This repository has been archived by the owner on Jul 18, 2019. It is now read-only.
forked from SaschaWillems/Vulkan
-
Notifications
You must be signed in to change notification settings - Fork 1
/
descriptorsets.cpp
429 lines (347 loc) · 16.4 KB
/
descriptorsets.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
/*
* Vulkan Example - Using descriptor sets for passing data to shader stages
*
* Relevant code parts are marked with [POI]
*
* Copyright (C) 2018 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <vector>
#define GLM_FORCE_RADIANS
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>
#include <vulkan/vulkan.h>
#include "vulkanexamplebase.h"
#include "VulkanTexture.hpp"
#include "VulkanModel.hpp"
#define ENABLE_VALIDATION false
class VulkanExample : public VulkanExampleBase
{
public:
bool animate = true;
vks::VertexLayout vertexLayout = vks::VertexLayout({
vks::VERTEX_COMPONENT_POSITION,
vks::VERTEX_COMPONENT_NORMAL,
vks::VERTEX_COMPONENT_UV,
vks::VERTEX_COMPONENT_COLOR,
});
struct Cube {
struct Matrices {
glm::mat4 projection;
glm::mat4 view;
glm::mat4 model;
} matrices;
VkDescriptorSet descriptorSet;
vks::Texture2D texture;
vks::Buffer uniformBuffer;
glm::vec3 rotation;
};
std::array<Cube, 2> cubes;
struct Models {
vks::Model cube;
} models;
VkPipeline pipeline;
VkPipelineLayout pipelineLayout;
VkDescriptorSetLayout descriptorSetLayout;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
title = "Using descriptor Sets";
settings.overlay = true;
camera.type = Camera::CameraType::lookat;
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 512.0f);
camera.setRotation(glm::vec3(0.0f, 0.0f, 0.0f));
camera.setTranslation(glm::vec3(0.0f, 0.0f, -5.0f));
}
~VulkanExample()
{
vkDestroyPipeline(device, pipeline, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
models.cube.destroy();
for (auto cube : cubes) {
cube.uniformBuffer.destroy();
cube.texture.destroy();
}
}
virtual void getEnabledFeatures()
{
if (deviceFeatures.samplerAnisotropy) {
enabledFeatures.samplerAnisotropy = VK_TRUE;
};
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) {
renderPassBeginInfo.framebuffer = frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
VkDeviceSize offsets[1] = { 0 };
vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &models.cube.vertices.buffer, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], models.cube.indices.buffer, 0, VK_INDEX_TYPE_UINT32);
/*
[POI] Render cubes with separate descriptor sets
*/
for (auto cube : cubes) {
// Bind the cube's descriptor set. This tells the command buffer to use the uniform buffer and image set for this cube
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &cube.descriptorSet, 0, nullptr);
vkCmdDrawIndexed(drawCmdBuffers[i], models.cube.indexCount, 1, 0, 0, 0);
}
drawUI(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void loadAssets()
{
models.cube.loadFromFile(getAssetPath() + "models/cube.dae", vertexLayout, 1.0f, vulkanDevice, queue);
cubes[0].texture.loadFromFile(getAssetPath() + "textures/crate01_color_height_rgba.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue);
cubes[1].texture.loadFromFile(getAssetPath() + "textures/crate02_color_height_rgba.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue);
}
/*
[POI] Set up descriptor sets and set layout
*/
void setupDescriptors()
{
/*
Descriptor set layout
The layout describes the shader bindings and types used for a certain descriptor layout and as such must match the shader bindings
Shader bindings used in this example:
VS:
layout (set = 0, binding = 0) uniform UBOMatrices ...
