-
Notifications
You must be signed in to change notification settings - Fork 385
/
train.py
executable file
·557 lines (485 loc) · 22.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
import os
import json
import cv2
import numpy as np
from einops import rearrange
from einops import repeat
from pathlib import Path
from easydict import EasyDict as edict
import torch
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from datasets import dataset_dict
from losses import loss_dict
from losses import compute_gradient_loss
from models.implicit_model import TranslationField
from models.implicit_model import ImplicitVideo
from models.implicit_model import ImplicitVideo_Hash
from models.implicit_model import Embedding
from models.implicit_model import AnnealedEmbedding
from models.implicit_model import AnnealedHash
from models.implicit_model import Deform_Hash3d_Warp
from utils import get_optimizer
from utils import get_scheduler
from utils import get_learning_rate
from utils import load_ckpt
from utils import VideoVisualizer
from opt import get_opts
from metrics import psnr
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning import LightningModule, Trainer
from pytorch_lightning.loggers import TensorBoardLogger
class ImplicitVideoSystem(LightningModule):
def __init__(self, hparams):
super(ImplicitVideoSystem, self).__init__()
self.save_hyperparameters(hparams)
self.color_loss = loss_dict['mse'](coef=1)
if hparams.save_video:
self.video_visualizer = VideoVisualizer(fps=hparams.fps)
self.raw_video_visualizer = VideoVisualizer(fps=hparams.fps)
self.dual_video_visualizer = VideoVisualizer(fps=hparams.fps)
self.models_to_train=[]
self.embedding_xyz = Embedding(2, 8)
self.embeddings = {'xyz': self.embedding_xyz}
self.models = {}
# Construct normalized meshgrid.
h = self.hparams.img_wh[1]
w = self.hparams.img_wh[0]
self.h = h
self.w = w
if self.hparams.mask_dir:
self.num_models = len(self.hparams.mask_dir)
else:
self.num_models = 1
# Decide the number of deformable mlp.
if hparams.encode_w:
# Multiple deformation MLP.
# Progressive Training for the Deformation (Annealed PE).
# No trainable parameters.
self.embeddings['xyz_w'] = []
assert (isinstance(self.hparams.N_xyz_w, list))
in_channels_xyz = []
for i in range(self.num_models):
N_xyz_w = self.hparams.N_xyz_w[i]
in_channels_xyz += [2 + 2 * N_xyz_w * 2]
if hparams.annealed:
if hparams.deform_hash:
self.embedding_hash = AnnealedHash(
in_channels=2,
annealed_step=hparams.annealed_step,
annealed_begin_step=hparams.annealed_begin_step)
self.embeddings['aneal_hash'] = self.embedding_hash
else:
self.embedding_xyz_w = AnnealedEmbedding(
in_channels=2,
N_freqs=N_xyz_w,
annealed_step=hparams.annealed_step,
annealed_begin_step=hparams.annealed_begin_step)
self.embeddings['xyz_w'] += [self.embedding_xyz_w]
else:
self.embedding_xyz_w = Embedding(2, N_xyz_w)
self.embeddings['xyz_w'] += [self.embedding_xyz_w]
for i in range(self.num_models):
embedding_w = torch.nn.Embedding(hparams.N_vocab_w, hparams.N_w)
torch.nn.init.uniform_(embedding_w.weight, -0.05, 0.05)
load_ckpt(embedding_w, hparams.weight_path, model_name=f'w_{i}')
self.embeddings[f'w_{i}'] = embedding_w
self.models_to_train += [self.embeddings[f'w_{i}']]
# Add warping field mlp.
if hparams.deform_hash:
with open('configs/hash.json') as f:
config = json.load(f)
warping_field = Deform_Hash3d_Warp(config=config)
else:
warping_field = TranslationField(
D=self.hparams.deform_D,
W=self.hparams.deform_W,
in_channels_xyz=in_channels_xyz[i])
load_ckpt(warping_field,
hparams.weight_path,
model_name=f'warping_field_{i}')
