-
-
Notifications
You must be signed in to change notification settings - Fork 404
/
streams.py
1931 lines (1568 loc) · 66.3 KB
/
streams.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
The streams module defines the streams API that allows visualizations to
generate and respond to events, originating either in Python on the
server-side or in Javascript in the Jupyter notebook (client-side).
"""
import weakref
from collections import defaultdict
from contextlib import contextmanager
from functools import partial
from itertools import groupby
from numbers import Number
from types import FunctionType
import numpy as np
import pandas as pd
import param
from .core import util
from .core.ndmapping import UniformNdMapping
# Types supported by Pointer derived streams
pointer_types = (Number, str, tuple, *util.datetime_types)
POPUP_POSITIONS = [
"top_right",
"top_left",
"bottom_left",
"bottom_right",
"right",
"left",
"top",
"bottom",
]
class _SkipTrigger: pass
@contextmanager
def triggering_streams(streams):
"""
Temporarily declares the streams as being in a triggered state.
Needed by DynamicMap to determine whether to memoize on a Callable,
i.e. if a stream has memoization disabled and is in triggered state
Callable should disable lookup in the memoization cache. This is
done by the dynamicmap_memoization context manager.
"""
for stream in streams:
stream._triggering = True
try:
yield
finally:
for stream in streams:
stream._triggering = False
def streams_list_from_dict(streams):
"Converts a streams dictionary into a streams list"
params = {}
for k, v in streams.items():
v = param.parameterized.transform_reference(v)
if isinstance(v, param.Parameter) and v.owner is not None:
params[k] = v
else:
raise TypeError(f'Cannot handle value {v!r} in streams dictionary')
return Params.from_params(params)
class Stream(param.Parameterized):
"""
A Stream is simply a parameterized object with parameters that
change over time in response to update events and may trigger
downstream events on its subscribers. The Stream parameters can be
updated using the update method, which will optionally trigger the
stream. This will notify the subscribers which may be supplied as
a list of callables or added later using the add_subscriber
method. The subscribers will be passed a dictionary mapping of the
parameters of the stream, which are available on the instance as
the ``contents``.
Depending on the plotting backend certain streams may
interactively subscribe to events and changes by the plotting
backend. For this purpose use the LinkedStream baseclass, which
enables the linked option by default. A source for the linking may
be supplied to the constructor in the form of another viewable
object specifying which part of a plot the data should come from.
The transient option allows treating stream events as discrete
updates, resetting the parameters to their default after the
stream has been triggered. A downstream callback can therefore
determine whether a stream is active by checking whether the
stream values match the default (usually None).
The Stream class is meant for subclassing and subclasses should
generally add one or more parameters but may also override the
transform and reset method to preprocess parameters before they
are passed to subscribers and reset them using custom logic
respectively.
"""
# Mapping from a source to a list of streams
# WeakKeyDictionary to allow garbage collection
# of unreferenced sources
registry = weakref.WeakKeyDictionary()
# Mapping to define callbacks by backend and Stream type.
# e.g. Stream._callbacks['bokeh'][Stream] = Callback
_callbacks = defaultdict(dict)
@classmethod
def define(cls, name, **kwargs):
"""
Utility to quickly and easily declare Stream classes. Designed
for interactive use such as notebooks and shouldn't replace
parameterized class definitions in source code that is imported.
Takes a stream class name and a set of keywords where each
keyword becomes a parameter. If the value is already a
parameter, it is simply used otherwise the appropriate parameter
type is inferred and declared, using the value as the default.
