-
Notifications
You must be signed in to change notification settings - Fork 17
/
train_adversarial_caption_gen_v2.py
663 lines (567 loc) · 37.7 KB
/
train_adversarial_caption_gen_v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
import argparse
import json
import time
import datetime
import numpy as np
import code
import socket
import os
import theano
from theano import config
from theano.ifelse import ifelse
import theano.tensor as tensor
import cPickle as pickle
from imagernn.data_provider import getDataProvider, prepare_data, prepare_adv_data, prepare_seq_features
from imagernn.cnn_evaluatorTheano import CnnEvaluator
from imagernn.recurrent_feat_encoder import RecurrentFeatEncoder
from imagernn.solver import Solver
from imagernn.imagernn_utils import decodeEvaluator, decodeGenerator, eval_split_theano, eval_prep_refs
from imagernn.utils import numpy_floatX, zipp, unzip, preProBuildWordVocab
from collections import defaultdict, OrderedDict
import signal
import sys
import matplotlib.pyplot as plt
host = socket.gethostname() # get computer hostname
def eval_gen_samps(gen_func, dp, params, misc, rev_eval, **kwargs):
ngs = params['n_gen_samples']
candToks = defaultdict(list)
eval_metric = kwargs.get('eval_metric','perplex')
refToks = kwargs.get('refToks',None)
n = 0
gts = {}
for batch in dp.iterImageBatch(split='val', max_batch_size = 100):
if not params['encode_gt_sentences']:
xI = np.row_stack([x['feat'] for x in batch])
inp = [xI]
if params['en_aux_inp']:
xAux = np.row_stack([x['aux_inp'] for x in batch])
inp.append(xAux)
else:
batchInp = [{'image':x}for x in batch]
inp = prepare_seq_features( batchInp, use_enc_for= params['use_encoder_for'], maxlen = params['maxlen'],
use_shared_mem = params['use_shared_mem_enc'], enc_gt_sent = params['encode_gt_sentences'],
n_enc_sent = params['n_encgt_sent'], wordtoix = misc['wordtoix'])
import pdb;pdb.set_trace()
g_out = gen_func(*inp)
g_len = g_out[-1]
g_out = g_out[1].swapaxes(0,1)
g_out = g_out.reshape(len(batch), ngs, g_out.shape[1])
for i in xrange(len(batch)):
imgid = batch[i][dp.idstr]
gts[imgid] = refToks[imgid]
for j in xrange(ngs):
candidate = ' '.join([misc['ixtoword'][gid] for gid in g_out[i,j,:g_len[i*ngs+j]] if gid > 0 ])
candToks[imgid].append({'image_id':imgid,'caption':candidate,'id':n})
n += 1
candToks = kwargs['scr_info']['tokenizer'].tokenize(candToks)
met = [[] for i in xrange(len(eval_metric)) if eval_metric[i][:6] != 'lcldiv']
i_lcl_div = []
if rev_eval == 1:
candSrc = gts
gts = candToks
else:
candSrc = candToks
for j in xrange(ngs):
candInp = {imgid:[candSrc[imgid][j]] for imgid in candSrc}
# Now invoke all the scorers and get the scores
for i,evm in enumerate(eval_metric):
if evm[:6] == "lcldiv":
if i not in i_lcl_div:
i_lcl_div.append(i)
else:
score, scores = kwargs['scr_info']['scr_fn'][i].compute_score(gts, candInp)
if type(kwargs['scr_info']['scr_name'][i]) == list:
met[i].append(scores[-1])
else:
met[i].append(scores)
met = np.array(met)
met_maxmean = met.max(axis=1).mean(axis=-1)
met_mean = met.mean(axis=1).mean(axis=-1)
met_minmean = met.min(axis=1).mean(axis=-1)
if len(i_lcl_div) > 0:
for i in i_lcl_div:
div_out,_ = kwargs['scr_info']['scr_fn'][i].compute_score(gts, candToks)
met_mean = np.concatenate([met_mean, [div_out]])
met_maxmean = np.concatenate([met_maxmean, [div_out]])
met_minmean = np.concatenate([met_minmean, [div_out]])
print '---------------------Generator Eval ---------------------------'
for i,evm in enumerate(eval_metric):
print 'evaluated %d sentences and got %s = %f' % (n, evm, met_mean[i])
return met_maxmean, met_mean, met_minmean
def disp_some_gen_samps(gen_func, dp, params, misc, n_samp = 5, fixed = [1, 15, 23, 66, 216]):
if fixed == None:
batch = dp.sampAdversBatch(n_samp, n_sent=params['n_gen_samples'], split= 'val', probs = [1.0, 0.0, 0.0])
cnn_inps = prepare_adv_data(batch,misc['wordtoix'], maxlen = params['maxlen'], prep_for=params['eval_model'])
enc_inp_list = prepare_seq_features( batch, use_enc_for= params['use_encoder_for'], maxlen = params['maxlen'],
use_shared_mem = params['use_shared_mem_enc'], enc_gt_sent = params['encode_gt_sentences'],
n_enc_sent = params['n_encgt_sent'], wordtoix = misc['wordtoix'])
g_out = gen_func(*(cnn_inps[1+ (params['eval_model']=='lstm_eval'):2+ (params['eval_model']=='lstm_eval')+params['en_aux_inp']] + enc_inp_list))
