-
Notifications
You must be signed in to change notification settings - Fork 3
/
0221-maximal-square.rb
58 lines (49 loc) · 1.39 KB
/
0221-maximal-square.rb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# frozen_string_literal: true
# 221. Maximal Square
# https://leetcode.com/problems/maximal-square
# Medium
=begin
Given an m x n binary matrix filled with 0's and 1's, find the largest square containing only 1's and return its area.
Example 1:
Input: matrix = [["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]]
Output: 4
Example 2:
Input: matrix = [["0","1"],["1","0"]]
Output: 1
Example 3:
Input: matrix = [["0"]]
Output: 0
Constraints:
m == matrix.length
n == matrix[i].length
1 <= m, n <= 300
matrix[i][j] is '0' or '1'.
=end
# @param {Character[][]} matrix
# @return {Integer}
def maximal_square(matrix)
dp = Array.new(matrix.size + 1) { Array.new(matrix[0].size + 1) }
max = 0
dp.size.times do |i|
dp[0].size.times do |j|
if i == 0 || j == 0 || matrix[i - 1][j - 1] == "0"
dp[i][j] = 0
else
dp[i][j] = 1 + [dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]].min
end
max = [max, dp[i][j]].max
end
end
max**2
end
# **************** #
# TEST #
# **************** #
require "test/unit"
class Test_maximal_square < Test::Unit::TestCase
def test_
assert_equal 4, maximal_square([["1", "0", "1", "0", "0"], ["1", "0", "1", "1", "1"], ["1", "1", "1", "1", "1"], ["1", "0", "0", "1", "0"]])
assert_equal 1, maximal_square([["0", "1"], ["1", "0"]])
assert_equal 0, maximal_square([["0"]])
end
end