Supported types: bool, int, float, str, dict, tuple and list
"""
params = {'name': param.String(default=name)}
for k, v in kwargs.items():
kws = dict(default=v, constant=True)
if isinstance(v, param.Parameter):
params[k] = v
elif isinstance(v, bool):
params[k] = param.Boolean(**kws)
elif isinstance(v, int):
params[k] = param.Integer(**kws)
elif isinstance(v, float):
params[k] = param.Number(**kws)
elif isinstance(v, str):
params[k] = param.String(**kws)
elif isinstance(v, dict):
params[k] = param.Dict(**kws)
elif isinstance(v, tuple):
params[k] = param.Tuple(**kws)
elif isinstance(v, list):
params[k] = param.List(**kws)
elif isinstance(v, np.ndarray):
params[k] = param.Array(**kws)
else:
params[k] = param.Parameter(**kws)
# Dynamic class creation using type
return type(name, (Stream,), params)
@classmethod
def trigger(cls, streams):
"""
Given a list of streams, collect all the stream parameters into
a dictionary and pass it to the union set of subscribers.
Passing multiple streams at once to trigger can be useful when a
subscriber may be set multiple times across streams but only
needs to be called once.
"""
# Union of stream contents
items = [stream.contents.items() for stream in set(streams)]
union = [kv for kvs in items for kv in kvs]
klist = [k for k, _ in union]
key_clashes = []
for k, v in union:
key_count = klist.count(k)
try:
value_count = union.count((k, v))
except Exception:
# If we can't compare values we assume they are not equal
value_count = 1
if key_count > 1 and key_count > value_count and k not in key_clashes:
key_clashes.append(k)
if key_clashes:
print(f'Parameter name clashes for keys {key_clashes!r}')
# Group subscribers by precedence while keeping the ordering
# within each group
subscriber_precedence = defaultdict(list)
for stream in streams:
stream._on_trigger()
for precedence, subscriber in stream._subscribers:
subscriber_precedence[precedence].append(subscriber)
sorted_subscribers = sorted(subscriber_precedence.items(), key=lambda x: x[0])
subscribers = util.unique_iterator([s for _, subscribers in sorted_subscribers
for s in subscribers])
with triggering_streams(streams):
for subscriber in subscribers:
subscriber(**dict(union))
for stream in streams:
with util.disable_constant(stream):
if stream.transient:
stream.reset()
def _on_trigger(self):
"""Called when a stream has been triggered"""
@classmethod
def _process_streams(cls, streams):
"""
Processes a list of streams promoting Parameterized objects and
methods to Param based streams.
"""
parameterizeds = defaultdict(set)
valid, invalid = [], []
for s in streams:
if isinstance(s, partial):
s = s.func
if isinstance(s, Stream):
pass
elif isinstance(s, param.Parameter):
s = Params(s.owner, [s.name])
elif isinstance(s, param.Parameterized):
s = Params(s)
elif util.is_param_method(s):
if not hasattr(s, "_dinfo"):
continue
s = ParamMethod(s)
elif isinstance(s, FunctionType) and hasattr(s, "_dinfo"):
deps = s._dinfo
dep_params = list(deps['dependencies']) + list(deps.get('kw', {}).values())
rename = {(p.owner, p.name): k for k, p in deps.get('kw', {}).items()}
s = Params(parameters=dep_params, rename=rename)
else:
deps = param.parameterized.resolve_ref(s)
if deps:
s = Params(parameters=deps)
else:
invalid.append(s)
continue
if isinstance(s, Params):
pid = id(s.parameterized)
overlap = (set(s.parameters) & parameterizeds[pid])
if overlap:
pname = type(s.parameterized).__name__
param.main.param.warning(
f'The {sorted([p.name for p in overlap])} parameter(s) '
f'on the {pname} object have '
'already been supplied in another stream. '
'Ensure that the supplied streams only specify '
'each parameter once, otherwise multiple '
'events will be triggered when the parameter changes.'
)
parameterizeds[pid] |= set(s.parameters)
valid.append(s)
return valid, invalid
def __init__(self, rename=None, source=None, subscribers=None, linked=False,
transient=False, **params):
"""
The rename argument allows multiple streams with similar event
state to be used by remapping parameter names.
Source is an optional argument specifying the HoloViews
datastructure that the stream receives events from, as supported
by the plotting backend.