FS :
layout (set = 0, binding = 1) uniform sampler2D ...;
*/
std::array<VkDescriptorSetLayoutBinding,2> setLayoutBindings{};
/*
Binding 0: Uniform buffers (used to pass matrices matrices)
*/
setLayoutBindings[0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
// Shader binding point
setLayoutBindings[0].binding = 0;
// Accessible from the vertex shader only (flags can be combined to make it accessible to multiple shader stages)
setLayoutBindings[0].stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
// Binding contains one element (can be used for array bindings)
setLayoutBindings[0].descriptorCount = 1;
/*
Binding 1: Combined image sampler (used to pass per object texture information)
*/
setLayoutBindings[1].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
setLayoutBindings[1].binding = 1;
// Accessible from the fragment shader only
setLayoutBindings[1].stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT;
setLayoutBindings[1].descriptorCount = 1;
// Create the descriptor set layout
VkDescriptorSetLayoutCreateInfo descriptorLayoutCI{};
descriptorLayoutCI.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
descriptorLayoutCI.bindingCount = static_cast<uint32_t>(setLayoutBindings.size());
descriptorLayoutCI.pBindings = setLayoutBindings.data();
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayoutCI, nullptr, &descriptorSetLayout));
/*
Descriptor pool
Actual descriptors are allocated from a descriptor pool telling the driver what types and how many
descriptors this application will use
An application can have multiple pools (e.g. for multiple threads) with any number of descriptor types
as long as device limits are not surpassed
It's good practice to allocate pools with actually required descriptor types and counts
*/
std::array<VkDescriptorPoolSize, 2> descriptorPoolSizes{};
// Uniform buffers : 1 for scene and 1 per object (scene and local matrices)
descriptorPoolSizes[0].type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
descriptorPoolSizes[0].descriptorCount = 1 + static_cast<uint32_t>(cubes.size());
// Combined image samples : 1 per mesh texture
descriptorPoolSizes[1].type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
descriptorPoolSizes[1].descriptorCount = static_cast<uint32_t>(cubes.size());
// Create the global descriptor pool
VkDescriptorPoolCreateInfo descriptorPoolCI = {};
descriptorPoolCI.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
descriptorPoolCI.poolSizeCount = static_cast<uint32_t>(descriptorPoolSizes.size());
descriptorPoolCI.pPoolSizes = descriptorPoolSizes.data();
// Max. number of descriptor sets that can be allocted from this pool (one per object)
descriptorPoolCI.maxSets = static_cast<uint32_t>(cubes.size());
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolCI, nullptr, &descriptorPool));
/*
Descriptor sets
Using the shared descriptor set layout and the descriptor pool we will now allocate the descriptor sets.
Descriptor sets contain the actual descriptor fo the objects (buffers, images) used at render time.
*/
for (auto &cube: cubes) {
// Allocates an empty descriptor set without actual descriptors from the pool using the set layout
VkDescriptorSetAllocateInfo allocateInfo{};
allocateInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
allocateInfo.descriptorPool = descriptorPool;
allocateInfo.descriptorSetCount = 1;
allocateInfo.pSetLayouts = &descriptorSetLayout;
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocateInfo, &cube.descriptorSet));
// Update the descriptor set with the actual descriptors matching shader bindings set in the layout
std::array<VkWriteDescriptorSet, 2> writeDescriptorSets{};
/*
Binding 0: Object matrices Uniform buffer
*/
writeDescriptorSets[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writeDescriptorSets[0].dstSet = cube.descriptorSet;
writeDescriptorSets[0].dstBinding = 0;
writeDescriptorSets[0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
writeDescriptorSets[0].pBufferInfo = &cube.uniformBuffer.descriptor;
writeDescriptorSets[0].descriptorCount = 1;
/*
Binding 1: Object texture
*/
writeDescriptorSets[1].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writeDescriptorSets[1].dstSet = cube.descriptorSet;
writeDescriptorSets[1].dstBinding = 1;
writeDescriptorSets[1].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
// Images use a different descriptor strucutre, so we use pImageInfo instead of pBufferInfo
writeDescriptorSets[1].pImageInfo = &cube.texture.descriptor;
writeDescriptorSets[1].descriptorCount = 1;
// Execute the writes to update descriptors for this set
// Note that it's also possible to gather all writes and only run updates once, even for multiple sets
// This is possible because each VkWriteDescriptorSet also contains the destination set to be updated
// For simplicity we will update once per set instead
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr);
}
}
void preparePipelines()
{
/*
[POI] Create a pipeline layout used for our graphics pipeline
*/
VkPipelineLayoutCreateInfo pipelineLayoutCI{};
pipelineLayoutCI.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