else:
batch = [dp._getImage(dp.split['val'][fidx]) for fidx in fixed]
xI = np.row_stack([x['feat'] for x in batch])
inp = [xI]
if params['en_aux_inp']:
xAux = np.row_stack([x['aux_inp'] for x in batch])
inp.append(xAux)
g_out = gen_func(*inp)
g_len = g_out[-1]
g_out = g_out[1].swapaxes(0,1)
g_out = g_out.reshape(n_samp, params['n_gen_samples'], g_out.shape[1])
print '--------------------------------Visualizing some generated text------------------------'
for i in xrange(n_samp):
#print 'Gen text for img %d with caption: "%s"'%(batch[i]['image']['cocoid'], batch[i]['image']['sentences'][0]['raw'])
for j in xrange(params['n_gen_samples']):
print '%s (GT: %s)'%(' '.join([misc['ixtoword'][gid] for gid in g_out[i,j,:g_len[i*params['n_gen_samples']+j]] if gid in misc['ixtoword'] ]),
batch[i]['sentences'][j]['raw'])
print '---------------------------------------------------------------------------------------'
return 0
def eval_discrm_gen(split, dp, params, gen_fprop, misc, n_eval=None):
n_eval = len(dp.split[split]) if n_eval == None else n_eval
n_iter = (n_eval-1) // params['eval_batch_size'] + 1
correct = 0.
n_total = 0.
g_correct = 0.
mean_p = 0.
mean_n = 0.
mean_g = 0.
for i in xrange(n_iter):
batch = dp.sampAdversBatch(params['eval_batch_size'], n_sent=params['n_gen_samples'], split= 'val', probs = [0.6, 0.4, 0.0])
cnn_inps = prepare_adv_data(batch,misc['wordtoix'],maxlen = params['maxlen'], prep_for=params['eval_model'])
p_out = gen_fprop(*cnn_inps[:-1])
y = cnn_inps[-1] if params['t_eval_only'] else np.concatenate([cnn_inps[-1],np.zeros(cnn_inps[-1].shape)])
correct += ((p_out[0].flatten()>0.) == y).sum()
if params['t_eval_only']!=1:
g_correct += (p_out[0].flatten()[cnn_inps[-1].shape[0]:]>0.).sum()
mean_g += (p_out[0][cnn_inps[-1].shape[0]:]).mean()
mean_p += (p_out[0][:cnn_inps[-1].shape[0]]*cnn_inps[-1]).sum()/(1e-8+cnn_inps[-1].sum())
mean_n += (p_out[0][:cnn_inps[-1].shape[0]]*(1-cnn_inps[-1])).sum()/(1e-8 + (1 - cnn_inps[-1]).sum())
n_total += y.shape[0]
acc = correct/n_total * 100.0
mean_p = mean_p/(n_iter)
mean_n = mean_n/(n_iter)
mean_g = mean_g/(n_iter)
g_acc = g_correct*2.0/n_total * 100.0
print 'evaluated the discriminator. Current disc accuracy is %.2f gen acc is %.2f'%(acc, g_acc)
print 'Mean scores are pos: %.2f neg: %.2f gen: %.2f'%(mean_p, mean_n, mean_g)
return acc, g_acc
def dumpCheckpoint(filename, params, modelGen, modelEval, misc, it, val_ppl2):
filepath = os.path.join(params['checkpoint_output_directory'], filename)
model_npy_gen = unzip(modelGen)
model_npy_eval = unzip(modelEval)
checkpoint = {}
checkpoint['epoch'] = it
checkpoint['modelGen'] = model_npy_gen
checkpoint['modelEval'] = model_npy_eval
checkpoint['params'] = params
checkpoint['perplexity'] = val_ppl2
checkpoint['misc'] = misc
try:
pickle.dump(checkpoint, open(filepath, "wb"))
print 'saved checkpoint in %s' % (filepath, )
except Exception, e: # todo be more clever here
print 'tried to write checkpoint into %s but got error: ' % (filepath, )
print e
def main(params):
batch_size = params['batch_size']
word_count_threshold = params['word_count_threshold']
max_epochs = params['max_epochs']
# fetch the data provider
dp = getDataProvider(params)
# Initialize the optimizer
solver = Solver(params['solver'])
params['aux_inp_size'] = dp.aux_inp_size
params['image_feat_size'] = dp.img_feat_size
print 'Image feature size is %d, and aux input size is %d'%(params['image_feat_size'],params['aux_inp_size'])
misc = {} # stores various misc items that need to be passed around the framework
if params['checkpoint_file_name'] == 'None':
# go over all training sentences and find the vocabulary we want to use, i.e. the words that occur
# at least word_count_threshold number of times
misc['wordtoix'], misc['ixtoword'], bias_init_vector = preProBuildWordVocab(dp.iterSentences('train'),
word_count_threshold)
else:
# Load Vocabulary from the checkpoint
misc = checkpoint_init['misc']
params['vocabulary_size'] = len(misc['wordtoix'])
params['output_size'] = len(misc['ixtoword']) # these should match though
# This initializes the generator model parameters and does matrix initializations
if params['t_eval_only'] == 0:
generator = decodeGenerator(params)
# Build the computational graph
if params['use_encoder_for']&2:
