-
Notifications
You must be signed in to change notification settings - Fork 2
/
pgb.h
772 lines (666 loc) · 18.9 KB
/
pgb.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
#ifndef PGB_H
#define PGB_H
/*
* PaGed Bump allocator
*
* A bump allocator that divides memory into pages instead of a single
* contiguous segment. Unused pages are stored in a heap, which can be
* shared between multiple allocators. In addition to traditional memory
* calls, a watermark can be saved & restored as an easy way to free many
* allocations at once.
*/
#ifndef PGB_MIN_PAGE_SIZE
#define PGB_MIN_PAGE_SIZE 4096
#endif
#ifndef PGB_MALLOC
#define PGB_MALLOC malloc
#endif
#ifndef PGB_FREE
#define PGB_FREE free
#endif
#ifdef PGB_TRACK_MEMORY
#define MEMCALL_LOCATION , LOCATION
#define MEMCALL_ARGS , const char *loc
#define MEMCALL_VARS , loc
#else
#define MEMCALL_LOCATION
#define MEMCALL_ARGS
#define MEMCALL_VARS
#endif
#ifndef PGB_LOG
#define PGB_LOG(...)
#endif
#ifndef PGB_LOG_ALLOC
#define PGB_LOG_ALLOC(...)
#endif
#ifndef PGB_LOG_REALLOC
#define PGB_LOG_REALLOC(...)
#endif
typedef struct pgb_heap
{
struct pgb_page *gfirst_page;
struct pgb_page *glast_page;
struct pgb_page *first_page;
} pgb_heap_t;
void pgb_heap_init(pgb_heap_t *heap);
void pgb_heap_destroy(pgb_heap_t *heap);
struct pgb_page *pgb_heap_borrow_page(pgb_heap_t *heap, size_t min_size, size_t max_size);
void pgb_heap_return_page(pgb_heap_t *heap, struct pgb_page *page);
void pgb_heap_create_page(pgb_heap_t *heap, size_t size);
bool pgb_heap_has_page(const pgb_heap_t *heap, const struct pgb_page *page);
void pgb_heap_move_all_pages(pgb_heap_t *dst, pgb_heap_t *src);
typedef uint8_t pgb_byte;
typedef struct pgb_watermark_data
{
struct pgb *pgb;
struct pgb_page *page;
pgb_byte *ptr;
} pgb_watermark_data_t;
typedef struct pgb_watermark
{
pgb_watermark_data_t data;
pgb_watermark_data_t prev; /* helps validate reallocations; not strictly necessary */
} pgb_watermark_t;
typedef struct pgb
{
struct pgb_heap *heap;
struct pgb_page *current_page;
pgb_byte *current_ptr;
pgb_watermark_t last_mark;
} pgb_t;
void pgb_init(pgb_t *pgb, pgb_heap_t *heap);
void pgb_destroy(pgb_t *pgb);
void *pgb_malloc(size_t size, pgb_t *pgb MEMCALL_ARGS);
void *pgb_calloc(size_t nmemb, size_t size, pgb_t *pgb MEMCALL_ARGS);
void *pgb_realloc(void *ptr, size_t size, pgb_t *pgb MEMCALL_ARGS);
void pgb_free(void *ptr, pgb_t *pgb MEMCALL_ARGS);
pgb_watermark_t pgb_save(pgb_t *pgb);
void pgb_restore(pgb_watermark_t watermark);
bool pgb_has_page(const pgb_t *pgb, const struct pgb_page *page);
size_t pgb_alloc_size(const pgb_t *pgb, const void *ptr);
void pgb_stats(const pgb_t *pgb, size_t *bytes_used, size_t *pages_used,
size_t *bytes_available, size_t *pages_available);
void pgb_watermark_stats(pgb_watermark_t mark, size_t *bytes_used, size_t *pages_used);
#endif // PGB_H
/* Implementation */
#ifdef PGB_IMPLEMENTATION
/*
* Divides pages into 256 equal-sized slots.
* An allocated can occupy more than 1 slot, but is aligned to a whole number of slots.
* The sizes are stored in a single byte representing the number of slots.
