Skip to content

Latest commit

 

History

History
33 lines (30 loc) · 2.43 KB

Back-Prop-Learning.md

File metadata and controls

33 lines (30 loc) · 2.43 KB

BACK-PROP-LEARNING

AIMA3e

function BACK-PROP-LEARNING(examples, network) returns a neural network
inputs examples, a set of examples, each with input vector x and output vector y
    network, a multilayer network with L layers, weights wi,j, activation function g
local variables: Δ, a vector of errors, indexed by network node

repeat
   for each weight wi,j in network do
     wi,j ← a small random number
   for each example (x, y) in examples do
     /* Propagate the inputs forward to compute the outputs */
     for each node i in the input layer do
       aixi
     for l = 2 to L do
       for each node j in layer l do
         inj ← Σi wi,j ai
         ajg(inj)
     /* Propagate deltas backward from output layer to input layer */
     for each node j in the output layer do
       Δ[j] ← g′(inj) × (yiaj)
     for l = L − 1 to 1 do
       for each node i in layer l do
         Δ[i] ← g′(ini) Σj wi,j Δ[j]
     /* Update every weight in network using deltas */
     for each weight wi,j in network do
       wi,jwi,j + α × ai × Δ[j]
until some stopping criterion is satisfied
return network


Figure ?? The back-propagation algorithm for learning in multilayer networks.