
SwiftUI at Scale
Richard Topchii

What is “at scale”?

What is “at scale”?

What is “at scale”?

📱
>1B devices

What is “at scale”?

📱
>1B devices

💰
Important decisions

1
Day to develop

“The App”

A different scale

A different scale

Multiple developers work with
multiple code bases

FS Protection App

FS Protection App

• SuperApp

FS Protection App

• SuperApp
• Modular architecture

FS Protection App

• SuperApp
• Modular architecture
• Shared code with Mac

FS Protection App

Password Vault

SwiftUI Tips

SwiftUI Tips

SwiftUI Tips

Healthy Previews

Healthy Previews

Healthy Previews
Preview Crashes when…

• The project is too big

• Build takes too long

• Runtime error due to side effects

Healthy Previews
Separating UI from the Model

UI

Model

“Normal” app

One target

Healthy Previews
Separating UI from the Model

UI

Model

“Normal” app SwiftUI-Optimized

Healthy Previews
Separating UI from the Model

UI

Model

“Normal” app SwiftUI-Optimized

UI

Healthy Previews
Separating UI from the Model

UI

Model

“Normal” app SwiftUI-Optimized

UI

Model

Healthy Previews
Separating UI from the Model

UI

Model

“Normal” app SwiftUI-Optimized

UI

Model

ModelMock

Healthy Previews
Separating UI from the Model

UI

Model

“Normal” app SwiftUI-Optimized

UI

Model

ModelMock

Preview Target

Healthy Previews: Code

Healthy Previews: Code

Healthy Previews: Code

import SwiftUI

protocol ModelProtocol {} 

class ModelReal: ModelProtocol {}

class ModelMock: ModelProtocol {}

Healthy Previews: Code

import SwiftUI

protocol ModelProtocol {} 

class ModelReal: ModelProtocol {}

class ModelMock: ModelProtocol {}

Very Lightweight

Healthy Previews: Code

struct MyView: View {

 let model: ModelProtocol

 var body: some View {

 Circle()

 }

}

Healthy Previews: Code

struct MyView_Previews: PreviewProvider {

 static let modelMock: ModelProtocol =
ModelMock()

 static var previews: some View {

 MyView(model: modelMock)

 }

}

Use Swift Package Manager

Use Swift Package Manager

Model

UI

ModelMock

Package 1 Package 2

Use Swift Package Manager

Model

UI

ModelMock

UI

ModelMock

iOS Mac

Package 1 Package 2 Package 3

Use Swift Package Manager

Model

UI

ModelMock

UI

ModelMock

iOS Mac

Team iOS Both Teams Team Mac

Localizations

Localizations

Text("Localized Text")

Localizations

Text("Localized Text")

Bundle: main

Localizations

Text("Localized Text")

Text("Localized Text", bundle: .module)

Localizations

Text("Localized Text")

Text("Localized Text", bundle: .module)

Shared UI

Shared UI

Model

UI

ModelMock

UI

ModelMock

iOS Mac

Team iOS Both Teams Team Mac

Shared UI

Model

UI

ModelMock

UI

ModelMock

iOS Mac

Team iOS Both Teams Team Mac

Shared UI

SharedUIUI UI

iOS Mac

Team iOS Both Teams Team Mac

Shared Library

Shared UI

SharedUIUI UI

iOS Mac

Team iOS Both Teams Team Mac

Shared Library

DesignSystem

Memory Management

Memory Management: UIKit

ViewController

Model

Memory Management: UIKit

ViewController

Model

ViewController

Model

Memory Management: UIKit

ViewController

Model

ViewController

Model

Deallocated

Memory Management: UIKit, case 2

ViewController ViewController

Model

Memory Management: UIKit, case 2

ViewController ViewController

Model

Deallocated

Stays in memory

Memory Management: SwiftUI

Memory Management: SwiftUI
final class ViewModel: ObservableObject {

 @Published var title = "Title"

 @Published var subtitle = "Title" 
}

SwiftUI View is a struct

Memory Management: SwiftUI

@StateObject
@State

Memory Management: SwiftUI

@StateObject
@State

@ObservedObject

Memory Management: SwiftUI

@StateObject
@State

@ObservedObject

View Creates and owns
Is kept across view regeneration View Just Observes

Memory Management: SwiftUI
final class ViewModel: ObservableObject {

 @Published var title = "Title"

 @Published var subtitle = "Title" 
}

 @ObservedObject private var viewModel: ViewModelType 
 
 init(viewModel: ViewModelType,

 self.viewModel = viewModel) {

 }

Memory Management: SwiftUI

Model

Screen 1 Screen 2 Screen 3

AppDelegate

@ObservedObject

Memory Management: SwiftUI

Model 1

Screen 1 Screen 2 Screen 3

Model 2 Model 3

Memory Management: SwiftUI

Model 1

Screen 1 Screen 2 Screen 3

Model 2 Model 3

@StateObject

Memory Management: SwiftUI

 @StateObject private var viewModel: ViewModel 
 
 init(viewModel: ViewModel,

 self._viewModel = StateObject(wrappedValue: viewModel)

 }

Memory Management: SwiftUI

 @StateObject private var viewModel: ViewModel 
 
 init(viewModel: ViewModel,

 self._viewModel = StateObject(wrappedValue: viewModel)

 }

🛑 STOP

Memory Management: SwiftUI

 @StateObject private var viewModel: ViewModel 
 
 init(viewModel: ViewModel,

 self._viewModel = StateObject(wrappedValue: viewModel)

 }

View Model is created multiple times

Memory Management: SwiftUI

 @StateObject private var viewModel: ViewModel 
 
 init(viewModel: @autoclosure @escaping () -> ViewModel,

 self._viewModel = StateObject(wrappedValue: viewModel())

 }

Memory Management: SwiftUI

 @StateObject private var viewModel: ViewModel 
 
 init(viewModel: @autoclosure @escaping () -> ViewModel,

 self._viewModel = StateObject(wrappedValue: viewModel())

 }

MyView(viewModel: MyViewModel())

Memory Management: SwiftUI

 @StateObject private var viewModel: ViewModel 
 
 init(viewModel: @autoclosure @escaping () -> ViewModel,

 self._viewModel = StateObject(wrappedValue: viewModel())

 }

1. Capturing the closure

2. Executing3. Assigning

Q&A

FS Protection
Download from the AppStore

