forked from anuragranj/coma
-
Notifications
You must be signed in to change notification settings - Fork 0
/
facemesh.py
267 lines (219 loc) · 8.28 KB
/
facemesh.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import glob
import os
import numpy as np
from psbody.mesh import Mesh, MeshViewer, MeshViewers
import time
from copy import deepcopy
import random
from sklearn.decomposition import PCA
from tqdm import tqdm
class FaceData(object):
def __init__(self, nVal, train_file, test_file, reference_mesh_file,pca_n_comp=8, fitpca=False):
self.nVal = nVal
self.train_file = train_file
self.test_file = test_file
self.vertices_train = None
self.vertices_val = None
self.vertices_test = None
self.N = None
self.n_vertex = None
self.fitpca = fitpca
self.mean = None
self.std = None
self.load()
self.reference_mesh = Mesh(filename=reference_mesh_file)
# self.mean = np.mean(self.vertices_train, axis=0)
# self.std = np.std(self.vertices_train, axis=0)
self.pca = PCA(n_components=pca_n_comp)
self.pcaMatrix = None
self.normalize()
def load(self):
vertices_train = np.load(self.train_file)
self.mean = np.mean(vertices_train, axis=0)
self.std = np.std(vertices_train, axis=0)
self.vertices_train = vertices_train[:-self.nVal]
self.vertices_val = vertices_train[-self.nVal:]
self.n_vertex = self.vertices_train.shape[1]
self.vertices_test = np.load(self.test_file)
self.vertices_test = self.vertices_test
def normalize(self):
self.vertices_train = self.vertices_train - self.mean
self.vertices_train = self.vertices_train/self.std
self.vertices_val = self.vertices_val - self.mean
self.vertices_val = self.vertices_val/self.std
self.vertices_test = self.vertices_test - self.mean
self.vertices_test = self.vertices_test/self.std
self.N = self.vertices_train.shape[0]
if self.fitpca:
self.pca.fit(np.reshape(self.vertices_train, (self.N, self.n_vertex*3) ))
# eigenVals = np.sqrt(self.pca.explained_variance_)
# self.pcaMatrix = np.dot(np.diag(eigenVals), self.pca.components_)
print('Vertices normalized')
def vec2mesh(self, vec):
vec = vec.reshape((self.n_vertex, 3))*self.std + self.mean
return Mesh(v=vec, f=self.reference_mesh.f)
def show(self, ids):
'''ids: list of ids to play '''
if max(ids)>=self.N:
raise ValueError('id: out of bounds')
mesh = Mesh(v=self.vertices_train[ids[0]], f=self.reference_mesh.f)
time.sleep(0.5) # pause 0.5 seconds
viewer = mesh.show()
for i in range(len(ids)-1):
viewer.dynamic_meshes = [Mesh(v=self.vertices_train[ids[i+1]], f=self.reference_mesh.f)]
time.sleep(0.5) # pause 0.5 seconds
return 0
def sample(self, BATCH_SIZE=64):
datasamples = np.zeros((BATCH_SIZE, self.vertices_train.shape[1]*self.vertices_train.shape[2]))
for i in range(BATCH_SIZE):
_randid = random.randint(0,self.N-1)
#print _randid
datasamples[i] = ((deepcopy(self.vertices_train[_randid]) - self.mean)/self.std).reshape(-1)
return datasamples
def save_meshes(self, filename, meshes):
for i in range(meshes.shape[0]):
vertices = meshes[i].reshape((self.n_vertex, 3))*self.std + self.mean
mesh = Mesh(v=vertices, f=self.reference_mesh.f)
mesh.write_ply(filename+'-'+str(i).zfill(3)+'.ply')
return 0
def show_mesh(self, viewer, mesh_vecs, figsize):
for i in range(figsize[0]):
for j in range(figsize[1]):
mesh_vec = mesh_vecs[i*(figsize[0]-1) + j]
mesh_mesh = self.vec2mesh(mesh_vec)
viewer[i][j].set_dynamic_meshes([mesh_mesh])
time.sleep(0.1) # pause 0.5 seconds
return 0
def get_normalized_meshes(self, mesh_paths):
meshes = []
for mesh_path in mesh_paths:
mesh = Mesh(filename=mesh_path)
mesh_v = (mesh.v - self.mean)/self.std
meshes.append(mesh_v)
return np.array(meshes)
def meshPlay(folder,every=100,wait=0.05):
files = glob.glob(folder+'/*')
files.sort()
files = files[-1000:]
view = MeshViewer()
for i in range(0,len(files),every):
mesh = Mesh(filename=files[i])
view.dynamic_meshes = [mesh]
time.sleep(wait)
class MakeSlicedTimeDataset(object):
"""docstring for FaceMesh"""
def __init__(self, folders, dataset_name):
self.facial_motion_dirs = folders
self.dataset_name = dataset_name
self.train_datapaths = self.gather_paths("train")
self.test_datapaths = self.gather_paths("test")
