Skip to content

Latest commit

 

History

History
96 lines (65 loc) · 2.26 KB

README.md

File metadata and controls

96 lines (65 loc) · 2.26 KB

Gym Games

This is a collection of Gymnasium compatible games for reinforcement learning.

Note

For Gym compatible version, please check v1.0.4.

For PyGame Learning Environment, the default observation is a non-visual state representation of the game.

For MinAtar, the default observation is a visual input of the game.

Environments

  • PyGame learning environment:

    • Catcher-PLE-v0
    • FlappyBird-PLE-v0
    • Pixelcopter-PLE-v0
    • PuckWorld-PLE-v0
    • Pong-PLE-v0
  • MinAtar:

    • Asterix-MinAtar-v1
    • Breakout-MinAtar-v1
    • Freeway-MinAtar-v1
    • Seaquest-MinAtar-v1
    • SpaceInvaders-MinAtar-v1
  • Exploration games:

    • NChain-v1
    • LockBernoulli-v0
    • LockGaussian-v0
    • SparseMountainCar-v0
    • DiabolicalCombLock-v0

Installation

Gymnasium

Please read the instruction here.

Pygame

  • On OSX:

    brew install sdl sdl_ttf sdl_image sdl_mixer portmidi
    pip install pygame==2.5.2
    
  • On Ubuntu:

    sudo apt-get -y install python-pygame
    pip install pygame==2.5.2
    
  • Others: Please read the instruction here.

PyGame Learning Environment

git clone https://github.com/ntasfi/PyGame-Learning-Environment.git
cd PyGame-Learning-Environment/
pip install -e .

MinAtar

pip install minatar==1.0.15

Gym-games

pip install git+https://github.com/qlan3/gym-games.git

Example

Run python test.py.

Cite

Please use this bibtex to cite this repo:

@misc{gym-games,
  author = {Lan, Qingfeng},
  title = {Gym Compatible Games for Reinforcement Learning},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub Repository},
  howpublished = {\url{https://github.com/qlan3/gym-games}}
}

References