aux_enc_inp = generator.model_th['Wemb'] if params['encode_gt_sentences'] else dp.aux_inputs.T
hid_size = params['featenc_hidden_size']
auxFeatEncoder = RecurrentFeatEncoder(hid_size, params['image_encoding_size'], params,
mdl_prefix='aux_enc_', features=aux_enc_inp)
mdlLen = len(generator.model_th.keys())
generator.model_th.update(auxFeatEncoder.model_th)
assert(len(generator.model_th.keys()) == (mdlLen+len(auxFeatEncoder.model_th.keys())))
(auxenc_use_dropout, auxFeatEnc_inp, xAux, updatesLSTMAuxFeat) = auxFeatEncoder.build_model(generator.model_th, params)
if params['encode_gt_sentences']:
# Reshape it size(batch_size, n_gt, hidden_size)
xAux = xAux.reshape((-1,params['n_encgt_sent'],params['featenc_hidden_size']))
# Convert it to size (batch_size, n_gt*hidden_size
xAux = xAux.flatten(2)
xI = tensor.zeros((batch_size,params['image_encoding_size']))
imgFeatEnc_inp = []
else:
auxFeatEnc_inp = []
imgFeatEnc_inp = []
xAux = None
xI = None
(gen_inp_list, predLogProb, predIdx, predCand, gen_out, updatesLstm, seq_lengths) = generator.build_prediction_model(
generator.model_th, params, xI = xI, xAux = xAux)
gen_inp_list = imgFeatEnc_inp + auxFeatEnc_inp + gen_inp_list
gen_out = gen_out.reshape([gen_out.shape[0], -1, params['n_gen_samples'], params['vocabulary_size']])
#convert updates lstm to a tuple, this is to help merge it with grad updates
updatesLstm = [(k, v) for k, v in updatesLstm.iteritems()]
f_gen_only = theano.function(gen_inp_list, [predLogProb, predIdx, gen_out, seq_lengths], name='f_pred', updates=updatesLstm)
modelGen = generator.model_th
upListGen = generator.update_list
if params['use_mle_train']:
(use_dropout_genTF, inp_list_genTF,
_, cost_genTF, _, updatesLSTM_genTF) = generator.build_model(generator.model_th, params)
f_eval_genTF = theano.function( inp_list_genTF, cost_genTF, name='f_eval')
grads_genTF = tensor.grad(cost_genTF[0], wrt=modelGen.values(), add_names=True)
lr_genTF = tensor.scalar(name='lr',dtype=config.floatX)
f_grad_genTF, f_update_genTF, zg_genTF, rg_genTF, ud_genTF = solver.build_solver_model(lr_genTF, modelGen,
grads_genTF, inp_list_genTF, cost_genTF, params)
else:
modelGen = []
updatesLstm = []
if params['met_to_track'] != []:
trackMetargs = {'eval_metric': params['met_to_track']}
refToks, scr_info = eval_prep_refs('val', dp, params['met_to_track'])
trackMetargs['refToks'] = refToks
trackMetargs['scr_info'] = scr_info
# Initialize the evalator model
if params['share_Wemb']:
evaluator = decodeEvaluator(params, modelGen['Wemb'])
else:
evaluator = decodeEvaluator(params)
modelEval = evaluator.model_th
if params['t_eval_only'] == 0:
# Build the evaluator graph to evaluate reference and generated captions
if params.get('upd_eval_ref',0):
(refeval_inp_list, ref_f_pred_fns, ref_costs, ref_predTh, ref_modelEval) = evaluator.build_advers_eval(modelEval, params)
(eval_inp_list, f_pred_fns, costs, predTh, modelEval) = evaluator.build_advers_eval(modelEval, params,
gen_inp_list, gen_out, updatesLstm, seq_lengths)
else:
# Build the evaluator graph to evaluate only reference captions
(eval_inp_list, f_pred_fns, costs, predTh, modelEval) = evaluator.build_advers_eval(modelEval, params)
# force overwrite here. The bias to the softmax is initialized to reflect word frequencies
if params['t_eval_only'] == 0:# and 0:
if params['checkpoint_file_name'] == 'None':
modelGen['bd'].set_value(bias_init_vector.astype(config.floatX))
if params.get('class_out_factoring',0) == 1:
modelGen['bdCls'].set_value(bias_init_inter_class.astype(config.floatX))
comb_inp_list = eval_inp_list
if params['t_eval_only'] == 0:
for inp in gen_inp_list:
if inp not in comb_inp_list:
comb_inp_list.append(inp)
# Compile an evaluation function.. Doesn't include gradients
# To be used for validation set evaluation or debug purposes
if params['t_eval_only'] == 0:
f_eval= theano.function(comb_inp_list, costs[:1], name='f_eval', updates=updatesLstm)
else:
f_eval= theano.function(comb_inp_list, costs[:1], name='f_eval')
if params['share_Wemb']:
modelEval.pop('Wemb')
if params['fix_Wemb']:
upListGen.remove('Wemb')
#-------------------------------------------------------------------------------------------------------------------------
# Now let's build a gradient computation graph and update mechanism
#-------------------------------------------------------------------------------------------------------------------------
