-
Notifications
You must be signed in to change notification settings - Fork 2
/
process_input_vec.cpp
executable file
·694 lines (571 loc) · 22.7 KB
/
process_input_vec.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
#include "solver.h"
#include "pulseshapes.h"
void calculate_omega(int Nt, float_type tmin, float_type tmax, float_type omega0, float_type* omega);
void calculate_wavenumber(char* filename, int N, float_type* omega, f_complex* wavenum);
float_type calculate_groupvelocity(int Nt, float_type* omega, f_complex* wavenum, float_type omega0);
void load_refrindex_sellmeier_omega (FILE* fid, int N, float_type* cfreq, f_complex* refrindex);
void load_refrindex_sellmeier_lambda(FILE* fid, int N, float_type* cfreq, f_complex* refrindex);
void load_refrindex_raw (FILE* fid, int N, float_type* cfreq, f_complex* refrindex);
void load_refrindex_raw_vec (FILE* fid, int N, float_type* cfreq, f_complex* refrindex);
void create_net(float_type Xmin, float_type Xmax, int N, char* nettype, float_type* net);
float_type integrate_gaussian(float_type xmin, float_type xmax, float_type width);
void init_zstep_kerr();
enum {FILETYPE_NOFILE = 0, \
FILETYPE_SELLMEIER_LAMBDA = 1, \
FILETYPE_SELLMEIER_OMEGA = 2, \
FILETYPE_RAW = 3, \
FILETYPE_SELLMEIER_LAMBDA_VEC = 4, \
FILETYPE_SELLMEIER_OMEGA_VEC = 5, \
FILETYPE_RAW_VEC = 6};
void process_input(int argc, char** argv)
{
if (argc < 2 && PROCESS_RANK == 0) throw "\n!!! Error: Too few arguements !!!";
#ifndef _SILENCE
if (ISMASTER) printf("\n Loading starting info from %s", argv[1]);
#endif
FILE* scfid = fopen(argv[1], "r");
if (scfid == NULL) throw "Error opening file with starting condition.";
load_info(scfid);
load_nonlindata(scfid);
#ifndef _SILENCE
if (ISMASTER) printf("\n Initializing variables...");
#endif
initialize_variables();
if (ISMASTER) print_variables();
DUMPMAN = new dump_manager_class(scfid);
create_mystartcondition(scfid);
fclose(scfid);
// create_mystartcondition() outputs Fourier-transform of the field to FIELD array.
// To estimate initial zstep, one needs to perform an inverse transform to BIGBUFFER1
// Two transforms - one is for first vector component (ordinary wave), another - for second (extraordinary wave)
fftw(FFT_BWPLAN_T, N_X*MY_NY, (fftwt_complex*)FIELD, 2,2*N_T, (fftwt_complex*)BIGBUFFER1, 2,2*N_T);
fftw(FFT_BWPLAN_T, N_X*MY_NY, (fftwt_complex*)(FIELD+1), 2,2*N_T, (fftwt_complex*)(BIGBUFFER1+1), 2,2*N_T);
fftwt_Nnormalize(2*N_X*MY_NY, BIGBUFFER1);
ZSTEP = ZNET[1]-ZNET[0];
init_zstep_kerr();
memcpy(BIGBUFFER2, FIELD, 2*sizeof(f_complex)*N_T*N_X*MY_NY);
#ifdef _UNIAXIAL
//FHT_PLAN->run_many(BIGBUFFER2, 2*N_T, 2*N_T,1);
fhatha_runmany_cuda(FHT_PLAN, BIGBUFFER2, 2*N_T, 2*N_T, 1);
#else
fftwnd_mpi(FFT_FWPLAN_XY, 2*N_T, (fftwt_complex*)BIGBUFFER2, (fftwt_complex*)BIGBUFFER1, FFTW_TRANSPOSED_ORDER);
#endif
/* if (ISMASTER)
{
printf("\n Ionization rate:\n ln(I) ln(W)");
for (int i=0; i<IONIZATION_N; i++) printf("\n %f %f", IONIZATION_I_LN[i], IONIZATION_RATE_LN[i]);