* This causes the header size to be constant, which is more efficent for larger pages.
*
* Perhaps the biggest drawback is the loss of efficiency when allocating
* small objects into large pages.
*
* Not all slots will be available, since some are required to store the page header.
* Num slots = max(1, sizeof(header) / alignment)
* 4K -> 16 byte alignment -> 238 usable slots -> 93% efficient
* 8K -> 32 byte alignment -> 247 usable slots -> 96% efficient
* 64K -> 256 byte alignment -> 254 usable slots -> 99% efficient
* 128K -> 512 byte alignment -> 255 usable slots -> 99% efficient
*
* Unused pages are stored in a heap that can be shared across multiple allocators.
* This heap is not thread-safe.
*/
/* Page */
#define PGB__PAGE_SLOTS 256
#define pgb__alignment(page_size) ((page_size) / PGB__PAGE_SLOTS)
typedef struct pgb_page
{
struct {
pgb_byte alloc_sizes[PGB__PAGE_SLOTS];
struct pgb_page *gnext;
struct pgb_page *prev;
struct pgb_page *next;
size_t size;
pgb_byte header_end;
};
} pgb_page_t;
typedef union pgb__max_align
{
long l;
unsigned long ul;
double d;
long double ld;
void *p;
void (*f)(void);
} pgb__max_align_t;
#ifdef offsetof
#define pgb_offsetof(s, m) offsetof(s, m)
#else
#define pgb_offsetof(s, m) ((size_t)&((s*)(NULL))->m)
#endif
#define pgb_static_assert(cnd, msg) typedef int msg[(cnd) ? 1 : -1]
pgb_static_assert(sizeof(pgb__max_align_t) <= pgb__alignment(PGB_MIN_PAGE_SIZE),
invalid_word_size_for_pgb_allocator);
#define pgb__page_alignment(page) (pgb__alignment((page)->size))
#define pgb__page_beg(page) ((pgb_byte*)page)
#define pgb__page_end(page) ((pgb_byte*)page + (page)->size)
#define pgb__header_size() (pgb_offsetof(pgb_page_t, header_end))
static
size_t pgb__align(size_t size, size_t alignment)
{
return size + (alignment - (size % alignment)) % alignment;
}
static
size_t pgb__page_align(size_t size, const pgb_page_t *page)
{
return pgb__align(size, pgb__page_alignment(page));
}
static
pgb_byte *pgb__page_first_usable_slot(pgb_page_t *page)
{
return pgb__page_beg(page) + pgb__align(pgb__header_size(), pgb__page_alignment(page));
}
static
size_t pgb__alloc_get_slot_idx(const pgb_byte* ptr, const pgb_page_t *page)
{
return (ptr - pgb__page_beg(page)) / pgb__page_alignment(page);
}
static
pgb_byte *pgb__slot_get_alloc(pgb_page_t *page, size_t slot)
{
return pgb__page_beg(page) + slot * pgb__page_alignment(page);
}
static
size_t pgb__alloc_get_sz(const pgb_byte* ptr, const pgb_page_t *page)
{
const size_t alignment = pgb__page_alignment(page);
return page->alloc_sizes[(ptr - pgb__page_beg(page)) / alignment] * alignment;
}
static
void pgb__alloc_set_sz(const pgb_byte *ptr, pgb_page_t *page, size_t sz)
{
const size_t alignment = pgb__page_alignment(page);
page->alloc_sizes[(ptr - pgb__page_beg(page)) / alignment] = (pgb_byte)(sz / alignment);
}
static
bool pgb__ptr_in_page(const pgb_byte *ptr, const pgb_page_t *page)
{
return ptr > pgb__page_beg(page) && ptr < pgb__page_end(page);
}
static
size_t pgb__round_up_power_of_two(size_t x_)
{
size_t x = x_ - 1;
x |= x >> 1;
x |= x >> 2;
x |= x >> 4;
x |= x >> 8;
x |= x >> 16;
#if INTPTR_MAX == INT64_MAX
x |= x >> 32;
#elif INTPTR_MAX != INT32_MAX
#error Unhandled size_t size
#endif
return x + 1;
}
static
size_t pgb__page_min_size_for_alloc(size_t alloc_size)
{
const size_t page_size = pgb__round_up_power_of_two(alloc_size);
if (page_size < PGB_MIN_PAGE_SIZE)
return PGB_MIN_PAGE_SIZE;
else if ( page_size
- pgb__align(pgb__header_size(), pgb__alignment(page_size))
< pgb__align(alloc_size, pgb__alignment(page_size)))
return page_size << 1;
else
return page_size;
}
static
size_t pgb__page_max_size_for_alloc(size_t alloc_size)
{
/* Ensure maximum waste of 25% per slot.