Some streams are configured to automatically link to the source
plot, to disable this set linked=False
"""
# Source is stored as a weakref to allow it to be garbage collected
if subscribers is None:
subscribers = []
if rename is None:
rename = {}
self._source = None if source is None else weakref.ref(source)
self._subscribers = []
for subscriber in subscribers:
self.add_subscriber(subscriber)
self.linked = linked
self.transient = transient
# Whether this stream is currently triggering its subscribers
self._triggering = False
# The metadata may provide information about the currently
# active event, i.e. the source of the stream values may
# indicate where the event originated from
self._metadata = {}
super().__init__(**params)
self._rename = self._validate_rename(rename)
if source is not None:
if source in self.registry:
self.registry[source].append(self)
else:
self.registry[source] = [self]
def clone(self):
"""Return new stream with identical properties and no subscribers"""
return type(self)(**self.contents)
@property
def subscribers(self):
"""Property returning the subscriber list"""
return [s for p, s in sorted(self._subscribers, key=lambda x: x[0])]
def clear(self, policy='all'):
"""
Clear all subscribers registered to this stream.
The default policy of 'all' clears all subscribers. If policy is
set to 'user', only subscribers defined by the user are cleared
(precedence between zero and one). A policy of 'internal' clears
subscribers with precedence greater than unity used internally
by HoloViews.
"""
policies = ['all', 'user', 'internal']
if policy not in policies:
raise ValueError(f'Policy for clearing subscribers must be one of {policies}')
if policy == 'all':
remaining = []
elif policy == 'user':
remaining = [(p, s) for (p, s) in self._subscribers if p > 1]
else:
remaining = [(p, s) for (p, s) in self._subscribers if p <= 1]
self._subscribers = remaining
def reset(self):
"""
Resets stream parameters to their defaults.
"""
with util.disable_constant(self):
for k, p in self.param.objects('existing').items():
if k != 'name':
setattr(self, k, p.default)
def add_subscriber(self, subscriber, precedence=0):
"""
Register a callable subscriber to this stream which will be
invoked either when event is called or when this stream is
passed to the trigger classmethod.
Precedence allows the subscriber ordering to be
controlled. Users should only add subscribers with precedence
between zero and one while HoloViews itself reserves the use of
higher precedence values. Subscribers with high precedence are
invoked later than ones with low precedence.
"""
if not callable(subscriber):
raise TypeError('Subscriber must be a callable.')
self._subscribers.append((precedence, subscriber))
def _validate_rename(self, mapping):
param_names = [k for k in self.param if k != 'name']
for k, v in mapping.items():
if k not in param_names:
raise KeyError(f'Cannot rename {k!r} as it is not a stream parameter')
if k != v and v in param_names:
raise KeyError(f'Cannot rename to {v!r} as it clashes with a '
'stream parameter of the same name')
return mapping
def rename(self, **mapping):
"""
The rename method allows stream parameters to be allocated to
new names to avoid clashes with other stream parameters of the
same name. Returns a new clone of the stream instance with the
specified name mapping.
"""
params = {k: v for k, v in self.param.values().items() if k != 'name'}
return self.__class__(rename=mapping,
source=(self._source() if self._source else None),
linked=self.linked, **params)
@property
def source(self):
return self._source() if self._source else None
@source.setter
def source(self, source):
if self.source is not None:
source_list = self.registry[self.source]
if self in source_list:
source_list.remove(self)
if not source_list:
self.registry.pop(self.source)
if source is None:
self._source = None
return
self._source = weakref.ref(source)
if source in self.registry:
self.registry[source].append(self)
else:
self.registry[source] = [self]
def transform(self):
"""
Method that can be overwritten by subclasses to process the
parameter values before renaming is applied. Returns a
dictionary of transformed parameters.
"""
return {}
@property
def contents(self):
filtered = {k: v for k, v in self.param.values().items() if k != 'name'}
return {self._rename.get(k, k): v for (k, v) in filtered.items()
if self._rename.get(k, True) is not None}
@property
def hashkey(self):
"""
The object the memoization hash is computed from. By default
returns the stream contents but can be overridden to provide
a custom hash key.