# First compute gradient on the evaluator params w.r.t cost
if params.get('upd_eval_ref',0):
gradsEval_ref = tensor.grad(ref_costs[0], wrt=modelEval.values(),add_names=True)
gradsEval = tensor.grad(costs[0], wrt=modelEval.values(),add_names=True)
# Update functions for the evaluator
lrEval = tensor.scalar(name='lrEval',dtype=config.floatX)
if params.get('upd_eval_ref',0):
f_grad_comp_eval_ref, f_param_update_eval_ref, _, _, _= solver.build_solver_model(lrEval, modelEval, gradsEval_ref,
refeval_inp_list, ref_costs[0], params, w_clip=params['eval_w_clip'])
f_grad_comp_eval, f_param_update_eval, zg_eval, rg_eval, ud_eval= solver.build_solver_model(lrEval, modelEval, gradsEval,
comb_inp_list, costs[:1], params, updatesLstm, w_clip=params['eval_w_clip'])
# Now compute gradient on the generator params w.r.t the cost
if params['t_eval_only'] == 0:
gradsGen = tensor.grad(costs[1], wrt=modelGen.values(), add_names=True)
lrGen = tensor.scalar(name='lrGen',dtype=config.floatX)
# Update functions for the generator
f_grad_comp_gen, f_param_update_gen, zg_gen, rg_gen, ud_gen = solver.build_solver_model(lrGen, modelGen, gradsGen,
comb_inp_list[:(len(comb_inp_list)-1+params['gen_feature_matching'])], costs[1], params, updatesLstm)
#-------------------------------------------------------------------------------------------------------------------------
# If we want to track some metrics during the training, initialize stuff for that now
#-------------------------------------------------------------------------------------------------------------------------
print 'model init done.'
if params['t_eval_only'] == 0:
print 'Gen model has keys: ' + ', '.join(modelGen.keys())
print 'Eval model has keys: ' + ', '.join(modelEval.keys())
# calculate how many iterations we need, One epoch is considered once going through all the sentences and not images
# Hence in case of coco/flickr this will 5* no of images
num_sentences_total = dp.getSplitSize('train', ofwhat = 'images')
num_iters_one_epoch = num_sentences_total / batch_size
max_iters = max_epochs * num_iters_one_epoch
skip_first = 20
iters_eval= 5
iters_gen = 1
cost_eval_iter = []
cost_gen_iter = []
trackSc_array = []
eval_period_in_epochs = params['eval_period']
eval_period_in_iters = max(1, int(num_iters_one_epoch * eval_period_in_epochs))
top_val_ppl2 = -1
smooth_train_ppl2 = 0.5 # initially size of dictionary of confusion
smooth_train_cost = 0.0 # initially size of dictionary of confusion
smooth_train_cost_gen = 1.0 # initially size of dictionary of confusion
val_ppl2 = len(misc['ixtoword'])
last_status_write_time = 0 # for writing worker job status reports
json_worker_status = {}
json_worker_status['params'] = params
json_worker_status['history'] = []
write_checkpoint_ppl_threshold = params['write_checkpoint_ppl_threshold']
iter_out_file = os.path.join('logs','advmodel_checkpoint_%s_%s_%s_log.npz' % (params['dataset'], host, params['fappend']))
len_hist = defaultdict(int)
t_print_sec =30
## Initialize the model parameters from the checkpoint file if we are resuming training
if params['checkpoint_file_name'] != 'None':
if params['t_eval_only'] !=1:
print '\n Now initing gen Model:'
zipp(model_init_gen_from,modelGen)
if 'trackers' in checkpoint_init:
trackSc_array = checkpoint_init['trackers'].get('trackScores',[])
print '\n Now initing Eval Model:'
zipp(model_init_eval_from,modelEval)
#zipp(rg_init,rgGen)
print("\nContinuing training from previous model\n. Already run for %0.2f epochs with validation perplx at %0.3f\n" % (checkpoint_init['epoch'], \
checkpoint_init['perplexity']))
##############################################################
# Define signal handler to catch ctl-c or kills so that we can save the model trained till that point
def signal_handler(signal, frame):
print('You pressed Ctrl+C! Saving Checkpoint Now before exiting!')
filename = 'advmodel_checkpoint_%s_%s_%s_%.2f_INT.p' % (params['dataset'], host, params['fappend'], val_ppl2)
dumpCheckpoint(filename, params, modelGen, modelEval, misc, it, val_ppl2)
sys.exit(0)
#signal.signal(signal.SIGINT, signal_handler)
##############################################################
#In testing disable sampling and use the greedy approach!?