fflush(stdout);
} */
}
void load_info(FILE* fid)
{
TMIN = load_namedfloat(fid, "T_MIN");
TMAX = load_namedfloat(fid, "T_MAX");
N_T = load_namedint (fid, "N_T");
TSTEP = (TMAX - TMIN)/N_T;
THETA_OA = load_namedfloat(fid, "THETA_OA");
PHI_OA = load_namedfloat(fid, "PHI_OA");
OMEGA0 = 2*M_PI*LIGHT_VELOCITY/load_namedfloat(fid, "LAMBDA_V");
OMEGA = (float_type*)malloc_ch( sizeof(float_type)*N_T);
WAVENUMBER = (f_complex*) malloc_ch(2*sizeof(f_complex)*N_T);
WAVENUMBER0 = (f_complex*) malloc_ch(2*sizeof(f_complex));
char dispfile[300];
load_namedstringn(fid, "DISPERSION_FILE",dispfile, 300);
calculate_omega(N_T,TMIN,TMAX,OMEGA0,OMEGA);
calculate_wavenumber(dispfile, N_T, OMEGA, WAVENUMBER);
calculate_wavenumber(dispfile, 1, &OMEGA0, WAVENUMBER0);
OMEGA_MAX = min(OMEGA_MAX, (1-ABSORBTION_LAYER_WIDTH)*OMEGA[N_T/2-1]);
GROUP_VELOCITY = calculate_groupvelocity(N_T, OMEGA, WAVENUMBER, OMEGA0);
#ifdef _UNIAXIAL
N_X = load_namedint(fid, "N_R");
XMIN = 0;
XMAX = load_namedfloat(fid, "R_MAX");
N_Y = 1;
YMIN = 0;
YMAX = 0;
#else
N_X = load_namedint(fid, "N_X");
XMIN = load_namedfloat(fid, "X_MIN");
XMAX = load_namedfloat(fid, "X_MAX");
XSTEP = (XMAX - XMIN)/(N_X);
N_Y = load_namedint(fid, "N_Y");
YMIN = load_namedfloat(fid, "Y_MIN");
YMAX = load_namedfloat(fid, "Y_MAX");
YSTEP = (YMAX - YMIN)/(N_Y);
#endif
N_Z = load_namedint(fid, "N_Z");
float_type zmin = load_namedfloat(fid, "Z_MIN");
float_type zmax = load_namedfloat(fid, "Z_MAX");
char znettype[50];
load_namedstringn(fid, "ZNET_TYPE", znettype, 50);
ZNET = (float_type*)malloc(sizeof(float_type)*N_Z);
create_net(zmin, zmax, N_Z, znettype, ZNET);
ZSTEP = ZNET[1]-ZNET[0];
CURRENT_Z = ZNET[0];
}
void create_mystartcondition(FILE* fid)
{
#ifndef _SILENCE
printf("\n[%d]: Creating starting condition...", PROCESS_RANK);
#endif
char pulseshape[200] = "";
load_namedstringn(fid, "PULSE_SHAPE", pulseshape, 200);
if (ISMASTER)
{
float_type tau_fwhm = load_namedfloat(fid, "DURATION_FWHM");
float_type d_fwhm = load_namedfloat(fid, "DIAMETER_FWHM");
float_type E = load_namedfloat(fid, "ENERGY");
float_type f = load_namedfloat(fid, "FOCUSING_DISTANCE");
float_type noiselevel = load_namedfloat(fid, "NOISE_LEVEL");
printf("\npulse shape = %s", pulseshape);
printf("\nBeam diameter FWHM = %e", (double)d_fwhm);
printf("\nPulse energy = %e", (double)E);
printf("\nFocusing distance = %e", (double)f);
printf("\nnoiselevel = %e", (double)noiselevel);
fflush(stdout);
}
if (strncmp(SHAPE_GG, pulseshape,strlen(SHAPE_GG)) == 0) create_gg(fid);
}
void load_nonlindata(FILE* fid)
{
NONLIN_REFRINDEX = load_namedfloat(fid, "NONLIN_REFRINDEX");
float_type d = load_namedfloat(fid, "QUADRATIC_NONLINEARITY");
d *= sqrt(2.0*OMEGA0/real(WAVENUMBER0[0])*VACUUM_PERMEABILITY)/2.0;
QUADRATIC_NONLINEARITY_EEO = d*sin(2*THETA_OA)*cos(2*PHI_OA);
QUADRATIC_NONLINEARITY_EOO = d*sin(THETA_OA) *sin(2*PHI_OA);
RAMAN_FRACTION = load_namedfloat(fid, "RAMAN_FRACTION");
TAU_RAMAN = load_namedfloat(fid, "TAU_RAMAN");
OMEGA_RAMAN = load_namedfloat(fid, "OMEGA_RAMAN");
