-
-
Notifications
You must be signed in to change notification settings - Fork 2
/
README.Rmd
276 lines (205 loc) · 8.86 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
---
output: github_document
---
```{r, echo = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/"
)
```
[![saythanks](https://img.shields.io/badge/say-thanks-ff69b4.svg)](https://saythanks.io/to/robsalasco)
[![Donate](https://img.shields.io/badge/donate-paypal-green.svg)](https://www.paypal.com/cgi-bin/webscr?cmd=_donations&business=WDDLRUVD344XL¤cy_code=USD&source=url)
[![Rbuildstatus](https://github.com/robsalasco/sinimr/workflows/R-CMD-check/badge.svg)](https://github.com/robsalasco/sinimr/actions)
[![CoverageStatus](https://img.shields.io/codecov/c/github/robsalasco/sinimr/master.svg)](https://codecov.io/github/robsalasco/sinimr?branch=master)
# sinimR <img src="man/figures/sinimR_hexSticker.png" width = "175" height = "200" align="right" />
Chilean Municipalities Information System Wrapper
### What can I do with this?
This R package allows easy SINIM (http://sinim.gov.cl) data retrieval what have advantages over the site:
- When you work with multiple variables or years it will be very useful for rapid analyses.
- Fast ploting directly from data source using the included geometries.
- Data download with or without monetary correction using a switch.
```{r, message=F, fig.height=6, fig.width=6, fig.retina=2}
library(dplyr)
library(sinimr)
library(sf)
library(tmap)
varcode <- 882
var <- get_sinim(varcode, 2018,
region = 13,
truevalue = T,
geometry = T,
auc = T,
unit = "limites")
gran_santiago_plot <- tm_shape(var) +
tm_fill(col = "value",
palette = "BuPu",
border.col = "white",
border.alpha = 0.5,
lwd=1,
style = "jenks",
title = get_sinim_var_name(varcode))+
tm_text("municipality", size = 0.4, style="jenks") +
tm_legend(legend.position = c("left", "top"), legend.title.size = 1, legend.text.size = 0.6) +
tm_compass(type = "8star", position = c(.85, .80)) +
tm_scale_bar(breaks = c(0, 10), text.size = 0.75, position = c("right", "bottom")) +
tm_credits("Fuente: Sistema Nacional de Información Municipal (SINIM), SUBDERE, Ministerio del Interior.", position=c("left", "bottom"), size=0.55)+
tm_layout(legend.width=1,
inner.margins = c(0.1, 0.1, 0.10, 0.1),
legend.format = list(text.separator = "a",
fun = mm)) +
tm_borders(col = 'black')
gran_santiago_plot
```
### Support
FONDECYT Regular 2016 Nº 1161417, ¿Quién es responsable del desarrollo local? Una geografía política del neoestructuralismo en "comunas de exportación" (Comisión Nacional de Investigación Científica y Tecnológica).
### A note on usage
When querying the API, please be respectful of the resources required to provide this data. Please retain the results for each request to avoid repeated requests for duplicate information.
### Installation
```R
install.packages("devtools")
devtools::install_github("robsalasco/sinimr")
```
### How do I use it?
sinimR comes with a small set of functions to deliver the content of SINIM's webpage. To get a first glance of the categories of information what are available please use the ```get_sinim_cats()``` command.
```{r}
library(sinimr)
get_sinim_cats()
```
Every category have a bunch of variables associated. Use the CODE number and the ```get_sinim_vars()``` function to get them.
```{r}
get_sinim_vars(517)
```
Finally, to obtain the data across municipalities use the code column and specify a year.
```{r}
head(get_sinim(c(4210, 4211), 2015))
```
By default the values are in **miles de millones** but it can be disabled using the ```truevalue = T``` switch.
```{r}
head(get_sinim(c(4210, 4211), 2015, truevalue = T))
```
You can get multiple years too! use the command ```get_sinim()``` and add more years as in the example.
```{r}
head(get_sinim(880, 2015:2017))
```
The geometries are available in long format using the ```geometry=T``` argument. By default it uses the **comunal** geographies but the **limite urbano censal** is also available. The switches are ```unit="comunas"``` and ```unit="limites"```. Note: Using **limites** not all features are available because some comunas are not related to urban zones. As shown in the example below you can obtain multiple years and variables in long format.
```{r}
head(get_sinim(882, 2015:2017, geometry=T))
```
Another interesting feature is the possibility to subset by different contexts. e.g if you want the comunas of Antofagasta region this command is available. The command works with or without the presence of the geometry switch and other switches are avaiblable too ```region```, ```provincia``` and ```comuna``` all working with codes.
