Code for paper The Reversible Residual Network: Backpropagation without Storing Activations. [arxiv]
Customize paths first in setup.sh
(data folder, model save folder, etc.).
git clone git://github.com/renmengye/revnet-public.git
cd revnet-public
# Change paths in setup.sh
# It also provides options to download CIFAR and ImageNet data. (ImageNet
# experiments require dataset in tfrecord format).
./setup.sh
./run_cifar_train.py --dataset [DATASET] --model [MODEL]
Available values for DATASET
are cifar-10
and cifar-100
.
Available values for MODEL
are resnet-32/110/164
and revnet-38/110/164
.
# Run synchronous SGD training on 4 GPUs.
./run_imagenet_train.py --model [MODEL]
# Evaluate a trained model. Launch this on a separate GPU.
./run_imagenet_eval.py --id [EXPERIMENT ID]
Available values for MODEL
are resnet-50/101
and revnet-56/104
.
See resnet/configs/cifar_configs.py
and resnet/configs/imagenet_configs.py
You can use our pretrained model weights for the use of other applications.
RevNet-104: 23.10% error rate on ImageNet validation set (top-1 single crop).
wget http://www.cs.toronto.edu/~mren/revnet/pretrained/revnet-104.tar.gz
We also have pretrained ResNet-101 weights here using our code base.
ResNet-101: 23.01% error rate.
wget http://www.cs.toronto.edu/~mren/revnet/pretrained/revnet-104.tar.gz
tf.while_loop
implementation of RevNets, which achieves further memory savings.
If you use our code, please consider cite the following: Aidan N. Gomez, Mengye Ren, Raquel Urtasun, Roger B. Grosse. The Reversible Residual Network: Backpropagation without Storing Actications. NIPS, 2017 (to appear).
@inproceedings{gomez17revnet,
author = {Aidan N. Gomez and Mengye Ren and Raquel Urtasun and Roger B. Grosse},
title = {The Reversible Residual Network: Backpropagation without Storing Activations}
booktitle = {NIPS},
year = {2017},
}