-
Notifications
You must be signed in to change notification settings - Fork 0
/
models.py
75 lines (55 loc) · 3.11 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
## TODO: define the convolutional neural network architecture
import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
# can use the below import should you choose to initialize the weights of your Net
import torch.nn.init as I
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
## TODO: Define all the layers of this CNN, the only requirements are:
## 1. This network takes in a square (same width and height), grayscale image as input
## 2. It ends with a linear layer that represents the keypoints
## it's suggested that you make this last layer output 136 values, 2 for each of the 68 keypoint (x, y) pairs
# As an example, you've been given a convolutional layer, which you may (but don't have to) change:
# 1 input image channel (grayscale), 32 output channels/feature maps, 5x5 square convolution kernel
#self.conv1 = nn.Conv2d(1, 32, 5)
self.conv1=nn.Conv2d(1,32,3)
self.conv2=nn.Conv2d(32,64,3,padding=(1,1))
self.conv3=nn.Conv2d(64,128,3,padding=(1,1))
self.short= nn.Conv2d(32,128,1) ## for resnet connection
self.conv4=nn.Conv2d(128,256,5)
self.pool=nn.MaxPool2d(2,2)
self.fc1= nn.Linear(25*25*256,1000)
self.fc2 = nn.Linear(1000,500)
self.output=nn.Linear(500,136)
## Note that among the layers to add, consider including:
# maxpooling layers, multiple conv layers, fully-connected layers, and other layers (such as dropout or batch normalization) to avoid overfitting
def forward(self, x):
## TODO: Define the feedforward behavior of this model
## x is the input image and, as an example, here you may choose to include a pool/conv step:
## x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv1(x))) ## layer 1 (conv+relu+pool)
residual=self.short(x) ## short connection for resnet (conv to match the size of 3rd layer output)
#print(x.shape)
x = F.relu(self.conv2(x)) ## layer 2 (conv+relu)
#print(x.shape)
x = self.conv3(x) ## layer 3(conv)
x = self.pool(F.relu(x+residual)) ## add the residual got from fist layer to the output of 3rd layer (add+relu+pool)
x = F.dropout(x,p=0.2)
#print(x.shape)
x = self.pool(F.relu(self.conv4(x))) ## layer 4(conv+relu+pool)
x = F.dropout(x,p=0.4)
#print(x.shape)
x = x.view(x.size(0),-1) ## Flatten the output for fc layers
#print(x.shape)
x = F.relu(self.fc1(x)) ## first fullly connected layer of 1000 node + dropout
x = F.dropout(x,p=0.4)
#print(x.shape)
x = F.relu(self.fc2(x)) ## second fully connected layer of 500 node + dropout
x = F.dropout(x,p=0.2)
#print(x.shape)
x = self.output(x) ## final output layer of 136 node
# a modified x, having gone through all the layers of your model, should be returned
return x