1e-6`` (i.e. one part in a million) of its expected value to be equal.
This treatment would lead to surprising results if the expected value was
``0.0``, because nothing but ``0.0`` itself is relatively close to ``0.0``.
To handle this case less surprisingly, ``approx`` also considers numbers
within an absolute tolerance of ``1e-12`` of its expected value to be
equal. Infinity and NaN are special cases. Infinity is only considered
equal to itself, regardless of the relative tolerance. NaN is not
considered equal to anything by default, but you can make it be equal to
itself by setting the ``nan_ok`` argument to True. (This is meant to
facilitate comparing arrays that use NaN to mean "no data".)
Both the relative and absolute tolerances can be changed by passing
arguments to the ``approx`` constructor::
>>> 1.0001 == approx(1)
False
>>> 1.0001 == approx(1, rel=1e-3)
True
>>> 1.0001 == approx(1, abs=1e-3)
True
If you specify ``abs`` but not ``rel``, the comparison will not consider
the relative tolerance at all. In other words, two numbers that are within
the default relative tolerance of ``1e-6`` will still be considered unequal
if they exceed the specified absolute tolerance. If you specify both
``abs`` and ``rel``, the numbers will be considered equal if either
tolerance is met::
>>> 1 + 1e-8 == approx(1)
True
>>> 1 + 1e-8 == approx(1, abs=1e-12)
False
>>> 1 + 1e-8 == approx(1, rel=1e-6, abs=1e-12)
True
You can also use ``approx`` to compare nonnumeric types, or dicts and
sequences containing nonnumeric types, in which case it falls back to
strict equality. This can be useful for comparing dicts and sequences that
can contain optional values::
>>> {"required": 1.0000005, "optional": None} == approx({"required": 1, "optional": None})
True
>>> [None, 1.0000005] == approx([None,1])
True
>>> ["foo", 1.0000005] == approx([None,1])
False
If you're thinking about using ``approx``, then you might want to know how
it compares to other good ways of comparing floating-point numbers. All of
these algorithms are based on relative and absolute tolerances and should
agree for the most part, but they do have meaningful differences:
- ``math.isclose(a, b, rel_tol=1e-9, abs_tol=0.0)``: True if the relative
tolerance is met w.r.t. either ``a`` or ``b`` or if the absolute
tolerance is met. Because the relative tolerance is calculated w.r.t.
both ``a`` and ``b``, this test is symmetric (i.e. neither ``a`` nor
``b`` is a "reference value"). You have to specify an absolute tolerance
if you want to compare to ``0.0`` because there is no tolerance by
default. More information: :py:func:`math.isclose`.
- ``numpy.isclose(a, b, rtol=1e-5, atol=1e-8)``: True if the difference
between ``a`` and ``b`` is less that the sum of the relative tolerance
w.r.t. ``b`` and the absolute tolerance. Because the relative tolerance
is only calculated w.r.t. ``b``, this test is asymmetric and you can
think of ``b`` as the reference value. Support for comparing sequences
is provided by :py:func:`numpy.allclose`. More information:
:std:doc:`numpy:reference/generated/numpy.isclose`.
- ``unittest.TestCase.assertAlmostEqual(a, b)``: True if ``a`` and ``b``
are within an absolute tolerance of ``1e-7``. No relative tolerance is
considered , so this function is not appropriate for very large or very
small numbers. Also, it's only available in subclasses of ``unittest.TestCase``
and it's ugly because it doesn't follow PEP8. More information:
:py:meth:`unittest.TestCase.assertAlmostEqual`.
- ``a == pytest.approx(b, rel=1e-6, abs=1e-12)``: True if the relative
tolerance is met w.r.t. ``b`` or if the absolute tolerance is met.
Because the relative tolerance is only calculated w.r.t. ``b``, this test
is asymmetric and you can think of ``b`` as the reference value. In the
special case that you explicitly specify an absolute tolerance but not a
relative tolerance, only the absolute tolerance is considered.
.. note::
``approx`` can handle numpy arrays, but we recommend the
specialised test helpers in :std:doc:`numpy:reference/routines.testing`
if you need support for comparisons, NaNs, or ULP-based tolerances.
To match strings using regex, you can use
`Matches <https://github.com/asottile/re-assert#re_assertmatchespattern-str-args-kwargs>`_
from the
`re_assert package <https://github.com/asottile/re-assert>`_.
.. warning::
.. versionchanged:: 3.2
In order to avoid inconsistent behavior, :py:exc:`TypeError` is
raised for ``>``, ``>=``, ``<`` and ``<=`` comparisons.
The example below illustrates the problem::
assert approx(0.1) > 0.1 + 1e-10 # calls approx(0.1).__gt__(0.1 + 1e-10)
assert 0.1 + 1e-10 > approx(0.1) # calls approx(0.1).__lt__(0.1 + 1e-10)
In the second example one expects ``approx(0.1).__le__(0.1 + 1e-10)``
to be called. But instead, ``approx(0.1).__lt__(0.1 + 1e-10)`` is used to
comparison. This is because the call hierarchy of rich comparisons
follows a fixed behavior. More information: :py:meth:`object.__ge__`
.. versionchanged:: 3.7.1
``approx`` raises ``TypeError`` when it encounters a dict value or
sequence element of nonnumeric type.