generator.usegumbel.set_value(1)
if params['met_to_track'] != []:
tsc_max, tsc_mean, tsc_min = eval_gen_samps(f_gen_only, dp, params, misc, params['rev_eval'], **trackMetargs)
trackSc_array.append((0,{evm+'_max':tsc_max[i] for i,evm in enumerate(params['met_to_track'])}))
trackSc_array[-1][1].update({evm+'_mean':tsc_mean[i] for i,evm in enumerate(params['met_to_track'])})
trackSc_array[-1][1].update({evm+'_min':tsc_min[i] for i,evm in enumerate(params['met_to_track'])})
disp_some_gen_samps(f_gen_only, dp, params, misc, n_samp = 5)
evaluator.use_noise.set_value(1.)
eval_acc, gen_acc = eval_discrm_gen('val', dp, params, f_pred_fns[0], misc)
# Re-enable sampling
generator.usegumbel.set_value(1)
np.savez(iter_out_file, eval_cost=np.array(cost_eval_iter), gen_cost=np.array(cost_gen_iter), tracksc = np.array(trackSc_array))
smooth_train_cost = 0.0
print '###################### NOW BEGINNING TRAINING #################################'
for it in xrange(max_iters):
t0 = time.time()
# Enable using dropout in training
evaluator.use_noise.set_value(1.)
dt = 0.
it2 = 0
while eval_acc <= 60. or gen_acc >= 45. or it2<iters_eval*skip_first:
# fetch a batch of data
t1 = time.time()
s_probs = [0.6, 0.4, 0.0] if params['eval_loss'] == 'contrastive' else [1.0, 0.0, 0.0]
batch = dp.sampAdversBatch(batch_size, n_sent=params['n_gen_samples'], probs = s_probs)
cnn_inps = prepare_adv_data(batch,misc['wordtoix'],maxlen = params['maxlen'], prep_for=params['eval_model'])
enc_inp_list = prepare_seq_features( batch, use_enc_for= params['use_encoder_for'], maxlen = params['maxlen'],
use_shared_mem = params['use_shared_mem_enc'], enc_gt_sent = params['encode_gt_sentences'],
n_enc_sent = params['n_encgt_sent'], wordtoix = misc['wordtoix'])
eval_cost = f_grad_comp_eval(*(cnn_inps+enc_inp_list))
if np.isnan(eval_cost[0]):
import pdb;pdb.set_trace()
f_param_update_eval(params['learning_rate_eval'])
# Track training statistics
smooth_train_cost = 0.99 * smooth_train_cost + 0.01 * eval_cost[0] if it > 0 else eval_cost[0]
dt2 = time.time() - t1
if it2%500 == 499:
gb = 0. #modelGen['gumb_temp'].get_value() if params['use_gumbel_mse'] == 1 else 0
print 'Iter %d/%d Eval Only Iter %d/%d, done. in %.3fs. Eval Cost is %.6f' % (it, max_iters, it2,
iters_eval*skip_first, dt2, smooth_train_cost)
if it2%100 == 99:
eval_acc, gen_acc = eval_discrm_gen('val', dp, params, f_pred_fns[0], misc, n_eval = 500)
it2 += 1
evaluator.use_noise.set_value(1.)
if it >= 0:
skip_first = 1
if it >=100:
skip_first = 1
if it%1000 == 999:
skip_first = 1
s_probs = [1.0, 0.0, 0.0] if params['eval_loss'] == 'contrastive' else [1.0, 0.0, 0.0]
batch = dp.sampAdversBatch(batch_size, n_sent=params['n_gen_samples'], probs = s_probs)
cnn_inps = prepare_adv_data(batch,misc['wordtoix'],maxlen = params['maxlen'], prep_for=params['eval_model'])
enc_inp_list = prepare_seq_features( batch, use_enc_for= params['use_encoder_for'], maxlen = params['maxlen'],
use_shared_mem = params['use_shared_mem_enc'], enc_gt_sent = params['encode_gt_sentences'],
n_enc_sent = params['n_encgt_sent'], wordtoix = misc['wordtoix'])
gen_cost = f_grad_comp_gen(*(cnn_inps[:(len(cnn_inps)-1+params['gen_feature_matching'])]+enc_inp_list))
f_param_update_gen(params['learning_rate_gen'])
if params['use_mle_train']:
generator.usegumbel.set_value(0)
batch,l = dp.getRandBatchByLen(batch_size)
gen_inp_list, lenS = prepare_data( batch, misc['wordtoix'], params['maxlen'])
cost_genMLE = f_grad_genTF(*gen_inp_list)
f_update_genTF(np.float32(params['learning_rate_gen']/50.0))
generator.usegumbel.set_value(1)
dt = time.time() - t0
# print training statistics
smooth_train_cost_gen = gen_cost if it == 0 else 0.99 * smooth_train_cost_gen + 0.01 * gen_cost
tnow = time.time()
if tnow > last_status_write_time + t_print_sec*1: # every now and then lets write a report