"""
return self.contents
def _set_stream_parameters(self, **kwargs):
"""
Sets the stream parameters which are expected to be declared
constant.
"""
with util.disable_constant(self):
self.param.update(**kwargs)
def event(self, **kwargs):
"""
Update the stream parameters and trigger an event.
"""
skip = self.update(**kwargs)
if skip is not _SkipTrigger:
self.trigger([self])
def update(self, **kwargs):
"""
The update method updates the stream parameters (without any
renaming applied) in response to some event. If the stream has a
custom transform method, this is applied to transform the
parameter values accordingly.
To update and trigger, use the event method.
"""
self._set_stream_parameters(**kwargs)
transformed = self.transform()
if transformed is None:
return _SkipTrigger
self._set_stream_parameters(**transformed)
def __repr__(self):
cls_name = self.__class__.__name__
kwargs = ','.join(f'{k}={v!r}'
for (k, v) in self.param.values().items() if k != 'name')
if not self._rename:
return f'{cls_name}({kwargs})'
else:
return f'{cls_name}({self._rename!r}, {kwargs})'
def __str__(self):
return repr(self)
class Counter(Stream):
"""
Simple stream that automatically increments an integer counter
parameter every time it is updated.
"""
counter = param.Integer(default=0, constant=True, bounds=(0, None))
def transform(self):
return {'counter': self.counter + 1}
class Pipe(Stream):
"""
A Stream used to pipe arbitrary data to a callback.
Unlike other streams memoization can be disabled for a
Pipe stream (and is disabled by default).
"""
data = param.Parameter(default=None, constant=True, doc="""
Arbitrary data being streamed to a DynamicMap callback.""")
def __init__(self, data=None, memoize=False, **params):
super().__init__(data=data, **params)
self._memoize_counter = 0
def send(self, data):
"""
A convenience method to send an event with data without
supplying a keyword.
"""
self.event(data=data)
def _on_trigger(self):
self._memoize_counter += 1
@property
def hashkey(self):
return {'_memoize_key': self._memoize_counter}
class Buffer(Pipe):
"""
Buffer allows streaming and accumulating incoming chunks of rows
from tabular datasets. The data may be in the form of a pandas
DataFrame, 2D arrays of rows and columns or dictionaries of column
arrays. Buffer will accumulate the last N rows, where N is defined
by the specified ``length``. The accumulated data is then made
available via the ``data`` parameter.
A Buffer may also be instantiated with a streamz.StreamingDataFrame
or a streamz.StreamingSeries, it will automatically subscribe to
events emitted by a streamz object.
When streaming a DataFrame will reset the DataFrame index by
default making it available to HoloViews elements as dimensions,
this may be disabled by setting index=False.
The ``following`` argument determines whether any plot which is
subscribed to this stream will update the axis ranges when an
update is pushed. This makes it possible to control whether zooming
is allowed while streaming.
"""
data = param.Parameter(default=None, constant=True, doc="""
Arbitrary data being streamed to a DynamicMap callback.""")
def __init__(self, data, length=1000, index=True, following=True, **params):
if isinstance(data, pd.DataFrame):
example = data
elif isinstance(data, np.ndarray):
if data.ndim != 2:
raise ValueError("Only 2D array data may be streamed by Buffer.")
example = data
elif isinstance(data, dict):
if not all(isinstance(v, np.ndarray) for v in data.values()):
raise ValueError("Data in dictionary must be of array types.")
elif len({len(v) for v in data.values()}) > 1:
raise ValueError("Columns in dictionary must all be the same length.")
example = data
else:
try:
from streamz.dataframe import StreamingDataFrame, StreamingSeries
loaded = True
except ImportError:
try:
from streamz.dataframe import (
DataFrame as StreamingDataFrame,
Series as StreamingSeries,
)
loaded = True
except ImportError:
loaded = False
if not loaded or not isinstance(data, (StreamingDataFrame, StreamingSeries)):
raise ValueError("Buffer must be initialized with pandas DataFrame, "
"streamz.StreamingDataFrame or streamz.StreamingSeries.")