.. versionchanged:: 6.1.0
``approx`` falls back to strict equality for nonnumeric types instead
of raising ``TypeError``.
"""
# Delegate the comparison to a class that knows how to deal with the type
# of the expected value (e.g. int, float, list, dict, numpy.array, etc).
#
# The primary responsibility of these classes is to implement ``__eq__()``
# and ``__repr__()``. The former is used to actually check if some
# "actual" value is equivalent to the given expected value within the
# allowed tolerance. The latter is used to show the user the expected
# value and tolerance, in the case that a test failed.
#
# The actual logic for making approximate comparisons can be found in
# ApproxScalar, which is used to compare individual numbers. All of the
# other Approx classes eventually delegate to this class. The ApproxBase
# class provides some convenient methods and overloads, but isn't really
# essential.
__tracebackhide__ = True
if isinstance(expected, Decimal):
cls: type[ApproxBase] = ApproxDecimal
elif isinstance(expected, Mapping):
cls = ApproxMapping
elif _is_numpy_array(expected):
expected = _as_numpy_array(expected)
cls = ApproxNumpy
elif _is_sequence_like(expected):
cls = ApproxSequenceLike
elif isinstance(expected, Collection) and not isinstance(expected, (str, bytes)):
msg = f"pytest.approx() only supports ordered sequences, but got: {expected!r}"
raise TypeError(msg)
else:
cls = ApproxScalar
return cls(expected, rel, abs, nan_ok)
def _is_sequence_like(expected: object) -> bool:
return (
hasattr(expected, "__getitem__")
and isinstance(expected, Sized)
and not isinstance(expected, (str, bytes))
)
def _is_numpy_array(obj: object) -> bool:
"""
Return true if the given object is implicitly convertible to ndarray,
and numpy is already imported.
"""
return _as_numpy_array(obj) is not None
def _as_numpy_array(obj: object) -> ndarray | None:
"""
Return an ndarray if the given object is implicitly convertible to ndarray,
and numpy is already imported, otherwise None.
"""
import sys
np: Any = sys.modules.get("numpy")
if np is not None:
# avoid infinite recursion on numpy scalars, which have __array__
if np.isscalar(obj):
return None
elif isinstance(obj, np.ndarray):
return obj
elif hasattr(obj, "__array__") or hasattr("obj", "__array_interface__"):
return np.asarray(obj)
return None
# builtin pytest.raises helper
E = TypeVar("E", bound=BaseException)
@overload
def raises(
expected_exception: type[E] | tuple[type[E], ...],
*,
match: str | re.Pattern[str] | None = ...,
) -> RaisesContext[E]: ...
@overload
def raises(
expected_exception: type[E] | tuple[type[E], ...],
func: Callable[..., Any],
*args: Any,
**kwargs: Any,
) -> _pytest._code.ExceptionInfo[E]: ...
def raises(
expected_exception: type[E] | tuple[type[E], ...], *args: Any, **kwargs: Any
) -> RaisesContext[E] | _pytest._code.ExceptionInfo[E]:
r"""Assert that a code block/function call raises an exception type, or one of its subclasses.
:param expected_exception:
The expected exception type, or a tuple if one of multiple possible
exception types are expected. Note that subclasses of the passed exceptions
will also match.
:kwparam str | re.Pattern[str] | None match:
If specified, a string containing a regular expression,
or a regular expression object, that is tested against the string
representation of the exception and its :pep:`678` `__notes__`
using :func:`re.search`.
To match a literal string that may contain :ref:`special characters
<re-syntax>`, the pattern can first be escaped with :func:`re.escape`.
(This is only used when ``pytest.raises`` is used as a context manager,
and passed through to the function otherwise.
When using ``pytest.raises`` as a function, you can use:
``pytest.raises(Exc, func, match="passed on").match("my pattern")``.)
Use ``pytest.raises`` as a context manager, which will capture the exception of the given
type, or any of its subclasses::
>>> import pytest
>>> with pytest.raises(ZeroDivisionError):
... 1/0
If the code block does not raise the expected exception (:class:`ZeroDivisionError` in the example
above), or no exception at all, the check will fail instead.