NEUTRAL_DENSITY = load_namedfloat(fid, "NEUTRAL_DENSITY");
RECOMBINATION_TAU = load_namedfloat(fid, "RECOMBINATION_TAU");
COLLISION_TAU = load_namedfloat(fid, "COLLISION_TAU");
IONIZATION_POTENTIAL = load_namedfloat(fid, "IONIZATION_POTENTIAL");
#ifdef MULTIPHOTON_IONIZATION
BETA_MPI = load_namedfloat(fid, "MPI_CROSSSECTION");
#endif
#ifdef TUNNEL_IONIZATION
TUNNELING_FIELD = load_namedfloat(fid, "TUNNELING_FIELD");
#endif
IONIZATION_POTENTIAL *= ELECTRON_CHARGE;
AMBIENT_CARRIER_DENSITY = load_namedfloat(fid, "AMBIENT_CARRIERS",true,0)*NEUTRAL_DENSITY;
}
float_type load_namedfloat(FILE* fid,const char* name, bool defvalue_present, float_type defvalue)
{
//first, look for the parameter in command line.
for(int i=2; i<_ARGC-1; i++) if (strcmp(_ARGV[i],name)==0 ) return (float_type)atof(_ARGV[i+1]);
//then, in the input file.
fseek(fid, 0, SEEK_SET);
char namebuf[500];
char valbuf[300];
char buf[800];
while (!feof(fid))
{
fgets(buf, 800, fid);
sscanf(buf, "%s %s",namebuf, valbuf);
if (strcmp(namebuf, name) == 0) return (float_type)atof(valbuf);
}
if (!defvalue_present)
{
printf("\nload_namedparameter: Paramneter %s not found.", name);
throw "load_namedparameter: parameter not found";
}
else return defvalue;
}
float_type load_namednumfloat(FILE* fid,const char* name, int num, bool defvalue_present, float_type defvalue)
{
//first, look for the parameter in command line.
char namenum[500]; sprintf(namenum,"%s%d",name,num);
for(int i=2; i<_ARGC-1; i++) if (strcmp(_ARGV[i],namenum)==0 ) return atof(_ARGV[i+1]);
//then, in the input file.
fseek(fid, 0, SEEK_SET);
char namebuf[500];
char valbuf[300];
char buf[800];
while (!feof(fid))
{
fgets(buf, 800, fid);
sscanf(buf, "%s %s",namebuf, valbuf);
if (strcmp(namebuf, namenum) == 0) return atof(valbuf);
}
for(int i=2; i<_ARGC-1; i++) if (strcmp(_ARGV[i],name)==0 ) return atof(_ARGV[i+1]);
//then, in the input file.
fseek(fid, 0, SEEK_SET);
while (!feof(fid))
{
fgets(buf, 800, fid);
sscanf(buf, "%s %s",namebuf, valbuf);
if (strcmp(namebuf, name) == 0) return atof(valbuf);
}
if (!defvalue_present)
{
printf("\nload_namedparameter: Paramneter %s not found.", name);
throw "load_namedparameter: parameter not found";
}
else return defvalue;
}
int load_namedint(FILE* fid,const char* name, bool defvalue_present, int defvalue)
{
//first, look for the parameter in command line.
for(int i=2; i<_ARGC-1; i++) if (strcmp(_ARGV[i],name)==0) return atoi(_ARGV[i+1]);
//then, in the input file.
fseek(fid, 0, SEEK_SET);
char namebuf[500];
char valbuf[300];
char buf[800];
while (!feof(fid))
{
fgets(buf, 800, fid);
sscanf(buf, "%s %s",namebuf, valbuf);
if (strncmp(namebuf, name, 500) == 0) return atoi(valbuf);
}
if (!defvalue_present)
{
printf("\nload_namedint: Paramneter %s not found.", name);
throw "load_namedint: parameter not found";
}
else return defvalue;
}
int load_namednumint(FILE* fid,const char* name_, int num, bool defvalue_present, int defvalue)
{
//first, look for the parameter in command line.