* This is unlikely to occur as the smallest page that fits will be used. */
const size_t max_alignment = pgb__round_up_power_of_two(alloc_size) << 1;
const size_t max_page_size = max_alignment * PGB__PAGE_SLOTS;
/* check for overflow */
if ((alloc_size & (UINT64_C(0x3) << 30)) || max_alignment > SIZE_MAX / PGB__PAGE_SLOTS)
return SIZE_MAX;
else if (max_page_size < PGB_MIN_PAGE_SIZE)
return PGB_MIN_PAGE_SIZE;
else
return max_page_size;
}
static
void pgb__page_clear(pgb_page_t *page)
{
const size_t header_size = pgb__page_align(pgb__header_size(), page);
memset(page->alloc_sizes, 0, PGB__PAGE_SLOTS);
pgb__alloc_set_sz(pgb__page_beg(page), page, header_size);
page->prev = NULL;
page->next = NULL;
}
static
pgb_page_t *pgb__page_create(size_t page_size)
{
pgb_page_t *page = PGB_MALLOC(page_size);
page->size = page_size;
page->gnext = NULL;
pgb__page_clear(page);
return page;
}
static
void pgb__page_remove(pgb_page_t *page)
{
if (page->prev)
page->prev->next = page->next;
if (page->next)
page->next->prev = page->prev;
}
/* Heap */
void pgb_heap_init(pgb_heap_t *heap)
{
heap->gfirst_page = NULL;
heap->glast_page = NULL;
heap->first_page = NULL;
}
void pgb_heap_destroy(pgb_heap_t *heap)
{
pgb_page_t *page = heap->first_page;
while (page) {
pgb_page_t *next = page->next;
PGB_FREE(page);
page = next;
}
heap->gfirst_page = NULL;
heap->glast_page = NULL;
heap->first_page = NULL;
}
static
void pgb__heap_add_page_to_global_list(pgb_heap_t *heap, struct pgb_page *page)
{
if (!heap->gfirst_page)
heap->gfirst_page = page;
else
heap->glast_page->gnext = page;
heap->glast_page = page;
}
static
struct pgb_page *pgb__heap_create_page(pgb_heap_t *heap, size_t size)
{
pgb_page_t *page = pgb__page_create(size);
pgb__heap_add_page_to_global_list(heap, page);
return page;
}
struct pgb_page *pgb_heap_borrow_page(pgb_heap_t *heap, size_t min_size, size_t max_size)
{
if (min_size > max_size)
ASSERT_FALSE_AND_LOG("min_size > max_size"); // fall through; result is acceptable
pgb_page_t *page = heap->first_page;
while (page && page->size < min_size)
page = page->next;
if (!page || page->size > max_size)
return pgb__heap_create_page(heap, min_size);
if (page == heap->first_page)
heap->first_page = page->next;
pgb__page_remove(page);
pgb__page_clear(page);
return page;
}
void pgb_heap_return_page(pgb_heap_t *heap, struct pgb_page *page)
{
if (!heap->first_page) {
heap->first_page = page;
page->prev = NULL;
page->next = NULL;
} else if (page->size <= heap->first_page->size) {
page->prev = NULL;
page->next = heap->first_page;
heap->first_page->prev = page;
heap->first_page = page;
} else {
pgb_page_t *prev = NULL;
pgb_page_t *next = heap->first_page;
while (next && page->size > next->size) {
prev = next;
next = next->next;
}
if (prev)
prev->next = page;
if (next)
next->prev = page;
page->prev = prev;
page->next = next;
}
}
void pgb_heap_create_page(pgb_heap_t *heap, size_t size)
{
pgb_heap_return_page(heap, pgb__heap_create_page(heap, size));
