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A different scale

Multiple developers work with 
multiple code bases
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• SuperApp
• Modular architecture
• Shared code with Mac
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Healthy Previews
Preview Crashes when…

• The project is too big


• Build takes too long


• Runtime error due to side effects
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import SwiftUI


protocol ModelProtocol {} 

class ModelReal: ModelProtocol {}

class ModelMock: ModelProtocol {}



Healthy Previews: Code

import SwiftUI


protocol ModelProtocol {} 

class ModelReal: ModelProtocol {}

class ModelMock: ModelProtocol {}

Very Lightweight



Healthy Previews: Code

struct MyView: View {

    let model: ModelProtocol


    var body: some View {

        Circle()

    }

}



Healthy Previews: Code

struct MyView_Previews: PreviewProvider {

    static let modelMock: ModelProtocol = 
ModelMock()

    static var previews: some View {

        MyView(model: modelMock)

    }

}
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Use Swift Package Manager
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iOS Mac
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Shared Library

DesignSystem



Memory Management



Memory Management: UIKit

ViewController

Model



Memory Management: UIKit

ViewController

Model

ViewController

Model



Memory Management: UIKit

ViewController

Model

ViewController

Model

Deallocated



Memory Management: UIKit, case 2

ViewController ViewController

Model



Memory Management: UIKit, case 2

ViewController ViewController

Model

Deallocated

Stays in memory
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Memory Management: SwiftUI
final class ViewModel: ObservableObject {

    @Published var title = "Title"

    @Published var subtitle = "Title" 
}



SwiftUI View is a struct
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Memory Management: SwiftUI

@StateObject
@State

@ObservedObject

View Creates and owns 
Is kept across view regeneration View Just Observes



Memory Management: SwiftUI
final class ViewModel: ObservableObject {

    @Published var title = "Title"

    @Published var subtitle = "Title" 
}

    @ObservedObject private var viewModel: ViewModelType 
 
    init(viewModel: ViewModelType,

        self.viewModel = viewModel) {

    }
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Model

Screen 1 Screen 2 Screen 3

AppDelegate

@ObservedObject
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    @StateObject private var viewModel: ViewModel 
 
    init(viewModel: ViewModel,

        self._viewModel = StateObject(wrappedValue: viewModel)

    }

🛑 STOP



Memory Management: SwiftUI

    @StateObject private var viewModel: ViewModel 
 
    init(viewModel: ViewModel,

        self._viewModel = StateObject(wrappedValue: viewModel)

    }

View Model is created multiple times
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    @StateObject private var viewModel: ViewModel 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Memory Management: SwiftUI

    @StateObject private var viewModel: ViewModel 
 
    init(viewModel: @autoclosure @escaping () -> ViewModel,

        self._viewModel = StateObject(wrappedValue: viewModel())

    }

MyView(viewModel: MyViewModel())



Memory Management: SwiftUI

    @StateObject private var viewModel: ViewModel 
 
    init(viewModel: @autoclosure @escaping () -> ViewModel,

        self._viewModel = StateObject(wrappedValue: viewModel())

    }

1. Capturing the closure

2. Executing3. Assigning



Q&A



FS Protection
Download from the AppStore