self.models[f'warping_field_{i}'] = warping_field
# Set up the canonical model.
if hparams.canonical_dir is None:
for i in range(self.num_models):
if hparams.vid_hash:
with open('configs/hash.json') as f:
config = json.load(f)
implicit_video = ImplicitVideo_Hash(config=config)
else:
implicit_video = ImplicitVideo(
D=hparams.vid_D,
W=hparams.vid_W,
sigmoid_offset=hparams.sigmoid_offset)
load_ckpt(implicit_video, hparams.weight_path,
f'implicit_video_{i}')
self.models[f'implicit_video_{i}'] = implicit_video
for key in self.embeddings:
setattr(self, key, self.embeddings[key])
for key in self.models:
setattr(self, key, self.models[key])
self.models_to_train += [self.models]
def deform_pts(self, ts_w, grid, encode_w, step=0, i=0):
if hparams.deform_hash:
ts_w_norm = ts_w / self.seq_len
ts_w_norm = ts_w_norm.repeat(grid.shape[0], 1)
input_xyt = torch.cat([grid, ts_w_norm], dim=-1)
if 'aneal_hash' in self.embeddings.keys():
deform = self.models[f'warping_field_{i}'](
input_xyt,
step=step,
aneal_func=self.embeddings['aneal_hash'])
else:
deform = self.models[f'warping_field_{i}'](input_xyt)
if encode_w:
deformed_grid = deform + grid
else:
deformed_grid = grid
else:
if encode_w:
e_w = self.embeddings[f'w_{i}'](repeat(ts_w, 'b n -> (b l) n ',
l=grid.shape[0])[:, 0])
# Whether to use annealed positional encoding.
if self.hparams.annealed:
pe_w = self.embeddings['xyz_w'][i](grid, step)
else:
pe_w = self.embeddings['xyz_w'][i](grid)
# Warping field type.
deform = self.models[f'warping_field_{i}'](torch.cat(
[e_w, pe_w], 1))
deformed_grid = deform + grid
else:
deformed_grid = grid
return deformed_grid
def forward(self,
ts_w,
grid,
encode_w,
step=0,
flows=None):
# grid -> positional encoding
# ts_w -> embedding
grid = rearrange(grid, 'b n c -> (b n) c')
results_list = []
flow_loss_list = []
deform_list = []
for i in range(self.num_models):
deformed_grid = self.deform_pts(ts_w, grid, encode_w, step, i) # [batch * num_pixels, 2]
deform_list.append(deformed_grid)
# Compute optical flow loss.
flow_loss = 0
if self.hparams.flow_loss > 0 and not self.hparams.test:
if flows.max() > -1e2 and step > self.hparams.flow_step:
grid_new = grid + flows.squeeze(0)
deformed_grid_new = self.deform_pts(
ts_w + 1, grid_new, encode_w, step, i)
flow_loss = (deformed_grid_new, deformed_grid)
flow_loss_list.append(flow_loss)
if self.hparams.vid_hash:
pe_deformed_grid = (deformed_grid + 0.3) / 1.6
else:
pe_deformed_grid = self.embeddings['xyz'](deformed_grid)
if not self.training and self.hparams.canonical_dir is not None:
w, h = self.img_wh
canonical_img = self.canonical_img.squeeze(0)
h_c, w_c = canonical_img.shape[1:3]
grid_new = deformed_grid.clone()
grid_new[..., 1] = (2 * deformed_grid[..., 0] - 1) * h / h_c
grid_new[..., 0] = (2 * deformed_grid[..., 1] - 1) * w / w_c
if len(canonical_img.shape) == 3:
canonical_img = canonical_img.unsqueeze(0)
results = torch.nn.functional.grid_sample(
canonical_img[i:i + 1].permute(0, 3, 1, 2),
grid_new.unsqueeze(1).unsqueeze(0),
mode='bilinear',
padding_mode='border')
results = results.squeeze().permute(1,0)
else:
results = self.models[f'implicit_video_{i}'](pe_deformed_grid)
results_list.append(results)
ret = edict(rgbs=results_list,
flow_loss=flow_loss_list,