elif isinstance(data, StreamingSeries):
data = data.to_frame()
example = data.example
data.stream.sink(self.send)
self.sdf = data
params['data'] = example
super().__init__(**params)
self.length = length
self.following = following
self._chunk_length = 0
self._count = 0
self._index = index
def verify(self, x):
""" Verify consistency of dataframes that pass through this stream """
if type(x) != type(self.data): # noqa: E721
raise TypeError(f"Input expected to be of type {type(self.data).__name__}, got {type(x).__name__}.")
elif isinstance(x, np.ndarray):
if x.ndim != 2:
raise ValueError('Streamed array data must be two-dimensional')
elif x.shape[1] != self.data.shape[1]:
raise ValueError(f"Streamed array data expected to have {self.data.shape[1]} columns, "
f"got {x.shape[1]}.")
elif isinstance(x, pd.DataFrame) and list(x.columns) != list(self.data.columns):
raise IndexError(f"Input expected to have columns {list(self.data.columns)}, got {list(x.columns)}")
elif isinstance(x, dict):
if any(c not in x for c in self.data):
raise IndexError(f"Input expected to have columns {sorted(self.data.keys())}, got {sorted(x.keys())}")
elif len({len(v) for v in x.values()}) > 1:
raise ValueError("Input columns expected to have the "
"same number of rows.")
def clear(self):
"Clears the data in the stream"
if isinstance(self.data, np.ndarray):
data = self.data[:, :0]
elif isinstance(self.data, pd.DataFrame):
data = self.data.iloc[:0]
elif isinstance(self.data, dict):
data = {k: v[:0] for k, v in self.data.items()}
with util.disable_constant(self):
self.data = data
self.send(data)
def _concat(self, data):
"""
Concatenate and slice the accepted data types to the defined
length.
"""
if isinstance(data, np.ndarray):
data_length = len(data)
if not self.length:
data = np.concatenate([self.data, data])
elif data_length < self.length:
prev_chunk = self.data[-(self.length-data_length):]
data = np.concatenate([prev_chunk, data])
elif data_length > self.length:
data = data[-self.length:]
elif isinstance(data, pd.DataFrame):
data_length = len(data)
if not self.length:
data = pd.concat([self.data, data])
elif data_length < self.length:
prev_chunk = self.data.iloc[-(self.length-data_length):]
data = pd.concat([prev_chunk, data])
elif data_length > self.length:
data = data.iloc[-self.length:]
elif isinstance(data, dict) and data:
data_length = len(next(iter(data.values())))
new_data = {}
for k, v in data.items():
if not self.length:
new_data[k] = np.concatenate([self.data[k], v])
elif data_length < self.length:
prev_chunk = self.data[k][-(self.length-data_length):]
new_data[k] = np.concatenate([prev_chunk, v])
elif data_length > self.length:
new_data[k] = v[-self.length:]
else:
new_data[k] = v
data = new_data
self._chunk_length = data_length
return data
def update(self, **kwargs):
"""
Overrides update to concatenate streamed data up to defined length.
"""
data = kwargs.get('data')
if data is not None:
self.verify(data)
kwargs['data'] = self._concat(data)
self._count += 1
return super().update(**kwargs)
@property
def hashkey(self):
return {'hash': (self._count, self._memoize_counter)}
class Params(Stream):
"""
A Stream that watches the changes in the parameters of the supplied
Parameterized objects and triggers when they change.