char name[500]; sprintf(name,"%s%d",name_,num);
for(int i=2; i<_ARGC-1; i++) if (strcmp(_ARGV[i],name)==0) return atoi(_ARGV[i+1]);
//then, in the input file.
fseek(fid, 0, SEEK_SET);
char namebuf[500];
char valbuf[300];
char buf[800];
while (!feof(fid))
{
fgets(buf, 800, fid);
sscanf(buf, "%s %s",namebuf, valbuf);
if (strncmp(namebuf, name, 500) == 0) return atoi(valbuf);
}
if (!defvalue_present)
{
printf("\nload_namedint: Paramneter %s not found.", name);
throw "load_namedint: parameter not found";
}
else return defvalue;
}
void load_namedstringn(FILE* fid,const char* name, char* output, int N, bool defvalue_present, const char* defvalue)
{
//first, look for the parameter in command line.
for(int i=2; i<_ARGC-1; i++) if (strcmp(_ARGV[i],name)==0 ) {strncpy(output, _ARGV[i+1], N); return;}
//then, in the input file.
fseek(fid, 0, SEEK_SET);
char namebuf[500];
char buf[800];
while (!feof(fid))
{
fgets(buf, 800, fid);
sscanf(buf, "%s",namebuf);
if (strncmp(namebuf, name, 500) == 0)
{
buf[strlen(buf)-1]=0;
char* b = buf + strlen(namebuf); while ((*b) == ' ') b++;
strncpy(output, b, N);
return;
}
}
if (!defvalue_present)
{
printf("\nload_namedstringn: Paramneter %s not found.", name);
throw "load_namedstringn: parameter not found";
}
else strncpy(output, defvalue, N);
}
void load_namednumstringn(FILE* fid,const char* name_, char* output, int num, int N, bool defvalue_present, const char* defvalue)
{
//first, look for the parameter in command line.
char name[500]; sprintf(name,"%s%d",name_,num);
for(int i=2; i<_ARGC-1; i++) if (strcmp(_ARGV[i],name)==0 ) {strncpy(output, _ARGV[i+1], N); return;}
//then, in the input file.
fseek(fid, 0, SEEK_SET);
char namebuf[500];
char buf[800];
while (!feof(fid))
{
fgets(buf, 800, fid);
sscanf(buf, "%s",namebuf);
if (strncmp(namebuf, name, 500) == 0)
{
buf[strlen(buf)-1]=0;
char* b = buf + strlen(namebuf);
while ((*b)==' ') b++;
strncpy(output, b, N); return;
}
}
if (!defvalue_present)
{
printf("\nload_nameddouble: Paramneter %s not found.", name);
throw "load_nameddouble: parameter not found";
}
else strncpy(output, defvalue, N);
}
void print_variables()
{
printf( "\nTIME_START =%e", (double)TIME_START);
#ifdef _FULL_DUMPS
printf( "\nDUMP_ID =%d", DUMP_ID);
printf( "\nDUMP_PREFIX =%s", DUMP_PREFIX);
#endif
printf("\n\nOMEGA0=%e", (double)OMEGA0);
printf("\n\nTMIN=%e, TMAX=%e, N_T=%d", (double)TMIN, (double)TMAX, N_T);
printf( "\nN_X=%d, XMIN=%e, XMAX=%e",N_X, (double)XMIN, (double)XMAX);
printf( "\nN_Y=%d, YMIN=%e, YMAX=%e",N_Y, (double)YMIN, (double)YMAX);
/*printf( "\nN_Z=%d, ZNET=",N_Z); for (int i=0;i<N_Z;i++) printf(" %e", ZNET[i]);
printf("\n \nOMEGA WAVENUMBER ");
for(int i=0;i<N_T;i++)
{
printf( "\n%10e %10e+i%10e", OMEGA[i], real(WAVENUMBER[i]), imag(WAVENUMBER[i]));
}*/
printf("\nN_Z=%d, ZNET[0]=%e, ZNET[%d]=%e", N_Z, ZNET[0], N_Z-1, ZNET[N_Z-1]);
printf("\nOMEGA0 = %e, WAVENUMBER0o = %e + %ei", (double)OMEGA0, (double)real(WAVENUMBER0[0]), (double)imag(WAVENUMBER0[0]));