}
bool pgb_heap_has_page(const pgb_heap_t *heap, const struct pgb_page *page)
{
pgb_page_t *p = heap->first_page;
while (p) {
if (p == page)
return true;
p = p->next;
}
return false;
}
void pgb_heap_move_all_pages(pgb_heap_t *dst, pgb_heap_t *src)
{
pgb_page_t *page = src->first_page;
while (page) {
pgb_page_t *next = page->next;
pgb_heap_return_page(dst, page);
page = next;
}
if (src->gfirst_page)
pgb__heap_add_page_to_global_list(dst, src->gfirst_page);
src->gfirst_page = NULL;
src->glast_page = NULL;
src->first_page = NULL;
}
/* Allocator */
void pgb_init(pgb_t *pgb, pgb_heap_t *heap)
{
pgb->heap = heap;
pgb->current_page = NULL;
pgb->current_ptr = NULL;
pgb->last_mark = (pgb_watermark_t){0};
}
static
void pgb__pop_page(pgb_t *pgb)
{
if (!pgb->current_page) {
ASSERT_FALSE_AND_LOG("current_page is NULL");
return;
}
pgb_page_t *prev = pgb->current_page->prev;
pgb_heap_return_page(pgb->heap, pgb->current_page);
pgb->current_page = prev;
if (prev)
prev->next = NULL;
}
static
bool pgb__mark_valid(pgb_watermark_t mark)
{
return mark.data.pgb && mark.data.page && mark.data.ptr;
}
void pgb_destroy(pgb_t *pgb)
{
if (!pgb->heap)
ASSERT_FALSE_AND_LOG("heap is NULL");
if (pgb->current_page && pgb->current_page->next)
ASSERT_FALSE_AND_LOG("destroying with pages unfreed");
if (pgb__mark_valid(pgb->last_mark))
ASSERT_FALSE_AND_LOG("destroying with last mark still valid");
while (pgb->current_page)
pgb__pop_page(pgb);
pgb->heap = NULL;
pgb->current_page = NULL;
pgb->current_ptr = NULL;
pgb->last_mark = (pgb_watermark_t){0};
}
static
void pgb__add_page(pgb_t *pgb, pgb_page_t *page)
{
if (pgb->current_page)
pgb->current_page->next = page;
page->prev = pgb->current_page;
pgb->current_page = page;
pgb->current_ptr = pgb__page_first_usable_slot(page);
}
static
void pgb__add_page_for_alloc(pgb_t *pgb, size_t alloc_size, size_t *aligned_size)
{
const size_t min_page_size = pgb__page_min_size_for_alloc(alloc_size);
const size_t max_page_size = pgb__page_max_size_for_alloc(alloc_size);
pgb_page_t *page = pgb_heap_borrow_page(pgb->heap, min_page_size, max_page_size);
pgb__add_page(pgb, page);
*aligned_size = pgb__page_align(alloc_size, page);
}
void *pgb_malloc(size_t size, pgb_t *pgb MEMCALL_ARGS)
{
pgb_byte *ptr;
size_t aligned_size;
if (size == 0)
return NULL;
if (!pgb->current_page) {
pgb__add_page_for_alloc(pgb, size, &aligned_size);
} else {
aligned_size = pgb__page_align(size, pgb->current_page);
if (pgb->current_ptr + aligned_size > pgb__page_end(pgb->current_page))
pgb__add_page_for_alloc(pgb, size, &aligned_size);
}
ptr = pgb->current_ptr;
pgb__alloc_set_sz(ptr, pgb->current_page, aligned_size);
pgb->current_ptr += aligned_size;
PGB_LOG_ALLOC("pgb", aligned_size MEMCALL_VARS);
return ptr;
}
void *pgb_calloc(size_t nmemb, size_t size, pgb_t *pgb MEMCALL_ARGS)
{
void *ptr = pgb_malloc(nmemb * size, pgb MEMCALL_VARS);
memset(ptr, 0, nmemb * size);
return ptr;
}
static
