-
Notifications
You must be signed in to change notification settings - Fork 0
/
yolo_opencv.py
83 lines (62 loc) · 2.24 KB
/
yolo_opencv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import cv2
import argparse
import numpy as np
import time
def get_output_layers(net):
layer_names = net.getLayerNames()
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
return output_layers
cap= cv2.VideoCapture("video.mp4")
font = cv2.FONT_HERSHEY_PLAIN
starting_time=time.time()
frame_id=0
scale = 0.00392
classes = None
with open("yolov3.txt" , 'r') as f:
classes = [line.strip() for line in f.readlines()]
while True:
_,frame=cap.read()
Height,Width,channels=frame.shape
COLORS = np.random.uniform(0, 255, size=(len(classes), 3))
net = cv2.dnn.readNet("yolov3.weights", "yolov3.cfg")
blob = cv2.dnn.blobFromImage(frame, scale, (416,416), (0,0,0), True, crop=False)
net.setInput(blob)
outs = net.forward(get_output_layers(net))
class_ids = []
confidences = []
boxes = []
conf_threshold = 0.5
nms_threshold = 0.4
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.5:
center_x = int(detection[0] * Width)
center_y = int(detection[1] * Height)
w = int(detection[2] * Width)
h = int(detection[3] * Height)
x = int(center_x - w / 2)
y = int(center_y - h / 2)
class_ids.append(class_id)
confidences.append(float(confidence))
boxes.append([x, y, w, h])
indices = cv2.dnn.NMSBoxes(boxes, confidences, conf_threshold, nms_threshold)
for i in range(len(boxes)):
if i in indices:
x,y,w,h=boxes[i]
label = str(classes[class_ids[i]])
color = COLORS[class_ids[i]]
confidence=confidences[i]
cv2.rectangle(frame, (x,y), (x+w,y+h), color, 2)
cv2.putText(frame, label+" "+str(round(confidence,2)),(x,y+30),font, 1,(255,255,255), 2)
elapsed_time=time.time()-starting_time
fps=frame_id/elapsed_time
cv2.putText(frame,"FPS:"+str(round(fps,2)),(10,50),font,2,(0,0,0),1)
cv2.imshow("VIDEO",frame)
key=cv2.waitKey(1)
if key==27:
break;
cap.release()
cv2.destroyAllWindows()