printf("\nGROUP_VELOCITY=%e", (double)GROUP_VELOCITY);
printf("\nQUADRATIC_NONLINEARITY_EEO=%e", (double)QUADRATIC_NONLINEARITY_EEO);
printf("\nQUADRATIC_NONLINEARITY_EOO=%e", (double)QUADRATIC_NONLINEARITY_EOO);
printf("\nTHETA_OA=%e", (double)THETA_OA);
printf("\nPHI_OA=%e", (double)PHI_OA);
printf("\n\nNONLIN_REFRINDEX = %e", (double)NONLIN_REFRINDEX);
printf( "\nRAMAN_FRACTION = %e", (double)RAMAN_FRACTION);
printf( "\nTAU_RAMAN = %e", (double)TAU_RAMAN);
printf( "\nOMEGA_RAMAN = %e", (double)OMEGA_RAMAN);
printf("\n\nNEUTRAL_DENSITY = %e", (double)NEUTRAL_DENSITY);
printf( "\nAVALANCHE_CROSSSECTION = %e", (double)AVALANCHE_CROSSSECTION);
printf( "\nRECOMBINATION_TAU = %e", (double)RECOMBINATION_TAU);
printf( "\nCOLLISION_TAU = %e", (double)COLLISION_TAU);
printf( "\nIONIZATION_POTENTIAL = %e", (double)IONIZATION_POTENTIAL);
#ifdef MULTIPHOTON_IONIZATION
printf( "\nBETA_MPI = %e", (double)BETA_MPI);
printf( "\nK_MPI = %d", (double)K_MPI);
#endif
#ifdef TUNNEL_IONIZATION
printf( "\nTUNNELING_FIELD = %e", (double)TUNNELING_FIELD);
#endif
fflush(stdout);
}
void create_net(float_type Xmin, float_type Xmax, int N, char* nettype, float_type* net)
{
if (nettype == NULL || nettype[0]== 'e')
{
//Equi-step net
float_type step = (Xmax - Xmin)/(N-1);
for (int i=0; i<N; i++) net[i] = Xmin + i*step;
}
else if (nettype[0]=='p')
{
//Odd power net
int pw = atoi(nettype+1);
float_type n0 = N/(1-oddroot(Xmax/Xmin,pw));
float_type A = -Xmin/oddpow(n0,pw);
for (int i=0; i<N; i++) net[i] = A*oddpow(i-n0,pw);
}
else throw "Unrecognized net type!";
}
void calculate_omega(int Nt, float_type tmin, float_type tmax, float_type omega0, float_type* omega)
{
float_type wstep = 2*M_PI/(tmax-tmin);
float_type omega_hw = wstep*Nt/2;
/* if (omega0 > omega_hw)
{
for (int i=0; i<Nt/2; i++) omega[i] = omega0 + wstep*i;
for (int i=Nt/2; i<Nt; i++) omega[i] = omega0 - wstep*(Nt-i);
}
else
{
for (int i=0; i<Nt; i++) omega[i] = wstep*(i+1);
}
*/
for (int i=0; i<Nt/2; i++) omega[i] = omega0 + wstep*i;
for (int i=Nt/2; i<Nt; i++) omega[i] = omega0 - wstep*(Nt-i);
}
void calculate_wavenumber(char* filename, int N, float_type* omega, f_complex* wavenum)
{
int filetype = 0;
FILE* fid = NULL;
#ifdef _DEBUG
printf("\ncalculate_wavenumber : loading dispersion information from file %s...", filename);
#endif
if (filename[0] == 0 || !strcmp(filename,"NO"))
{
filetype = FILETYPE_NOFILE;
}
else
{
fid = fopen(filename, "rb");
if (!fid) {perror(""); throw "Unable to open file with refractive index information!";}
fread(&filetype, sizeof(int), 1, fid);
}
f_complex* refr_index = (f_complex*)malloc_ch(2*sizeof(f_complex)*N);
if (filetype < FILETYPE_SELLMEIER_LAMBDA && ISMASTER) printf("\n Warning! Refractive index file is a scalar one, assuming ne=no.");
switch (filetype)
{
case FILETYPE_NOFILE : for (int i=0; i<N; i++) refr_index[i] = 1.0; break;
case FILETYPE_SELLMEIER_LAMBDA : load_refrindex_sellmeier_lambda(fid, N, omega, refr_index); break;