self.train_vertices = self.gather_data(self.train_datapaths)
self.test_vertices = self.gather_data(self.test_datapaths)
self.save_vertices()
def gather_paths(self, opt):
datapaths = []
for i in range(len(self.facial_motion_dirs)):
print(self.facial_motion_dirs[i])
datapaths += glob.glob(self.facial_motion_dirs[i]+'/*/*/*.ply')
trainpaths = []
testpaths = []
for i in range(len(datapaths)):
if (i%100) < 10:
testpaths += [datapaths[i]]
#print(datapaths[i])
else:
trainpaths += [datapaths[i]]
if opt=="train":
print opt+" data of size: ", len(trainpaths)
#print(trainpaths[:10])
return trainpaths
if opt=="test":
print opt+" data of size: ", len(testpaths)
return testpaths
def gather_data(self, datapaths):
vertices = []
for p in tqdm(datapaths):
mesh_file = p
#print "Loading ", mesh_file
face_mesh = Mesh(filename=mesh_file)
#print "Loaded ", mesh_file
vertices.append(face_mesh.v)
return np.array(vertices)
def save_vertices(self):
if not os.path.exists(self.dataset_name):
os.makedirs(self.dataset_name)
np.save(self.dataset_name+'/train', self.train_vertices)
np.save(self.dataset_name+'/test', self.test_vertices)
print "Saving ... ", self.dataset_name+'/train'
print "Saving ... ", self.dataset_name+'/test'
return 0
class MakeIdentityExpressionDataset(object):
"""docstring for FaceMesh"""
def __init__(self, folders, test_exp, dataset_name,crossval="expression", use_templates=0):
self.facial_motion_dirs = folders
self.dataset_name = dataset_name
self.test_exp = test_exp
self.crossval = crossval
self.train_datapaths = self.gather_paths("train")
self.test_datapaths = self.gather_paths("test")
self.train_vertices = self.gather_data(self.train_datapaths)
self.test_vertices = self.gather_data(self.test_datapaths)
self.save_vertices()
def gather_paths(self, opt):
datapaths = []
for i in range(len(self.facial_motion_dirs)):
print(self.facial_motion_dirs[i])
datapaths += glob.glob(self.facial_motion_dirs[i]+'/*/*/*.ply')
trainpaths = []
testpaths = []
if self.crossval=="expression":
path_flagger = -2
if self.crossval == "identity":
path_flagger = -3
for i in range(len(datapaths)):
p = datapaths[i]
if p.split('/')[path_flagger] == self.test_exp:
testpaths += [datapaths[i]]
#print(datapaths[i])
else:
trainpaths += [datapaths[i]]
if opt=="train":
print opt+" data of size: ", len(trainpaths)
#print(trainpaths[:10])
return trainpaths
if opt=="test":
print opt+" data of size: ", len(testpaths)
return testpaths
def gather_data(self, datapaths):
vertices = []
labels = []
for p in tqdm(datapaths):
mesh_file = p
#print "Loading ", mesh_file
face_mesh = Mesh(filename=mesh_file)
face_mesh_v = face_mesh.v
vertices.append(face_mesh_v)
return np.array(vertices)
def save_vertices(self):
if not os.path.exists(self.dataset_name):
os.makedirs(self.dataset_name)
np.save(self.dataset_name+'/train', self.train_vertices)
np.save(self.dataset_name+'/test', self.test_vertices)
print "Saving ... ", self.dataset_name+'/train'
print "Saving ... ", self.dataset_name+'/test'
return 0
def generateSlicedTimeDataSet(data_path, save_path):
MakeSlicedTimeDataset(folders=[data_path], dataset_name=os.path.join(save_path, 'sliced'))
return 0
def generateExpressionDataSet(data_path, save_path):
test_exps = ['bareteeth','cheeks_in','eyebrow','high_smile','lips_back','lips_up','mouth_down',
'mouth_extreme','mouth_middle','mouth_open','mouth_side','mouth_up']
for exp in test_exps:
fm = MakeIdentityExpressionDataset(folders=[data_path], test_exp=exp, dataset_name=os.path.join(save_path, exp), use_templates=0)
def generateIdentityDataset(data_path, save_path):
test_ids = ['FaceTalk_170725_00137_TA', 'FaceTalk_170731_00024_TA', 'FaceTalk_170811_03274_TA',
'FaceTalk_170904_00128_TA', 'FaceTalk_170908_03277_TA', 'FaceTalk_170913_03279_TA',
'FaceTalk_170728_03272_TA', 'FaceTalk_170809_00138_TA', 'FaceTalk_170811_03275_TA',
'FaceTalk_170904_03276_TA', 'FaceTalk_170912_03278_TA', 'FaceTalk_170915_00223_TA']
for ids in test_ids:
fm = MakeIdentityExpressionDataset(folders=[data_path], test_exp=ids, dataset_name=os.path.join(save_path,ids), crossval="identity", use_templates=0)