"""
parameterized = param.ClassSelector(class_=(param.Parameterized,
param.parameterized.ParameterizedMetaclass),
constant=True, allow_None=True, allow_refs=False, doc="""
Parameterized instance to watch for parameter changes.""")
parameters = param.List(default=[], constant=True, doc="""
Parameters on the parameterized to watch.""")
def __init__(self, parameterized=None, parameters=None, watch=True, watch_only=False, **params):
if parameters is None:
parameters = [parameterized.param[p] for p in parameterized.param if p != 'name']
else:
parameters = [p if isinstance(p, param.Parameter) else parameterized.param[p]
for p in parameters]
if 'rename' in params:
rename = {}
owners = [p.owner for p in parameters]
for k, v in params['rename'].items():
if isinstance(k, tuple):
rename[k] = v
else:
rename.update({(o, k): v for o in owners})
params['rename'] = rename
if 'linked' not in params:
for p in parameters:
if isinstance(p.owner, (LinkedStream, Params)) and p.owner.linked:
params['linked'] = True
self._watch_only = watch_only
super().__init__(parameterized=parameterized, parameters=parameters, **params)
self._memoize_counter = 0
self._events = []
self._watchers = []
if watch:
# Subscribe to parameters
keyfn = lambda x: id(x.owner)
for _, group in groupby(sorted(parameters, key=keyfn), key=keyfn):
group = list(group)
watcher = group[0].owner.param.watch(self._watcher, [p.name for p in group])
self._watchers.append(watcher)
def unwatch(self):
"""Stop watching parameters."""
for watcher in self._watchers:
watcher.inst.param.unwatch(watcher)
self._watchers.clear()
@classmethod
def from_params(cls, params, **kwargs):
"""Returns Params streams given a dictionary of parameters
Args:
params (dict): Dictionary of parameters
Returns:
List of Params streams
"""
key_fn = lambda x: id(x[1].owner)
streams = []
for _, group in groupby(sorted(params.items(), key=key_fn), key_fn):
group = list(group)
inst = next(p.owner for _, p in group)
if inst is None:
continue
names = [p.name for _, p in group]
rename = {p.name: n for n, p in group}
streams.append(cls(inst, names, rename=rename, **kwargs))
return streams
def _validate_rename(self, mapping):
pnames = [p.name for p in self.parameters]
for k, v in mapping.items():
n = k[1] if isinstance(k, tuple) else k
if n not in pnames:
raise KeyError(f'Cannot rename {n!r} as it is not a stream parameter')
if n != v and v in pnames:
raise KeyError(f'Cannot rename to {v!r} as it clashes with a '
'stream parameter of the same name')
return mapping
def _watcher(self, *events):
try:
self._events = list(events)
self.trigger([self])
finally:
self._events = []
def _on_trigger(self):
if any(e.type == 'triggered' for e in self._events):
self._memoize_counter += 1
@property
def hashkey(self):
hashkey = {}
for p in self.parameters:
pkey = (p.owner, p.name)
pname = self._rename.get(pkey, p.name)
key = ' '.join([str(id(p.owner)), pname])
if self._rename.get(pkey, True) is not None:
hashkey[key] = getattr(p.owner, p.name)
hashkey['_memoize_key'] = self._memoize_counter
return hashkey
def reset(self):
pass
def update(self, **kwargs):
if self._rename:
owner_updates = defaultdict(dict)
for (owner, pname), rname in self._rename.items():
if rname in kwargs:
owner_updates[owner][pname] = kwargs[rname]
for owner, updates in owner_updates.items():
if isinstance(owner, Stream):
owner.update(**updates)
else:
owner.param.update(**updates)
elif isinstance(self.parameterized, Stream):
self.parameterized.update(**kwargs)
return
else:
self.parameterized.param.update(**kwargs)
@property
def contents(self):
if self._watch_only:
return {}
filtered = {(p.owner, p.name): getattr(p.owner, p.name) for p in self.parameters}
return {self._rename.get((o, n), n): v for (o, n), v in filtered.items()
if self._rename.get((o, n), True) is not None}
class ParamMethod(Params):
"""
A Stream that watches the parameter dependencies on a method of
a parameterized class and triggers when one of the parameters
change.
