-
Notifications
You must be signed in to change notification settings - Fork 0
/
bhns_set_evo_fields_generic.math
183 lines (141 loc) · 4.16 KB
/
bhns_set_evo_fields_generic.math
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# add and set evolution fields into ELLIPTICA grid. the convention chosen as
# the BAM code. hence, if you want another definition for these field you need to
# replace 'evo' with another name, say gra for GR-Athena++, and redefine
# them as you like.
# Manifold or grid Dimension
Dimension = 3;
# point on manifold shown by:
Point = ijk;
C_macro = reav_v_if_exists(name);
C_macro2 = REALLOC_v_WRITE_v(name);
C_macro3 = DECLARE_AND_EMPTY_FIELD(name);
C_macro4 = add_alloc_get_field(name);
C_macro5 = add_alloc_field(name);
# main function:
`#include "bhns_header.h"`
``
``
`#define add_alloc_get_field(name) ADD_FIELD(name) REALLOC_v_WRITE_v(name)`
``
``
`#define add_alloc_field(name) ADD_AND_ALLOC_FIELD(name) `
``
``
`#define reav_v_if_exists(name) const double *name = 0; \`
` if (_Ind(#name) >= 0) name = patch->fields[Ind(#name)]->v;`
``
``
`void bhns_set_evo_fields_generic(Grid_T *const grid);`
`void bhns_set_evo_fields_generic(Grid_T *const grid)`
`{`
` Uint p;`
` const Uint np = grid->np;`
``
` OpenMP_Patch_Pragma(omp parallel for)`
` for (p = 0; p < np; ++p)`
` {`
` Patch_T *patch = grid->patch[p];`
``
Declare =
{
# add: evo_grhd_v^i
(obj = Field,name = evo_grhd_v, rank = U, C_macro4);
# add: evo_grhd_rho
(obj = Field,name = evo_grhd_rho, rank = 0, C_macro4);
# add: evo_grhd_p
(obj = Field,name = evo_grhd_p, rank = 0, C_macro4);
# add: evo_grhd_epsl
(obj = Field,name = evo_grhd_epsl, rank = 0, C_macro4);
# add: evo_alpha
(obj = Field,name = evo_alpha, rank = 0, C_macro4);
# add: evo_beta^i
(obj = Field,name = evo_beta, rank = U, C_macro4);
# add: evo_adm_g_ij
(obj = Field,name = evo_adm_g, rank = DD, C_macro4);
# add: evo_adm_K_ij
(obj = Field,name = evo_adm_Kij, rank = DD, C_macro4);
# conformal metric
(obj = Field,name = gConf, rank = DD, C_macro);
# conformal metric inverse
(obj = Field,name = igConf, rank = UU, C_macro);
# K_{ij}
(obj = Field,name = adm_Kij, rank = DD, C_macro);
# add: evo_chi = psi^-4
#(obj = Field,name = evo_chi, rank = 0, C_macro4);
# shift
(obj = Field,name = beta, rank = U, C_macro);
# psi
(obj = Field,name = psi, rank = 0, C_macro);
# alphaPsi
(obj = Field,name = alphaPsi, rank = 0, C_macro);
# B1 in beta = B0+B1
#(obj = Field,name = B1, rank = U, C_macro);
# trKij
#(obj = Field,name = K, rank = 0, C_macro);
# enthalpy
(obj = Field,name = enthalpy, rank = 0, C_macro);
# spin part of fluid
(obj = Field,name = W, rank = U, C_macro);
# d(phi)/d? for irrotional part of fluid
(obj = Field,name = dphi, rank = D, C_macro);
# u0
(obj = Field,name = u0, rank = 0, C_macro);
}
# symmetries:
Symm[adm_Kij(i,j) = adm_Kij(j,i)];
Symm[evo_adm_Kij(i,j) = evo_adm_Kij(j,i)];
Symm[evo_adm_g(i,j) = evo_adm_g(j,i)];
Symm[gConf(i,j) = gConf(j,i)];
Symm[igConf(i,j) = igConf(j,i)];
## set metric fields in all patches:
` FOR_ALL_ijk`
` {`
psi4 = psi**4;
# alpha:
` evo_alpha[ijk] = alphaPsi[ijk]/psi[ijk];`
# beta:
` evo_beta_U0[ijk] = beta_U0[ijk];`
` evo_beta_U1[ijk] = beta_U1[ijk];`
` evo_beta_U2[ijk] = beta_U2[ijk];`
# g_ij:
adm_g(-i,-j) = psi4*gConf(i,j);
Symm[adm_g(i,j) = adm_g(j,i)];
Cpopulate[evo_adm_g = adm_g];
# K_ij:
Kdd(-i,-j) = adm_Kij(i,j);
Symm[Kdd(i,j) = Kdd(j,i)];
Cpopulate[evo_adm_Kij = Kdd];
# evo_chi (for test purposes)
#` evo_chi[ijk] = 1/psi4;`
` }`# FOR_ALL_ijk
## set matter fields if needed
` if (IsItCovering(patch,"NS"))`
` {`
` Physics_T *ns = init_physics(0,NS);`
` EoS_T *eos = init_EoS(ns);`
` FOR_ALL_ijk`
` {`
# grhd_v^i:
psim4 = psi**(-4);
grhd_v(i) = (psim4*igConf(i,j)*dphi(-j)+W(i))/(evo_alpha*enthalpy*u0);
Cpopulate[evo_grhd_v = grhd_v];
# total_energy_density = grhd_rho(1+grhd_epsl)
` eos->h = enthalpy[ijk];`
` if(!isfinite(eos->h) || LSSEQL(eos->h,1.))`
` {`
` evo_grhd_rho[ijk] = 0;`
` evo_grhd_p[ijk] = 0;`
` evo_grhd_epsl[ijk] = 0;`
` }`
` else`
` {`
` evo_grhd_rho[ijk] = eos->rest_mass_density(eos);`
` evo_grhd_p[ijk] = eos->pressure(eos);`
` evo_grhd_epsl[ijk] = eos->specific_internal_energy(eos);`
` }`
` }`# FOR_ALL_ijk
` free_physics(ns);`
` free_EoS(eos);`
` }` # if (IsItCovering(patch,"NS"))
` }`# end of FOR_ALL_PATCHES
`}` # end of function