```{r}
head(get_sinim(882, 2015:2017, geometry=T, region=2))
```
You can get a subset too
```{r}
head(get_sinim(882, 2015:2017, geometry=T, region=c(2,3)))
```
But where obtain the codes? a database is provided and you can filter it using the standard R functions.
```{r}
head(id_geo_census)
```
Related to variables if you don't know what are you looking for use ```search_sinim_vars()```to get search results based on variable descriptions, names and groups.
```{r}
search_sinim_vars("cementerio")
```
## Advanced usage
SINIM (Sistema Nacional de Información Municipal) by default applies a monetary correction to show current values of variables. The original values provided by municipalities are available using the ```moncorr = F``` switch. And if you want geographical identifiers like region or provincia you can apply them using ```idgeo = T``` switch.
### Other example plots
#### Multiple variable faceted plot
```{r, message=F, fig.height=8, fig.width=15, fig.retina=2}
library(tmap)
library(dplyr)
library(stringr)
library(sinimr)
library(sf)
data_sinim <- get_sinim(var = c(3954,4174,880,1226,4251,4173),
year = 2018,
region = 13,
geometry = T,
truevalue = T,
auc = T,
unit = "limites")
gran_santiago_plot <- tm_shape(data_sinim) +
tm_fill(col = "value",
palette = "BuPu",
border.col = "white",
border.alpha = 0.5,
lwd=1,
style = "jenks",
title = "variable")+
tm_text("municipality", size = 0.4) +
tm_style("white", frame = T, legend.title.size = 1, legend.width=1) +
tm_layout(inner.margins = c(0.01, 0.1, 0.1, 0.01),
outer.margins = c(0.01, 0.01, 0.01, 0.01),
design.mode=F,
legend.format = list(text.separator = "a",
fun = mm))+
tm_borders(col = 'black') +
tm_facets(by="variable", ncol = 2)
gran_santiago_plot
```
#### A variable in multiple years using facets
```{r, message=F, fig.height=10, fig.width=18, fig.retina=2}
library(dplyr)
library(sinimr)
library(sf)
library(tmap)
var <- get_sinim(c(880, 882, 1226),
2016:2018,
region = 13,
truevalue = T,
geometry = T,
auc = T,
unit = "limites")
gran_santiago_plot <- tm_shape(var) +
tm_fill("value",
palette="BuPu",
border.col = "white",
style = "jenks",
border.alpha = 0.5,
lwd=1) +
tm_text("municipality", size = 0.4) +
tm_legend(legend.position = c("left", "top")) +
tm_layout(legend.width=0.09,
inner.margins = c(0.01, 0.1, 0.1, 0.01),
outer.margins = c(0.01, 0.01, 0.01, 0.01),
legend.format = list(text.separator = "a",
fun = mm)) +
tm_facets(by=c("year","variable"),) +
tm_borders(col = 'black')
gran_santiago_plot
```
#### Multiple variables and years using geofacet
```{r, message=F, fig.height=12, fig.width=24, fig.retina=2}
library(sf)
library(dplyr)
library(geofacet)
library(sinimr)
library(ggplot2)
library(zoo)
library(scales)
library(ggpubr)
data <- get_sinim(882, 2002:2018,
region = 13,
moncorr = F,
truevalue = T,
auc = T)
data$year <- as.numeric(as.character(data$year))
data$year <- as.Date(as.yearmon(data$year, "1-%y"))
reg13 <- geogrid::read_polygons("https://raw.githubusercontent.com/robsalasco/precenso_2016_geojson_chile/master/Extras/GRAN_SANTIAGO.geojson")
grd <- grid_auto(reg13, seed = 1, names = "NOM_COMUNA", codes = "COMUNA")
#grid_preview(grd, label = "name_NOM_COMUNA")
#grid_design(grd, label = "name_NOM_COMUNA")
ggplot(data, aes(year, value, group=1)) +
geom_line(color = "steelblue") +
facet_geo(~ municipality, grid = grd, scales = "free_y")+
scale_x_date() +
scale_y_continuous(labels = dollar_format(suffix = "", prefix = "$", big.mark = ".", decimal.mark=","))+
theme_bw()
```
### Citation
```{r}
citation("sinimr")
```
### References
- Sistema Nacional de Información Municipal (SINIM), SUBDERE, Ministerio del Interior.