gb = 0. #modelGen['gumb_temp'].get_value() if params['use_gumbel_mse'] == 1 else 0
print 'Iter %d/%d done. in %.3fs. Eval Cost is %.6f, Gen Cost is %.6f, temp: %.4f' % (it, max_iters, dt, \
smooth_train_cost, smooth_train_cost_gen, gb)
last_status_write_time = tnow
cost_eval_iter.append(smooth_train_cost)
cost_gen_iter.append(smooth_train_cost_gen)
if it%500==499:
# Run the generator on the validation set and compute some metrics
generator.usegumbel.set_value(1)
if params['met_to_track'] != []:
#In testing set the temperature to very low, so that it is equivalent to Greed samples
tsc_max, tsc_mean, tsc_min = eval_gen_samps(f_gen_only, dp, params, misc, params['rev_eval'], **trackMetargs)
trackSc_array.append((it,{evm+'_max':tsc_max[i] for i,evm in enumerate(params['met_to_track'])}))
trackSc_array[-1][1].update({evm+'_mean':tsc_mean[i] for i,evm in enumerate(params['met_to_track'])})
trackSc_array[-1][1].update({evm+'_min':tsc_min[i] for i,evm in enumerate(params['met_to_track'])})
disp_some_gen_samps(f_gen_only, dp, params, misc, n_samp = 5)
generator.usegumbel.set_value(1)
# if we beat a previous record or if this is the first time
# AND we also beat the user-defined threshold or it doesnt exist
top_val_ppl2 = gen_acc
if it%500 == 499:
eval_acc, gen_acc = eval_discrm_gen('val', dp, params, f_pred_fns[0], misc, n_eval = 500)
if it%1000==999:
filename = 'advmodel_checkpoint_%s_%s_%s_%d_%.2f_genacc.p' % (params['dataset'], host, params['fappend'],it, gen_acc)
dumpCheckpoint(filename, params, modelGen, modelEval, misc, it, gen_acc)
if it%500==499:
np.savez(iter_out_file, eval_cost=np.array(cost_eval_iter), gen_cost=np.array(cost_gen_iter), tracksc = np.array(trackSc_array))
# AND we also beat the user-defined threshold or it doesnt exist
filename = 'advmodel_checkpoint_%s_%s_%s_%d_%.2f_GenDone.p' % (params['dataset'], host, params['fappend'],it, g_acc)
dumpCheckpoint(filename, params, modelGen, modelEval, misc, it, g_acc)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# global setup settings, and checkpoints
parser.add_argument('-d', '--dataset', dest='dataset', default='coco', help='dataset: flickr8k/flickr30k/coco')
parser.add_argument('--fappend', dest='fappend', type=str, default='baseline', help='append this string to checkpoint filenames')
parser.add_argument('-o', '--checkpoint_output_directory', dest='checkpoint_output_directory', type=str, default='cv/', help='output directory to write checkpoints to')
parser.add_argument('--write_checkpoint_ppl_threshold', dest='write_checkpoint_ppl_threshold', type=float, default=-1, help='ppl threshold above which we dont bother writing a checkpoint to save space')
parser.add_argument('--continue_training', dest='checkpoint_file_name', type=str, default='None', help='checkpoint file from which to resume training')
parser.add_argument('--eval_init', dest='eval_init', type=str, default='None', help='checkpoint file from which to resume training')
# Some parameters about image features used
parser.add_argument('--feature_file', dest='feature_file', type=str, default='vgg_feats.mat', help='Which file should we use for read the CNN features')
parser.add_argument('--data_file', dest='data_file', type=str, default='dataset.json', help='Which dataset file shpuld we use')
parser.add_argument('--mat_new_ver', dest='mat_new_ver', type=int, default=-1, help='If the .mat feature files are saved with new version (compressed) set this flag to 1')
parser.add_argument('--aux_inp_file', dest='aux_inp_file', type=str, default='None', help='Is there any auxillary inputs ? If yes indicate file here')
parser.add_argument('--swap_AuxFeat', dest='swap_aux', type=int, default=1, help='Feed image features through auxillary input!')
parser.add_argument('--advers_gen', dest='advers_gen', type=str, default=1, help='Should we use adverserial generator!')