You can also use the keyword argument ``match`` to assert that the
exception matches a text or regex::
>>> with pytest.raises(ValueError, match='must be 0 or None'):
... raise ValueError("value must be 0 or None")
>>> with pytest.raises(ValueError, match=r'must be \d+$'):
... raise ValueError("value must be 42")
The ``match`` argument searches the formatted exception string, which includes any
`PEP-678 <https://peps.python.org/pep-0678/>`__ ``__notes__``:
>>> with pytest.raises(ValueError, match=r"had a note added"): # doctest: +SKIP
... e = ValueError("value must be 42")
... e.add_note("had a note added")
... raise e
The context manager produces an :class:`ExceptionInfo` object which can be used to inspect the
details of the captured exception::
>>> with pytest.raises(ValueError) as exc_info:
... raise ValueError("value must be 42")
>>> assert exc_info.type is ValueError
>>> assert exc_info.value.args[0] == "value must be 42"
.. warning::
Given that ``pytest.raises`` matches subclasses, be wary of using it to match :class:`Exception` like this::
with pytest.raises(Exception): # Careful, this will catch ANY exception raised.
some_function()
Because :class:`Exception` is the base class of almost all exceptions, it is easy for this to hide
real bugs, where the user wrote this expecting a specific exception, but some other exception is being
raised due to a bug introduced during a refactoring.
Avoid using ``pytest.raises`` to catch :class:`Exception` unless certain that you really want to catch
**any** exception raised.
.. note::
When using ``pytest.raises`` as a context manager, it's worthwhile to
note that normal context manager rules apply and that the exception
raised *must* be the final line in the scope of the context manager.
Lines of code after that, within the scope of the context manager will
not be executed. For example::
>>> value = 15
>>> with pytest.raises(ValueError) as exc_info:
... if value > 10:
... raise ValueError("value must be <= 10")
... assert exc_info.type is ValueError # This will not execute.
Instead, the following approach must be taken (note the difference in
scope)::
>>> with pytest.raises(ValueError) as exc_info:
... if value > 10:
... raise ValueError("value must be <= 10")
...
>>> assert exc_info.type is ValueError
**Using with** ``pytest.mark.parametrize``
When using :ref:`pytest.mark.parametrize ref`
it is possible to parametrize tests such that
some runs raise an exception and others do not.
See :ref:`parametrizing_conditional_raising` for an example.
.. seealso::
:ref:`assertraises` for more examples and detailed discussion.
**Legacy form**
It is possible to specify a callable by passing a to-be-called lambda::
>>> raises(ZeroDivisionError, lambda: 1/0)
<ExceptionInfo ...>
or you can specify an arbitrary callable with arguments::
>>> def f(x): return 1/x
...
>>> raises(ZeroDivisionError, f, 0)
<ExceptionInfo ...>
>>> raises(ZeroDivisionError, f, x=0)
<ExceptionInfo ...>
The form above is fully supported but discouraged for new code because the
context manager form is regarded as more readable and less error-prone.
.. note::
Similar to caught exception objects in Python, explicitly clearing
local references to returned ``ExceptionInfo`` objects can
help the Python interpreter speed up its garbage collection.
Clearing those references breaks a reference cycle
(``ExceptionInfo`` --> caught exception --> frame stack raising
the exception --> current frame stack --> local variables -->
``ExceptionInfo``) which makes Python keep all objects referenced
from that cycle (including all local variables in the current
frame) alive until the next cyclic garbage collection run.
More detailed information can be found in the official Python
documentation for :ref:`the try statement <python:try>`.
"""
__tracebackhide__ = True
if not expected_exception:
raise ValueError(
f"Expected an exception type or a tuple of exception types, but got `{expected_exception!r}`. "
f"Raising exceptions is already understood as failing the test, so you don't need "
f"any special code to say 'this should never raise an exception'."
)
if isinstance(expected_exception, type):
expected_exceptions: tuple[type[E], ...] = (expected_exception,)
else:
expected_exceptions = expected_exception
for exc in expected_exceptions:
if not isinstance(exc, type) or not issubclass(exc, BaseException):
msg = "expected exception must be a BaseException type, not {}" # type: ignore[unreachable]
not_a = exc.__name__ if isinstance(exc, type) else type(exc).__name__
raise TypeError(msg.format(not_a))
message = f"DID NOT RAISE {expected_exception}"
if not args:
match: str | re.Pattern[str] | None = kwargs.pop("match", None)
if kwargs:
msg = "Unexpected keyword arguments passed to pytest.raises: "
msg += ", ".join(sorted(kwargs))
msg += "\nUse context-manager form instead?"
raise TypeError(msg)
return RaisesContext(expected_exception, message, match)
else:
func = args[0]
if not callable(func):
raise TypeError(f"{func!r} object (type: {type(func)}) must be callable")
try:
func(*args[1:], **kwargs)
except expected_exception as e:
return _pytest._code.ExceptionInfo.from_exception(e)
fail(message)
# This doesn't work with mypy for now. Use fail.Exception instead.
raises.Exception = fail.Exception # type: ignore
@final
class RaisesContext(AbstractContextManager[_pytest._code.ExceptionInfo[E]]):
def __init__(
self,
expected_exception: type[E] | tuple[type[E], ...],
message: str,
match_expr: str | re.Pattern[str] | None = None,
) -> None:
self.expected_exception = expected_exception
self.message = message