diff --git a/README.rst b/README.rst index 669438c..956475e 100644 --- a/README.rst +++ b/README.rst @@ -58,8 +58,9 @@ then run the script with a special script (in this case with specific arguments to the Python interpreter). In the following example, we create a simple function ``my_func`` that -allocates lists ``a``, ``b`` and then deletes ``b``:: +allocates lists ``a``, ``b`` and then deletes ``b``: +.. code-block:: python @profile def my_func(): @@ -101,7 +102,9 @@ the number of times that profiler has executed each line. The last column Decorator ========= -A function decorator is also available. Use as follows:: +A function decorator is also available. Use as follows: + +.. code-block:: python from memory_profiler import profile @@ -116,7 +119,9 @@ In this case the script can be run without specifying ``-m memory_profiler`` in the command line. In function decorator, you can specify the precision as an argument to the -decorator function. Use as follows:: +decorator function. Use as follows: + +.. code-block:: python from memory_profiler import profile @@ -282,6 +287,7 @@ necessarily a Python program), a string containing some python code to be evaluated or a tuple ``(f, args, kw)`` containing a function and its arguments to be evaluated as ``f(*args, **kw)``. For example, +.. code-block:: python >>> from memory_profiler import memory_usage >>> mem_usage = memory_usage(-1, interval=.2, timeout=1) @@ -301,8 +307,9 @@ thing on the IPython notebook it scales up to 44MB. If you'd like to get the memory consumption of a Python function, then you should specify the function and its arguments in the tuple ``(f, -args, kw)``. For example:: +args, kw)``. For example: +.. code-block:: python >>> # define a simple function >>> def f(a, n=100): @@ -325,6 +332,8 @@ REPORTING The output can be redirected to a log file by passing IO stream as parameter to the decorator like @profile(stream=fp) +.. code-block:: python + >>> fp=open('memory_profiler.log','w+') >>> @profile(stream=fp) >>> def my_func(): @@ -333,7 +342,7 @@ parameter to the decorator like @profile(stream=fp) ... del b ... return a - For details refer: examples/reporting_file.py +For details refer: examples/reporting_file.py ``Reporting via logger Module:`` @@ -343,6 +352,8 @@ when we need to use RotatingFileHandler. The output can be redirected to logger module by simply making use of LogFile of memory profiler module. +.. code-block:: python + >>> from memory_profiler import LogFile >>> import sys >>> sys.stdout = LogFile('memory_profile_log') @@ -354,11 +365,13 @@ could be cumbersome and one can choose only entries with increments by passing True to reportIncrementFlag, where reportIncrementFlag is a parameter to LogFile class of memory profiler module. +.. code-block:: python + >>> from memory_profiler import LogFile >>> import sys >>> sys.stdout = LogFile('memory_profile_log', reportIncrementFlag=False) - For details refer: examples/reporting_logger.py +For details refer: examples/reporting_logger.py ===================== IPython integration @@ -372,7 +385,9 @@ For IPython 0.11+, you can use the module directly as an extension, with To activate it whenever you start IPython, edit the configuration file for your IPython profile, ~/.ipython/profile_default/ipython_config.py, to register the extension like this (If you already have other extensions, just add this one to -the list):: +the list): + +.. code-block:: python c.InteractiveShellApp.extensions = [ 'memory_profiler', @@ -385,20 +400,26 @@ It then can be used directly from IPython to obtain a line-by-line report using the `%mprun` or `%%mprun` magic command. In this case, you can skip the `@profile` decorator and instead use the `-f` parameter, like this. Note however that function my_func must be defined in a file -(cannot have been defined interactively in the Python interpreter):: +(cannot have been defined interactively in the Python interpreter): + +.. code-block:: python In [1]: from example import my_func, my_func_2 In [2]: %mprun -f my_func my_func() -or in cell mode:: +or in cell mode: + +.. code-block:: python In [3]: %%mprun -f my_func -f my_func_2 ...: my_func() ...: my_func_2() Another useful magic that we define is `%memit`, which is analogous to -`%timeit`. It can be used as follows:: +`%timeit`. It can be used as follows: + +.. code-block:: python In [1]: %memit range(10000) peak memory: 21.42 MiB, increment: 0.41 MiB @@ -406,7 +427,9 @@ Another useful magic that we define is `%memit`, which is analogous to In [2]: %memit range(1000000) peak memory: 52.10 MiB, increment: 31.08 MiB -or in cell mode (with setup code):: +or in cell mode (with setup code): + +.. code-block:: python In [3]: %%memit l=range(1000000) ...: len(l) @@ -416,7 +439,9 @@ or in cell mode (with setup code):: For more details, see the docstrings of the magics. For IPython 0.10, you can install it by editing the IPython configuration -file ~/.ipython/ipy_user_conf.py to add the following lines:: +file ~/.ipython/ipy_user_conf.py to add the following lines: + +.. code-block:: python # These two lines are standard and probably already there. import IPython.ipapi @@ -441,6 +466,8 @@ Currently, the backend can be set via the CLI and is exposed by the API +.. code-block:: python + >>> from memory_profiler import memory_usage >>> mem_usage = memory_usage(-1, interval=.2, timeout=1, backend="psutil")