parser.add_argument('--eval_model', dest='eval_model', type=str, default='lstm_eval', help='which evaluator model to use type: cnn/lstm_eval')
parser.add_argument('--eval_feature', dest='eval_feature', type=str, default='image_feat', help='Should the evaluator use image feature or aux feature')
# model parameters
parser.add_argument('--image_encoding_size', dest='image_encoding_size', type=int, default=512, help='size of the image encoding')
parser.add_argument('--word_encoding_size', dest='word_encoding_size', type=int, default=512, help='size of word encoding')
parser.add_argument('--hidden_size', dest='hidden_size', type=int, default=512, help='size of hidden layer in generator RNNs')
parser.add_argument('--hidden_depth', dest='hidden_depth', type=int, default=3, help='depth of hidden layer in generator RNNs')
parser.add_argument('--en_residual_conn', dest='en_residual_conn', type=int, default=1, help='add residual connections in LSTM')
parser.add_argument('--generator', dest='generator', type=str, default='lstm', help='generator to use')
parser.add_argument('-c', '--regc', dest='regc', type=float, default=0., help='regularization strength')
parser.add_argument('--n_gen_samples', type=int, default=1, help='Number of samples fed to evaluator in one go. 5 is a good value for COCO captioning')
# Parameters for CNN evaluator
parser.add_argument('--sent_encoding_size', dest='sent_encoding_size', type=int, default=400, help='size of sentence encoding layer on top of CNN')
parser.add_argument('--n_fmaps', dest='n_fmaps_psz', type=int, default=100, help='number of cnn feature maps per filter height')
parser.add_argument('--filter_hs', dest='filter_hs', metavar='N', type=int, nargs='+',default =[3,4,5], help='list fo filter heights to use in CNN')
parser.add_argument('--conv_non_linear', dest='conv_non_linear', type=str, default='relu', help='nonlinearity type: tanh/relu')
parser.add_argument('--maxlen', dest='maxlen', type=int, default=15, help='size of sentence encoding layer on top of CNN')
parser.add_argument('--merge_dim', dest='merge_dim', type=int, default=50, help='size of sentence encoding layer on top of CNN')
# Regarding word embedding sharing and such
parser.add_argument('--share_Wemb', dest='share_Wemb', type=int, default=0, help='If 1, share Wemb b/w eval and gen models')
parser.add_argument('--fix_Wemb', dest='fix_Wemb', type=int, default=0, help='If 1, gen model doesnt learn Wemb and keeps it fixed')
# optimization parameters
parser.add_argument('-m', '--max_epochs', dest='max_epochs', type=int, default=10, help='number of epochs to train for')
parser.add_argument('--solver', dest='solver', type=str, default='rmsprop', help='solver type: vanilla/adagrad/adadelta/rmsprop')
parser.add_argument('--decay_rate', dest='decay_rate', type=float, default=0.999, help='decay rate for adadelta/rmsprop')
parser.add_argument('--smooth_eps', dest='smooth_eps', type=float, default=1e-8, help='epsilon smoothing for rmsprop/adagrad/adadelta')
parser.add_argument('-lg', '--learning_rate_gen', dest='learning_rate_gen', type=float, default=1e-6, help='solver learning rate')
parser.add_argument('-ld', '--learning_rate_eval', dest='learning_rate_eval', type=float, default=1e-5, help='solver learning rate')
parser.add_argument('-b', '--batch_size', dest='batch_size', type=int, default=1, help='batch size')
parser.add_argument('-cb', '--eval_batch_size', dest='eval_batch_size', type=int, default=50, help='Batch size for eval descriminative network, 1 means it only gets a positive reference\
and a generated sample, n implies it also gets n-1 negative references ')
parser.add_argument('--rand_negs', dest='rand_negs', type=int, default=0, help='How many hard negetives obtianed by random permutations of positive to use to train eval n/w')
parser.add_argument('--sample_by_len', dest='sample_by_len', type=int, default=1, help='enable sampling by length of sentece to speed up training')
parser.add_argument('--grad_clip', dest='grad_clip', type=float, default=1.0, help='clip gradients (normalized by batch size)? elementwise. if positive, at what threshold?')
parser.add_argument('--use_dropout', dest='use_dropout', type=int, default=1.0, help='what dropout to apply right after the encoder to an RNN/LSTM')
parser.add_argument('--drop_prob_encoder', dest='drop_prob_encoder', type=np.float32, default=0.3, help='what dropout to apply right after the encoder to an RNN/LSTM')
parser.add_argument('--drop_prob_decoder', dest='drop_prob_decoder', type=np.float32, default=0.3, help='what dropout to apply right before the decoder in an RNN/LSTM')
parser.add_argument('--drop_prob_eval', dest='drop_prob_eval', type=np.float32, default=0.3, help='what dropout to apply right before the decoder in an RNN/LSTM')
parser.add_argument('--drop_prob_aux', dest='drop_prob_aux', type=np.float32, default=0.3, help='what dropout to apply for the auxillary inputs to lstm')
parser.add_argument('--lr_decay', dest='lr_decay', type=float, default=1.0, help='decay factor for learning rate, applied every epoch')
parser.add_argument('--lr_decay_st_epoch', dest='lr_decay_st_epoch', type=float, default=100.0, help='from which epoch should the lr decay start')
# data preprocessing parameters
parser.add_argument('--word_count_threshold', dest='word_count_threshold', type=int, default=5, help='if a word occurs less than this number of times in training data, it is discarded')
# evaluation parameters
parser.add_argument('-p', '--eval_period', dest='eval_period', type=float, default=1.0, help='in units of epochs, how often do we evaluate on val set?')