"""
parameterized = param.ClassSelector(class_=(param.Parameterized,
param.parameterized.ParameterizedMetaclass),
constant=True, allow_None=True, doc="""
Parameterized instance to watch for parameter changes.""")
parameters = param.List(default=[], constant=True, doc="""
Parameters on the parameterized to watch.""")
def __init__(self, parameterized, parameters=None, watch=True, **params):
if not util.is_param_method(parameterized):
raise ValueError('ParamMethod stream expects a method on a '
f'parameterized class, found {type(parameterized).__name__}.')
method = parameterized
parameterized = util.get_method_owner(parameterized)
if not parameters:
parameters = [p.pobj for p in parameterized.param.method_dependencies(method.__name__)]
params['watch_only'] = True
super().__init__(parameterized, parameters, watch, **params)
class Derived(Stream):
"""
A Stream that watches the parameters of one or more input streams and produces
a result that is a pure function of the input stream values.
If exclusive=True, then all streams except the most recently updated are cleared.
"""
def __init__(self, input_streams, exclusive=False, **params):
super().__init__(**params)
self.input_streams = []
self._updating = set()
self._register_streams(input_streams)
self.exclusive = exclusive
self.update()
def _register_streams(self, streams):
"""
Register callbacks to watch for changes to input streams
"""
for stream in streams:
self._register_stream(stream)
def _register_stream(self, stream):
i = len(self.input_streams)
def perform_update(stream_index=i, **kwargs):
if stream_index in self._updating:
return
# If exclusive, reset other stream values before triggering event
if self.exclusive:
for j, input_stream in enumerate(self.input_streams):
if stream_index != j:
input_stream.reset()
self._updating.add(j)
try:
input_stream.event()
finally:
self._updating.remove(j)
self.event()
stream.add_subscriber(perform_update)
self.input_streams.append(stream)
def _unregister_input_streams(self):
"""
Unregister callbacks on input streams and clear input streams list
"""
for stream in self.input_streams:
stream.source = None
stream.clear()
self.input_streams.clear()
def append_input_stream(self, stream):
"""
Add a new input stream
"""
self._register_stream(stream)
@property
def constants(self):
"""
Dict of constants for this instance that should be passed to transform_function
Constant values must not change in response to changes in the values of the
input streams. They may, however, change in response to other stream property
updates. For example, these values may change if the Stream's source element
changes
"""
return {}
def transform(self):
stream_values = [s.contents for s in self.input_streams]
return self.transform_function(stream_values, self.constants)
@classmethod
def transform_function(cls, stream_values, constants):
"""
Pure function that transforms input stream param values into the param values
of this Derived stream.
Args:
stream_values: list of dict
Current values of the stream params for each input_stream
constants: dict
Constants as returned by the constants property of an instance of this
stream type.
Returns: dict
dict of new Stream values where the keys match this stream's params
"""
raise NotImplementedError
def __del__(self):
self._unregister_input_streams()
class History(Stream):
"""
A Stream that maintains a history of the values of a single input stream
"""
values = param.List(constant=True, doc="""
List containing the historical values of the input stream""")
def __init__(self, input_stream, **params):
super().__init__(**params)
self.input_stream = input_stream
self._register_input_stream()
# Trigger event on input stream after registering so that current value is
# added to our values list
self.input_stream.event()
def clone(self):
return type(self)(self.input_stream.clone(), **self.contents)
def clear_history(self):
del self.values[:]
def _register_input_stream(self):
"""
Register callback on input_stream to watch for changes
"""
def perform_update(**kwargs):
self.values.append(kwargs)
self.event()
self.input_stream.add_subscriber(perform_update)
def __del__(self):
self.input_stream.source = None
self.input_stream.clear()
del self.values[:]
class SelectionExpr(Derived):
selection_expr = param.Parameter(default=None, constant=True)
bbox = param.Dict(default=None, constant=True)
region_element = param.Parameter(default=None, constant=True)
def __init__(self, source, include_region=True, **params):
from .core.spaces import DynamicMap
from .element import Element
from .plotting.util import initialize_dynamic
self._index_cols = params.pop('index_cols', None)
self.include_region = include_region
if isinstance(source, DynamicMap):
initialize_dynamic(source)