deform=deform_list)
return ret
def setup(self, stage):
if not self.hparams.test:
dataset = dataset_dict[self.hparams.dataset_name]
kwargs = {
'root_dir': self.hparams.root_dir,
'img_wh': tuple(self.hparams.img_wh),
'mask_dir': self.hparams.mask_dir,
'flow_dir': self.hparams.flow_dir,
'canonical_wh': self.hparams.canonical_wh,
'ref_idx': self.hparams.ref_idx,
'canonical_dir': self.hparams.canonical_dir
}
self.train_dataset = dataset(split='train', **kwargs)
self.val_dataset = dataset(split='val', **kwargs)
def configure_optimizers(self):
self.optimizer = get_optimizer(self.hparams, self.models_to_train)
scheduler = get_scheduler(self.hparams, self.optimizer)
lr_dict = {"scheduler": scheduler, "interval": "step", "frequency": 1}
return [self.optimizer], [lr_dict]
def train_dataloader(self):
sampler = DistributedSampler(self.train_dataset, shuffle=True)
return DataLoader(self.train_dataset,
num_workers=4,
batch_size=self.hparams.batch_size,
sampler=sampler,
pin_memory=True)
def val_dataloader(self):
return DataLoader(
self.val_dataset,
shuffle=False,
num_workers=4,
batch_size=1, # validate one image (H*W rays) at a time.
pin_memory=True)
def test_dataloader(self):
dataset = dataset_dict[self.hparams.dataset_name]
kwargs = {
'root_dir': self.hparams.root_dir,
'img_wh': tuple(self.hparams.img_wh),
'mask_dir': self.hparams.mask_dir,
'canonical_wh': self.hparams.canonical_wh,
'canonical_dir': self.hparams.canonical_dir,
'test': self.hparams.test
}
self.train_dataset = dataset(split='train', **kwargs)
return DataLoader(
self.train_dataset,
shuffle=False,
num_workers=4,
batch_size=1, # validate one image (H*W rays) at a time.
pin_memory=True)
def training_step(self, batch, batch_idx):
# Fetch training data.
rgbs = batch['rgbs']
ts_w = batch['ts_w']
grid = batch['grid']
mk = batch['masks']
flows = batch['flows']
grid_c = batch['grid_c']
ref_batch = batch['reference']
self.seq_len = batch['seq_len']
loss = 0
rgbs_flattend = rearrange(rgbs, 'b h w c -> (b h w) c')
# Forward the model.
ret = self.forward(ts_w,
grid,
self.hparams.encode_w,
self.global_step,
flows=flows)
# Mannually set a reference frame.
if self.hparams.ref_step < 0: self.hparams.step = 1e10
if (self.hparams.ref_idx is not None
and self.global_step < self.hparams.ref_step):
rgbs_c_flattend = rearrange(ref_batch[0],
'b h w c -> (b h w) c')
ret_c = self(ts_w, grid, False, self.global_step, flows=flows)
# Loss computation.
for i in range(self.num_models):
results = ret.rgbs[i]
mk_t = rearrange(mk[i], 'b h w c -> (b h w) c')
mk_t = mk_t.sum(dim=-1) > 0.05
if (self.hparams.ref_idx is not None
and self.global_step < self.hparams.ref_step):
mk_c_t = rearrange(ref_batch[1][i], 'b h w c -> (b h w) c')
mk_c_t = mk_c_t.sum(dim=-1) > 0.05
# Background regularization.
if self.hparams.bg_loss:
mk1 = torch.logical_not(mk_t)
if self.hparams.self_bg:
grid_flattened = rgbs_flattend
else:
grid_flattened = rearrange(grid, 'b n c -> (b n) c')
grid_flattened = torch.cat(
[grid_flattened, grid_flattened[:, :1]], -1)
if self.hparams.bg_loss and self.hparams.mask_dir:
loss = loss + self.hparams.bg_loss * self.color_loss(
results[mk1], grid_flattened[mk1])
# MSE color loss.
loss = loss + self.color_loss(results[mk_t],
rgbs_flattend[mk_t])