parser.add_argument('--eval_max_images', dest='eval_max_images', type=int, default=-1, help='for efficiency we can use a smaller number of images to get validation error')
parser.add_argument('--softmax_smooth_factor', dest='softmax_smooth_factor', type=float, default=3.0, help='Is there any auxillary inputs ? If yes indicate file here')
# Implementing gumbel softmax
parser.add_argument('--use_gumbel_mse', dest='use_gumbel_mse', type=int, default=0, help='use gumbel approximation to obtain soft samples')
parser.add_argument('--gumbel_temp_init', dest='gumbel_temp_init', type=np.float, default=0.5, help='temperature value for gumbel')
parser.add_argument('--use_gumbel_hard', dest='use_gumbel_hard', type=int, default=1, help='Use ST version of the gumbel approximation')
parser.add_argument('--gen_use_rand_init', dest='gen_use_rand_init', type = int, default=0, help='use noise to intialize the hidden state of the generator')
parser.add_argument('--gen_feature_matching', dest='gen_feature_matching', type = int, default=1, help='Use feature matching loss, recommended 1')
parser.add_argument('--gen_input_noise', dest='gen_input_noise', type = int, default=1, help='Provide noise as an additional input to the generator')
parser.add_argument('--gen_input_noise_dim', dest='gen_input_noise_dim', type = int, default=50, help='Dimension of the noise vector')
# parameters to use a feature encoding recurrent network
# Irrelavant for GAN training, but the framework to prepare features needs these defaults
parser.add_argument('--feat_encoder', dest='feat_encoder', type=str, default=None, help='Which encoder should we use')
parser.add_argument('--use_encoder_for', dest='use_encoder_for', type=int, default=0, help='Is it for image feat or aux input')
parser.add_argument('--use_shared_mem_enc', dest='use_shared_mem_enc', type=int, default=1, help='Use shared memory for encoder')
parser.add_argument('--featenc_hidden_size', dest='featenc_hidden_size', type=int, default=512, help='Should img or aux features be read from disk')
# Implement option to encode GT sentences and use it as features to the generator
parser.add_argument('--encode_gt_sentences', dest='encode_gt_sentences', type=int, default=0, help='encode gt sentences and provide as input to generator')
parser.add_argument('--n_encgt_sent', dest='n_encgt_sent', type=int, default=5, help='how many gt sentences are we encoding')
# Use MLE loss additionally
parser.add_argument('--use_mle_train', dest='use_mle_train', type=int, default=0, help='Additionally run an mle training iteration every step?')
# parameters for loading multiple features per video using labels.txt
parser.add_argument('--labelsFile', dest='labels', type=str, default='labels.txt', help='labels.txt file for this dataset')
parser.add_argument('--featfromlbl', dest='featfromlbl', type=str, default='ALL ALL', help='should we use lables.txt, if yes which feature?'
'use + sign to seperately specify for img and aux')
parser.add_argument('--poolmethod', dest='poolmethod', type=str, default='max', help='What pooling to use if multiple features are found')
parser.add_argument('--uselabel', dest='uselabel', type=int, default=3, help='which features should use labels.txt, img/aux or both, 0 - None, 1 - img, 2 - aux, 3 - both')
# Some params to enable partial feature reading from disk!!
parser.add_argument('--disk_feature', dest='disk_feature', type=int, default=0, help='Should img or aux features be read from disk')
parser.add_argument('--train_evaluator_only', dest='t_eval_only', type=int, default=0, help='Train only the evaluator network')
parser.add_argument('--eval_loss', dest='eval_loss', type=str, default='contrastive', help='Which loss type for the evaluator network')
parser.add_argument('--eval_w_clip', dest='eval_w_clip', type=float, default=None, help='Clip weigths of evluator, this is to implement wasserstien loss')
# Track some metrics during training
parser.add_argument('--metrics_to_track', dest='met_to_track',nargs='+', type=str, default=[], help="""Specify the evaluation metric to use on validation. Possible
values are perplex, meteor, cider""")
parser.add_argument('--rev_eval', dest='rev_eval', type = int, default=0, help='evaluate references against generated sentences')
args = parser.parse_args()
params = vars(args) # convert to ordinary dict
if params['checkpoint_file_name'] != 'None':
checkpoint_init = pickle.load(open(params['checkpoint_file_name'], 'rb'))
if 'model' in checkpoint_init:
model_init_gen_from = checkpoint_init.get('model',{})
else:
model_init_gen_from = checkpoint_init.get('modelGen',{})
model_init_eval_from = checkpoint_init.get('modelEval',{})
rg_init = checkpoint_init.get('rgrads',[])
if params['eval_init'] != 'None':
checkpoint_init = pickle.load(open(params['eval_init'], 'rb'))
model_init_eval_from = checkpoint_init.get('modelEval',{})
if params['aux_inp_file'] != 'None' or params['encode_gt_sentences']:
params['en_aux_inp'] = 1
else:
params['en_aux_inp'] = 0
params['eval_batch_size'] += params['rand_negs']
print 'parsed parameters:'
print json.dumps(params, indent = 2)
config.mode = 'FAST_RUN'
#config.allow_gc = False
main(params)