case FILETYPE_SELLMEIER_OMEGA : load_refrindex_sellmeier_omega (fid, N, omega, refr_index); break;
case FILETYPE_RAW : load_refrindex_raw (fid, N, omega, refr_index); break;
case FILETYPE_RAW_VEC : load_refrindex_raw_vec (fid, N, omega, refr_index); break;
default: throw "Unknown type of file with refractive index information!";
}
//propagation direction correction:
for (int i=0; i<N; i++)
{
f_complex no = refr_index[2*i];
f_complex ne = refr_index[2*i+1];
refr_index[2*i+1] = ((float_type)1.0)/sqrt((float_type)sin(THETA_OA)*(float_type)sin(THETA_OA)/ne/ne + (float_type)cos(THETA_OA)*(float_type)cos(THETA_OA)/no/no);
}
f_complex j = f_complex(0,1);
for (int i=0; i<N; i++) wavenum[2*i] = conj(refr_index[2*i]) *f_complex(omega[i]/LIGHT_VELOCITY);
for (int i=0; i<N; i++) wavenum[2*i+1] = conj(refr_index[2*i+1])*f_complex(omega[i]/LIGHT_VELOCITY);
free(refr_index);
if (filetype != FILETYPE_NOFILE) fclose(fid);
}
void load_refrindex_sellmeier_omega (FILE* fid, int N, float_type* cfreq, f_complex* refrindex)
{
int koefN = 0;
double* sB = NULL;
double* somega = NULL;
fread(&koefN, sizeof(int), 1, fid);
sB = (double*)malloc_ch(koefN*sizeof(double));
somega = (double*)malloc_ch(koefN*sizeof(double));
fread(somega, sizeof(double), koefN, fid);
fread(sB, sizeof(double), koefN, fid);
for (int i=0; i<N; i++)
{
f_complex n2 = 1.0;
for (int j=0; j<koefN; j++) n2 += sB[j]*(somega[j]*somega[j])/(somega[j]*somega[j] - cfreq[i]*cfreq[i]);
refrindex[2*i] = sqrt(n2); refrindex[2*i+1] = sqrt(n2);
}
delete sB;
delete somega;
}
void load_refrindex_sellmeier_lambda(FILE* fid, int N, float_type* cfreq, f_complex* refrindex)
{
int koefN = 0;
double* sB = NULL;
double* slambda = NULL;
double* somega = NULL;
fread(&koefN, sizeof(int), 1, fid);
sB = (double*)malloc_ch(koefN*sizeof(double));
somega = (double*)malloc_ch(koefN*sizeof(double));
slambda = (double*)malloc_ch(koefN*sizeof(double));
fread(slambda, sizeof(double), koefN, fid);
fread(sB, sizeof(double), koefN, fid);
for (int j=0; j<koefN; j++) somega[j] = 2*M_PI*LIGHT_VELOCITY/slambda[j];
for (int i=0; i<N; i++)
{
f_complex n2 = 1.0;
for (int j=0; j<koefN; j++) n2 += sB[j]*(somega[j]*somega[j])/(somega[j]*somega[j] - cfreq[i]*cfreq[i]);
refrindex[2*i] = sqrt(n2); refrindex[2*i+1] = sqrt(n2);
}
delete sB;
delete slambda;
delete somega;
}
void load_refrindex_raw(FILE* fid, int N, float_type* cfreq, f_complex* refrindex)
{
#ifdef _DEBUG
printf("\n void load_refrindex_raw(FILE*, int, float_type*, float_type*)");
printf("\n N = %d", N);
#endif
int pointsN = 0;
double* pomega = NULL;
double* pn = NULL;
fread(&pointsN,sizeof(int),1, fid);
pomega = (double*)malloc_ch(sizeof(double)*pointsN);
pn = (double*)malloc_ch(2*sizeof(double)*pointsN);
fread(pomega,sizeof(double), pointsN, fid);
fread(pn ,sizeof(double), 2*pointsN, fid);
OMEGA_MAX = pomega[pointsN-1]; OMEGA_MIN = pomega[0];
for (int j=0; j<pointsN; j++) {OMEGA_MAX = max(OMEGA_MAX,pomega[j]); OMEGA_MIN = min(OMEGA_MIN, pomega[j]);}