bool pgb__find_page_for_ptr(pgb_t *pgb, const void *ptr, pgb_page_t **ppage)
{
pgb_page_t *page = pgb->current_page;
while (page && !pgb__ptr_in_page(ptr, page))
page = page->prev;
if (page)
*ppage = page;
return page != NULL;
}
static
void pgb__restore_current_page_ptr(pgb_t *pgb, size_t slot)
{
pgb_page_t *page = pgb->current_page;
for (size_t i = slot; i > 0; --i) {
if (page->alloc_sizes[i-1] != 0) {
pgb_byte *ptr = pgb__slot_get_alloc(page, i-1);
pgb->current_ptr = ptr + pgb__alloc_get_sz(ptr, page);
return;
}
}
ASSERT_FALSE_AND_LOG("should have encountered header");
pgb->current_ptr = pgb__page_first_usable_slot(page);
}
#ifndef NDEBUG
static
bool pgb__ptr_freed_by_mark(pgb_watermark_t mark,
const pgb_page_t *page,
const pgb_byte *ptr)
{
if (mark.data.page == page) {
return ptr >= mark.data.ptr;
} else {
for (const pgb_page_t *p = mark.data.page->prev; p; p = p->prev)
if (p == page)
return false;
return true;
}
}
#endif
bool pgb_has_page(const pgb_t *pgb, const struct pgb_page *page)
{
const pgb_page_t *p = pgb->current_page;
while (p && p != page)
p = p->prev;
return p != NULL;
}
static
void *pgb__realloc(pgb_byte *ptr, size_t size, pgb_t *pgb MEMCALL_ARGS)
{
pgb_page_t *page;
size_t old_size;
if (!pgb__find_page_for_ptr(pgb, ptr, &page)) {
ASSERT_FALSE_AND_LOG("memory leak");
#ifdef PGB_TRACK_MEMORY
PGB_LOG("pgb_realloc: memory leak @ %s", loc);
#endif
return NULL;
}
old_size = pgb__alloc_get_sz(ptr, page);
/* Avoid the case where a pointer was not set to be freed by the last watermark,
* but it will be after reallocation.
* Left as conventional assert since checking this in release would entail a pointer chase
* and it doesn't seem worth doing that constantly given the potential harm seems low.
*/
assert( !pgb__mark_valid(pgb->last_mark)
|| pgb__ptr_freed_by_mark(pgb->last_mark, page, ptr));
if ((old_size = pgb__alloc_get_sz(ptr, page)) >= size) {
return ptr;
} else if ( page == pgb->current_page
&& ptr + old_size == pgb->current_ptr
&& ptr + pgb__page_align(size, pgb->current_page)
<= pgb__page_end(pgb->current_page)) {
const size_t aligned_size = pgb__page_align(size, pgb->current_page);
pgb__alloc_set_sz(ptr, pgb->current_page, aligned_size);
pgb->current_ptr = ptr + aligned_size;
PGB_LOG_REALLOC("pgb", aligned_size MEMCALL_VARS);
return ptr;
} else {
pgb__alloc_set_sz(ptr, page, 0);
pgb_byte *new_ptr = pgb_malloc(size, pgb MEMCALL_VARS);
memcpy(new_ptr, ptr, old_size);
return new_ptr;
}
}
void *pgb_realloc(void *ptr, size_t size, pgb_t *pgb MEMCALL_ARGS)
{
if (ptr) {
if (size) {
return pgb__realloc(ptr, size, pgb MEMCALL_VARS);
} else {
pgb_free(ptr, pgb MEMCALL_VARS);
return NULL;
}
} else if (size) {
return pgb_malloc(size, pgb MEMCALL_VARS);
} else {
return NULL;
}
}
void pgb_free(void *ptr_, pgb_t *pgb MEMCALL_ARGS)
{
pgb_byte *ptr = ptr_;
pgb_page_t *page;
size_t slot;
size_t size;
if (!ptr)
return;
if (!pgb__find_page_for_ptr(pgb, ptr, &page)) {
ASSERT_FALSE_AND_LOG("memory leak");