# Image gradient loss.
img_pred = rearrange(results,
'(b h w) c -> b h w c',
b=1,
h=self.h,
w=self.w)
rgbs_gt = rearrange(rgbs_flattend,
'(b h w) c -> b h w c',
b=1,
h=self.h,
w=self.w)
mk_t_re = rearrange(mk_t,
'(b h w c) -> b h w c',
b=1,
h=self.h,
w=self.w)
grad_loss = compute_gradient_loss(rgbs_gt.permute(0, 3, 1, 2),
img_pred.permute(0, 3, 1, 2),
mask=mk_t_re.permute(0, 3, 1, 2))
loss = loss + grad_loss * self.hparams.grad_loss
# Optical flow loss.
if ret.flow_loss[0] != 0:
mk_flow_t = torch.logical_and(mk_t, flows[0].sum(dim=-1)< 3)
loss = loss + torch.nn.functional.l1_loss(
ret.flow_loss[i][0][mk_flow_t], ret.flow_loss[i][1]
[mk_flow_t]) * self.hparams.flow_loss
# Reference loss.
if (self.hparams.ref_idx is not None
and self.global_step < self.hparams.ref_step):
results_c = ret_c.rgbs[i]
loss += self.color_loss(results_c[mk_c_t],
rgbs_c_flattend[mk_c_t])
# PSNR metric.
with torch.no_grad():
if i == 0:
psnr_ = psnr(results[mk_t], rgbs_flattend[mk_t])
self.log('lr', get_learning_rate(self.optimizer), prog_bar=True)
self.log('train/loss', loss, prog_bar=True)
self.log('train/psnr', psnr_, prog_bar=True)
return loss
def validation_step(self, batch, batch_idx):
rgbs = batch['rgbs']
ts_w = batch['ts_w']
grid = batch['grid']
mk = batch['masks']
grid_c = grid # batch['grid_c']
self.seq_len = batch['seq_len']
ret = self(ts_w, grid, self.hparams.encode_w, self.global_step)
ret_c = self(ts_w, grid_c, False, self.global_step)
log = {}
W, H = self.hparams.img_wh
rgbs_flattend = rearrange(rgbs, 'b h w c -> (b h w) c')
img_gt = rgbs_flattend.view(H, W, 3).permute(2, 0, 1).cpu() # (3, H, W)
stack_list = [img_gt]
for i in range(self.num_models):
results = ret.rgbs[i]
results_c = ret_c.rgbs[i]
mk_t = rearrange(mk[i], 'b h w c -> (b h w) c')
if batch_idx == 0:
results[mk_t.sum(dim=-1) <= 0.05] = 0
img = results.view(H, W, 3).permute(2, 0, 1).cpu() # (3, H, W)
img_c = results_c.view(H, W, 3).permute(2, 0, 1).cpu() # (3, H, W)
stack_list.append(img)
stack_list.append(img_c)
stack = torch.stack(stack_list) # (3, 3, H, W)
self.logger.experiment.add_images('val/GT_Reconstructed', stack,
self.global_step)
return log
def test_step(self, batch, batch_idx):
ts_w = batch['ts_w']
grid = batch['grid']
mk = batch['masks']
grid_c = batch['grid_c']
W, H = self.hparams.img_wh
self.seq_len = batch['seq_len']
if self.hparams.canonical_dir is not None:
self.canonical_img = batch['canonical_img']
self.img_wh = batch['img_wh']
save_dir = os.path.join('results',
self.hparams.root_dir.split('/')[0],
self.hparams.root_dir.split('/')[1],
self.hparams.exp_name)
sample_name = self.hparams.root_dir.split('/')[1]
if self.hparams.canonical_dir is not None:
test_dir = f'{save_dir}_transformed'
video_name = f'{sample_name}_{self.hparams.exp_name}_transformed'
else:
test_dir = f'{save_dir}'
video_name = f'{sample_name}_{self.hparams.exp_name}'
Path(test_dir).mkdir(parents=True, exist_ok=True)
if batch_idx > 0 and self.hparams.save_video:
self.video_visualizer.set_path(os.path.join(
test_dir, f'{video_name}.mp4'))
self.raw_video_visualizer.set_path(os.path.join(
test_dir, f'{video_name}_raw.mp4'))
self.dual_video_visualizer.set_path(os.path.join(
test_dir, f'{video_name}_dual.mp4'))
if batch_idx == 0 and self.hparams.canonical_dir is None:
# Save the canonical image.
ret = self(ts_w, grid_c, False, self.global_step)
ret_n = self(ts_w, grid, self.hparams.encode_w, self.global_step)
img = np.zeros((H * W, 3), dtype=np.float32)
for i in range(self.num_models):
if batch_idx == 0 and self.hparams.canonical_dir is None:
results_c = ret.rgbs[i]
if self.hparams.canonical_wh:
img_c = results_c.view(self.hparams.canonical_wh[1],
self.hparams.canonical_wh[0],
3).float().cpu().numpy()
else:
img_c = results_c.view(H, W, 3).float().cpu().numpy()
img_c = cv2.cvtColor(img_c, cv2.COLOR_BGR2RGB)
cv2.imwrite(f'{test_dir}/canonical_{i}.png', img_c * 255)
mk_n = rearrange(mk[i], 'b h w c -> (b h w) c')
mk_n = mk_n.sum(dim=-1) > 0.05
mk_n = mk_n.cpu().numpy()
results = ret_n.rgbs[i]
results = results.cpu().numpy() # (3, H, W)
img[mk_n] = results[mk_n]
img = rearrange(img, '(h w) c -> h w c', h=H, w=W)
img = img * 255
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
cv2.imwrite(f'{test_dir}/{batch_idx:05d}.png', img)
if batch_idx > 0 and self.hparams.save_video:
img = img[..., ::-1]
self.video_visualizer.add(img)
rgbs = batch['rgbs'].view(H, W, 3).cpu().numpy() * 255
rgbs = rgbs.astype(np.uint8)
self.raw_video_visualizer.add(rgbs)
dual_img = np.concatenate((rgbs, img), axis=1)
self.dual_video_visualizer.add(dual_img)
if self.hparams.save_deform:
save_deform_dir = f'{test_dir}_deform'
Path(save_deform_dir).mkdir(parents=True, exist_ok=True)
deformation_field = ret_n.deform[0]
deformation_field = rearrange(deformation_field,
'(h w) c -> h w c', h=H, w=W)
grid_ = rearrange(grid[0], '(h w) c -> h w c', h=H, w=W)
deformation_delta = deformation_field - grid_
np.save(f'{save_deform_dir}/{batch_idx:05d}.npy',
deformation_delta.cpu().numpy())
def on_test_epoch_end(self):
if self.hparams.save_video:
self.video_visualizer.save()
self.raw_video_visualizer.save()
self.dual_video_visualizer.save()
def get_progress_bar_dict(self):
items = super().get_progress_bar_dict()
items.pop("v_num", None)
return items
def main(hparams):
system = ImplicitVideoSystem(hparams)
if not hparams.test:
os.makedirs(f'{hparams.model_save_path}/{hparams.exp_name}',
exist_ok=True)
checkpoint_callback = ModelCheckpoint(
dirpath=f'{hparams.model_save_path}/{hparams.exp_name}',
filename='{step:d}',
mode='max',
save_top_k=-1,
every_n_train_steps=hparams.save_model_iters,
save_last=True)
logger = TensorBoardLogger(save_dir=hparams.log_save_path,
name=hparams.exp_name)
trainer = Trainer(max_steps=hparams.num_steps,
precision=16 if hparams.vid_hash == True else 32,
callbacks=[checkpoint_callback],
logger=logger,
accelerator='gpu',
devices=hparams.gpus,
num_sanity_val_steps=1,
benchmark=True,
profiler="simple" if len(hparams.gpus) == 1 else None,
val_check_interval=hparams.valid_iters,
limit_val_batches=hparams.valid_batches,
strategy="ddp_find_unused_parameters_true")
if hparams.test:
trainer.test(system, dataloaders=system.test_dataloader())
else:
trainer.fit(system, ckpt_path=hparams.ckpt_path)
if __name__ == '__main__':
hparams = get_opts()
main(hparams)