-
Notifications
You must be signed in to change notification settings - Fork 4
/
asciimathml.txt
64 lines (52 loc) · 2.58 KB
/
asciimathml.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
ASCIIMathML Formulae
====================
http://www1.chapman.edu/~jipsen/mathml/asciimath.html[ASCIIMathML] is
a clever JavaScript written by Peter Jipsen that dynamically
transforms mathematical formulae written in a wiki-like plain text
markup to http://www.w3.org/Math/[MathML] markup which is displayed as
standard mathematical notation by the Web Browser. See 'Appendix E'
in the AsciiDoc User Guide for more details.
The AsciiDoc `xhtml11` backend supports ASCIIMathML -- it links the
ASCIIMathML script and escapes ASCIIMathML delimiters and special
characters to yield valid XHTML. To use ASCIIMathML:
1. Include the `-a asciimath` command-line option when you run
`asciidoc(1)`.
2. Enclose ASCIIMathML formulas inside math or double-dollar
passthroughs or in math passthrough blocks.
Here's the link:asciimathml.txt[AsciiDoc source] that generated this
page.
.NOTE
- When you use the `asciimath:[]` inline macro you need to escape `]`
characters in the formulas with a backslash, escaping is unnecessary
if you use the double-dollar macro (for examples see the first two
formulas below).
- See the
http://www1.chapman.edu/~jipsen/mathml/asciimath.html[ASCIIMathML]
website for ASCIIMathML documentation and the latest version.
- If the formulas don't appear to be correct you probably need to
install the correct math fonts (see the
http://www1.chapman.edu/~jipsen/mathml/asciimath.html[ASCIIMathML]
website for details).
- See the link:latexmathml.html[LaTeXMathML page] if you prefer to use
LaTeX math formulas.
A list of formulas with a mixture of formatting:
- asciimath:[[[a,b\],[c,d\]\]((n),(k))]
- $$`[[a,b],[c,d]]((n),(k))`$$
- asciimath:[x/x={(1,if x!=0),(text{undefined},if x=0):}]
- asciimath:[d/dxf(x)=lim_(h->0)(f(x+h)-f(x))/h]
- Red [red]+++`sum_(i=1)\^n i=(n(n+1))/2`$+++ and [blue]*bold
asciimath:[int_0\^(pi/2) sinx\ dx=1]*
- [,,1.5]## 1.5 times normal size asciimath:[(a,b\]={x in RR : a < x <= b}]##
- A [,,2]##big## [blue]##blue## formula
[blue,,2]##asciimath:[x^2+y_1+z_12^34]##.
- [green,yellow,4]##asciimath:[x^2+y_1+z_12^34]##
*********************************************************************
The first three terms factor to give
[red]##asciimath:[(x+b/(2a))^2=(b^2)/(4a^2)-c/a]##.
[red]##asciimath:[x+b/(2a)=+-sqrt((b^2)/(4a^2)-c/a)]##.
Now we take square roots on both sides and get
[red]##asciimath:[x+b/(2a)=+-sqrt((b^2)/(4a^2)-c/a)]##. Finally we
move the [red]##asciimath:[b/(2a)]## to the right and simplify to get
the two solutions:
[red]*asciimath:[x_(1,2)=(-b+-sqrt(b^2-4ac))/(2a)]*.
*********************************************************************