#ifdef PGB_TRACK_MEMORY
PGB_LOG("pgb_free: memory leak @ %s", loc);
#endif
return;
}
slot = pgb__alloc_get_slot_idx(ptr, page);
size = pgb__alloc_get_sz(ptr, page);
if (size == 0)
ASSERT_FALSE_AND_LOG("freeing 0 size page");
pgb__alloc_set_sz(ptr, page, 0);
if (ptr + size == pgb->current_ptr) {
pgb__restore_current_page_ptr(pgb, slot);
while ( pgb->current_page
&& pgb->current_ptr == pgb__page_first_usable_slot(pgb->current_page)) {
pgb__pop_page(pgb);
if (pgb->current_page)
pgb__restore_current_page_ptr(pgb, PGB__PAGE_SLOTS);
else
pgb->current_ptr = NULL;
}
} else if (page == pgb->current_page) {
#ifdef PGB_ANALYZE
PGB_LOG("pgb_free: %u bytes out of order @ %s", size, loc);
#endif
} else {
#ifdef PGB_ANALYZE
PGB_LOG("pgb_free: %u bytes out of page @ %s", size, loc);
#endif
}
}
pgb_watermark_t pgb_save(pgb_t *pgb)
{
pgb_watermark_t mark = {
.data = {
.pgb = pgb,
.page = pgb->current_page,
.ptr = pgb->current_ptr,
},
.prev = pgb->last_mark.data,
};
pgb->last_mark.data = mark.data;
return mark;
}
void pgb_restore(pgb_watermark_t watermark)
{
pgb_t *pgb = watermark.data.pgb;
while (pgb->current_page != watermark.data.page)
pgb__pop_page(pgb);
pgb->current_page = watermark.data.page;
pgb->current_ptr = watermark.data.ptr;
if (pgb->current_page) {
const size_t slot = pgb__alloc_get_slot_idx(pgb->current_ptr, pgb->current_page);
memset(&pgb->current_page->alloc_sizes[slot], 0, PGB__PAGE_SLOTS - slot);
pgb->current_page->next = NULL;
}
pgb->last_mark.data = watermark.prev;
}
size_t pgb_alloc_size(const pgb_t *pgb, const void *ptr)
{
pgb_page_t *page;
return pgb__find_page_for_ptr((pgb_t*)pgb, ptr, &page)
? pgb__alloc_get_sz(ptr, page) : 0;
}
void pgb_stats(const pgb_t *pgb, size_t *bytes_used, size_t *pages_used,
size_t *bytes_available, size_t *pages_available)
{
pgb_page_t *page;
*bytes_used = 0;
*pages_used = 0;
page = pgb->current_page;
if (page) {
*bytes_used += pgb->current_ptr - pgb__page_first_usable_slot(page);
++*pages_used;
page = page->prev;
}
while (page) {
*bytes_used += page->size;
++*pages_used;
page = page->prev;
}
*bytes_available = 0;
*pages_available = 0;
page = pgb->heap->first_page;
while (page) {
*bytes_available += page->size;
++*pages_available;
page = page->next;
}
}
void pgb_watermark_stats(pgb_watermark_t mark, size_t *bytes_used, size_t *pages_used)
{
pgb_t *pgb = mark.data.pgb;
pgb_page_t *page = pgb->current_page;
*bytes_used = 0;
*pages_used = 0;
if (page && page != mark.data.page) {
*bytes_used += pgb->current_ptr - pgb__page_first_usable_slot(page);
*pages_used += 1;
page = page->prev;
}
while (page && page != mark.data.page) {
*bytes_used += page->size;
*pages_used += 1;
page = page->prev;
}
if (page != mark.data.page) {
*bytes_used = 0;
*pages_used = 0;
ASSERT_FALSE_AND_LOG("mark page not found");
} else if (page) {
*bytes_used += pgb__page_end(page) - mark.data.ptr;
*pages_used += 1;
}
}
#undef PGB_IMPLEMENTATION
#endif // PGB_IMPLEMENTATION