for (int i=0; i<N; i++)
{
for (int j=1; j<pointsN; j++)
{
if ((pomega[j-1]-cfreq[i])*(pomega[j]-cfreq[i])<=0)
{
float_type omega = (float_type)(pomega[j]);
float_type omega_ = (float_type)(pomega[j-1]);
f_complex nj = f_complex((float_type)pn[2*j], (float_type)pn[2*j+1]);
f_complex nj_ = f_complex((float_type)pn[2*j-2],(float_type)pn[2*j-1]);
refrindex[2*i] = nj_+(nj-nj_)*f_complex((fabs(cfreq[i])-omega_)/(omega-omega_));
refrindex[2*i+1] = refrindex[2*i];
break;
}
if (j==(pointsN-1))
{
refrindex[2*i]=1;
refrindex[2*i+1]=1;
}
}
}
free(pomega);
free(pn);
}
void load_refrindex_raw_vec(FILE* fid, int N, float_type* cfreq, f_complex* refrindex)
{
#ifdef _DEBUG
printf("\n void load_refrindex_raw(FILE*, int, float_type*, float_type*)");
printf("\n N = %d", N);
#endif
int pointsN = 0;
double* pomega = NULL;
double* pn = NULL;
fread(&pointsN,sizeof(int),1, fid);
pomega = (double*)malloc_ch( sizeof(double)*pointsN);
pn = (double*)malloc_ch(4*sizeof(double)*pointsN);
fread(pomega,sizeof(double), pointsN, fid);
fread(pn ,sizeof(double), 4*pointsN, fid);
OMEGA_MAX = pomega[pointsN-1]; OMEGA_MIN = pomega[0];
for (int j=0; j<pointsN; j++) {OMEGA_MAX = max(OMEGA_MAX,pomega[j]); OMEGA_MIN = min(OMEGA_MIN, pomega[j]);}
for (int i=0; i<N; i++)
{
for (int j=1; j<pointsN; j++)
{
if ((pomega[j-1]-cfreq[i])*(pomega[j]-cfreq[i]) <= 0)
{
float_type omega = (float_type)(pomega[j]);
float_type omega_ = (float_type)(pomega[j-1]);
f_complex njo = f_complex((float_type)pn[4*j] , (float_type)pn[4*j+1]);
f_complex nje = f_complex((float_type)pn[4*j+2], (float_type)pn[4*j+3]);
f_complex njo_ = f_complex((float_type)pn[4*j-4],(float_type)pn[4*j-3]);
f_complex nje_ = f_complex((float_type)pn[4*j-2],(float_type)pn[4*j-1]);
refrindex[2*i] = njo_+(njo-njo_)*f_complex((fabs(cfreq[i])-omega_)/(omega-omega_));
refrindex[2*i+1] = nje_+(nje-nje_)*f_complex((fabs(cfreq[i])-omega_)/(omega-omega_));
break;
}
if (j==(pointsN-1))
{
refrindex[2*i]=1;
refrindex[2*i+1]=1;
}
}
}
free(pomega);
free(pn);
}
float_type calculate_groupvelocity(int Nt, float_type* omega, f_complex* wavenum, float_type omega0)
{
float_type wstep = fabs(omega[1]-omega[0]);
for (int i=0; i<Nt-1; i++) if (fabs(omega0-omega[i])<wstep) return (omega[i]-omega[i+1])/real(wavenum[2*i]-wavenum[2*i+2]);
throw "calculate_groupvelocity: invalid input: omega0 is not inside the omega net";
}
void init_zstep_kerr()
{
float_type maxI = 0;
for (int ny=0; ny<MY_NY; ny++)
for (int nx=0; nx<N_X; nx++)
{
for (int nt=0; nt<2*N_T; nt++)
{
int ofs =nt+2*N_T*(nx+N_X*ny);
maxI = max(maxI, abs2(BIGBUFFER1[ofs]));
}
}
float_type maxI_ = maxI;
MPI_Allreduce(&maxI_, &maxI, 1, MPI_FLOAT_TYPE, MPI_MAX, MPI_COMM_WORLD);
float_type kNL = OMEGA0/LIGHT_VELOCITY*NONLIN_REFRINDEX*maxI;
if (ZSTEP*kNL > MAX_TOLERANCE) ZSTEP = MAX_TOLERANCE/kNL;
if (ISMASTER) {printf("\n Initializing ZSTEP according to Kerr nonlinearity. maxI=%e, kNL=%e, ZSTEP=%e", maxI, kNL, ZSTEP); fflush(stdout);}
}