// The pipeline layout is based on the descriptor set layout we created above
pipelineLayoutCI.setLayoutCount = 1;
pipelineLayoutCI.pSetLayouts = &descriptorSetLayout;
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelineLayout));
const std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineInputAssemblyStateCreateInfo inputAssemblyStateCI = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationStateCI = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_CLOCKWISE, 0);
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendStateCI = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilStateCI = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportStateCI = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleStateCI = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
VkPipelineDynamicStateCreateInfo dynamicStateCI = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables.data(), static_cast<uint32_t>(dynamicStateEnables.size()),0);
// Vertex bindings and attributes
const std::vector<VkVertexInputBindingDescription> vertexInputBindings = {
vks::initializers::vertexInputBindingDescription(0, vertexLayout.stride(), VK_VERTEX_INPUT_RATE_VERTEX),
};
const std::vector<VkVertexInputAttributeDescription> vertexInputAttributes = {
vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, 0), // Location 0: Position
vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 3), // Location 1: Normal
vks::initializers::vertexInputAttributeDescription(0, 2, VK_FORMAT_R32G32_SFLOAT, sizeof(float) * 6), // Location 2: UV
vks::initializers::vertexInputAttributeDescription(0, 3, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 8), // Location 3: Color
};
VkPipelineVertexInputStateCreateInfo vertexInputState = vks::initializers::pipelineVertexInputStateCreateInfo();
vertexInputState.vertexBindingDescriptionCount = static_cast<uint32_t>(vertexInputBindings.size());
vertexInputState.pVertexBindingDescriptions = vertexInputBindings.data();
vertexInputState.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertexInputAttributes.size());
vertexInputState.pVertexAttributeDescriptions = vertexInputAttributes.data();
VkGraphicsPipelineCreateInfo pipelineCreateInfoCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass, 0);
pipelineCreateInfoCI.pVertexInputState = &vertexInputState;
pipelineCreateInfoCI.pInputAssemblyState = &inputAssemblyStateCI;
pipelineCreateInfoCI.pRasterizationState = &rasterizationStateCI;
pipelineCreateInfoCI.pColorBlendState = &colorBlendStateCI;
pipelineCreateInfoCI.pMultisampleState = &multisampleStateCI;
pipelineCreateInfoCI.pViewportState = &viewportStateCI;
pipelineCreateInfoCI.pDepthStencilState = &depthStencilStateCI;
pipelineCreateInfoCI.pDynamicState = &dynamicStateCI;
const std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages = {
loadShader(getAssetPath() + "shaders/descriptorsets/cube.vert.spv", VK_SHADER_STAGE_VERTEX_BIT),
loadShader(getAssetPath() + "shaders/descriptorsets/cube.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT)
};
pipelineCreateInfoCI.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCreateInfoCI.pStages = shaderStages.data();
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfoCI, nullptr, &pipeline));
}
void prepareUniformBuffers()
{
// Vertex shader matrix uniform buffer block
for (auto& cube : cubes) {
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&cube.uniformBuffer,
sizeof(Cube::Matrices)));
VK_CHECK_RESULT(cube.uniformBuffer.map());
}
updateUniformBuffers();
}
void updateUniformBuffers()
{
cubes[0].matrices.model = glm::translate(glm::mat4(1.0f), glm::vec3(-2.0f, 0.0f, 0.0f));
cubes[1].matrices.model = glm::translate(glm::mat4(1.0f), glm::vec3( 1.5f, 0.5f, 0.0f));
for (auto& cube : cubes) {
cube.matrices.projection = camera.matrices.perspective;
cube.matrices.view = camera.matrices.view;
cube.matrices.model = glm::rotate(cube.matrices.model, glm::radians(cube.rotation.x), glm::vec3(1.0f, 0.0f, 0.0f));
cube.matrices.model = glm::rotate(cube.matrices.model, glm::radians(cube.rotation.y), glm::vec3(0.0f, 1.0f, 0.0f));
cube.matrices.model = glm::rotate(cube.matrices.model, glm::radians(cube.rotation.z), glm::vec3(0.0f, 0.0f, 1.0f));
memcpy(cube.uniformBuffer.mapped, &cube.matrices, sizeof(cube.matrices));
}
}
void draw()
{
VulkanExampleBase::prepareFrame();
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
void prepare()
{
VulkanExampleBase::prepare();
loadAssets();
prepareUniformBuffers();
setupDescriptors();
preparePipelines();
buildCommandBuffers();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
draw();
if (animate) {
cubes[0].rotation.x += 2.5f * frameTimer;
if (cubes[0].rotation.x > 360.0f)
cubes[0].rotation.x -= 360.0f;
cubes[1].rotation.y += 2.0f * frameTimer;
if (cubes[1].rotation.x > 360.0f)
cubes[1].rotation.x -= 360.0f;
}
if ((camera.updated) || (animate)) {
updateUniformBuffers();
}
}
virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay)
{
if (overlay->header("Settings")) {
overlay->checkBox("Animate", &animate);
}
}
};
VULKAN_EXAMPLE_MAIN()