
Patterns for Cleaning Up Bug Data

Rodrigo Souza∗†, Christina Chavez∗‡, and Roberto Bittencourt∗§

∗Dept. of Computer Science, Federal University of Bahia, Brazil
†Data Processing Center, Federal University of Bahia, Brazil

‡Fraunhofer Project Center, Federal University of Bahia, Brazil
§Dept. of Exact Sciences, State University of Feira de Santana, Brazil

rodrigo@dcc.ufba.br, flach@dcc.ufba.br, roberto@uefs.br

Abstract—Bug reports provide insight about the quality of an
evolving software and about its development process. Such data,
however, is often incomplete and inaccurate, and thus should
be cleaned before analysis. In this paper, we present patterns
that help both novice and experienced data scientists to discard
invalid bug data that could lead to wrong conclusions.

Index Terms—data analysis, mining software repositories,
patterns, bugs.

I. INTRODUCTION

Bug tracking systems store bug reports for a software

project and keep record of discussion and progress changes

for each bug. This data can be used not only to assess

quality attributes of the software, but also to reason about

its development process. Such richness of information makes

bug reports an invaluable source for data scientists interested

in software engineering.

However, bug tracking systems often contain data that

is inaccurate, incomplete [1], or biased [2]. For example,

changing the status of a bug report to VERIFIED usually

means that, after a resolution was found to the bug, some kind

of software verification (e.g., source code inspection, testing)

was performed and the resolution was considered appropriate.

Sometimes, however, old bug reports are marked as verified

just to help users and developers keep track of current bug

reports [3].

Without proper guidance, it is easy to overlook pitfalls in

the data and draw wrong conclusions. In this paper, we provide

best practices and step-by-step solutions to recurring problems

related to cleaning bug data.

II. DATA SET

Each pattern contains an Examples section with code snip-

pets showing how to apply the pattern on real data. The

snippets are written in R, a programming language for data

analysis1. The data used are bug reports from the project

NetBeans/Platform, made available for the 2011 edition of the

MSR Mining Challenge2.

The NetBeans project uses Bugzilla3 as its bug tracking

system, which stores all data in a MySQL database. The source

code presented here refers to database tables and columns used

1http://www.r-project.org/
2http://2011.msrconf.org/msr-challenge.html
3http://www.bugzilla.org/

TABLE I
SAMPLE OF changes TABLE, HOUR INFO OMITTED.

bug user time field new.value

427 17822 2009-10-30 resolution WONTFIX
500 182 2002-04-12 bug_status CLOSED
755 182 2002-01-11 bug_status REOPENED

by Bugzilla, but it should work with any bug tracking system

with minor changes.

Although the full NetBeans data set contains 57 database

tables, in this paper only three are used: bugs, changes

(originally, bugs_activity), and comments (originally,

longdescs).

The bugs table contains general information about each

bug report, which is identified by a unique number (column

bug). Each bug report has a severity, a priority, and

two timestamps: the time of creation (creation.time), and

the time of the last modification (modif.time).

The comments table contains comments that each user

added to a bug report at some point in time. To reduce

the file size, the comment text was replaced by its MD5

hash (column comment.md5). With high probability, two

comments are represented by the same hash number if and

only if they contain the same text.

The changes table contains all modifications users made

on bug reports over time. This includes changes in priority,

status, resolution, or any other field in a bug report. Each row

contains the new value of a field that was modified by

a user4 at some point in time. Table I shows a sample of

the changes table.

The bug_status field is used to track the progress of

the bug fixing activity. A bug report is created with status

NEW or UNCONFIRMED. Then, its status may be changed to

ASSIGNED, to denote that a user has taken responsibility

on the bug. After that, the bug is RESOLVED, then option-

ally VERIFIED by the quality assurance team, and finally

CLOSED when the next software release comes out. If, after

resolving the bug, someone finds that the resolution was not

appropriate, the status is changed to REOPENED.

All the data and code used in this paper is online5.

4In this context, user denotes a user of the bug tracking system, which can
be either a developer or a final user.

5https://github.com/rodrigorgs/dapse13-bugpatterns

978-1-4673-6296-2/13 c© 2013 IEEE DAPSE 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

26

III. LOOK OUT FOR MASS UPDATES

A. Problem

Determine which changes to bug reports were the result of

a mass update.

B. Context

Changes to a bug report are often the result of an effort

made by developers to triage, fix or verify a bug. Sometimes,

however, hundreds or thousands of bug reports are changed

almost simultaneously. Such changes are not caused by a

burst of productivity; instead, they are the result of a mass

update, often performed with the purpose of cleaning up the

bug tracking system.

Mass updates can also be motivated by a policy change.

In Eclipse Modeling Framework, for instance, developers

decided that bug reports containing fixes that were already

published on their website should have the status VERIFIED6.

A mass status update was needed to make previous bug reports

conform to the new policy.

Mass updates are characterized by a large number of

changes of the same type (e.g., marking a bug report as

VERIFIED or changing a target milestone) made by a single

developer in a short period of time. Often such changes are

accompanied by a comment that is the same for all changes

in the mass update.

C. Solution

First, choose the type of change that you wish to analyze

(e.g., changing a bug status to VERIFIED). Then apply one

of the following solutions.

Solution 1. Select only the changes of the chosen type, along

with the time of the change. Sort the changes by time and then

plot the accumulated number of changes over time as a line

chart.

The line is monotonically increasing, but periods with a

large number of changes will stand out as steep ascents.

Examine the vertical axis to assess whether such ascents

represent a large number of changes (e.g., thousands). If this

is the case, then it is likely that the changes were caused by

a mass update.

Solution 2. Select only the changes of the chosen type,

along with the date of the change, the user who made the

change and the comment. Then, group by similar triples

〈date, user, comment〉, and sort them by number of occur-

rences. Triples with frequency above a given threshold (e.g.,

hundreds) are good candidates for mass updates. You may read

the comment text and look for references to cleanup, policy

change or mass update.

D. Discussion

The first solution is useful for a quick and exploratory

assessment of mass updates, but it is subjective and may be

inaccurate. For example, some projects have testing phases,

in which the verification activity is higher than usual. Such

6See http://wiki.eclipse.org/Modeling_PMC_Meeting,_2007-10-16

2002 2004 2006 2008 2010

0
2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

1
2
0
0
0

time

n
.c

h
a
n
g
e
s

Fig. 1. Accumulated number of changes over time.

phases can be identified by applying the Testing Phase pat-

tern [4]. In this case, the bug status is not mass updated to

VERIFIED; instead, each change reflects an actual verification

effort.

In the second solution, users and their comments are con-

sidered, which helps improve its accuracy. It is a numeric,

objective solution, but it is also more computationally inten-

sive.

E. Examples

Souza and Chavez [3] used the first solution (see Figure

2 in their paper) and a variation of the second without

taking comments into account to detect mass verifications (i.e.,

changes which set the status to VERIFIED). They discarded

all changes that were part of mass updates which changed at

least 50 bug reports.

Solution 1. Here is a sample R code to plot the accumulated

number of verifications over time, which produces Figure 1.

> ver <- subset(changes, field == "bug_status"

+ & new.value == "VERIFIED")

> ver <- ver[order(ver$time),]

> ver$n.changes <- 1:nrow(ver)

> with(ver, plot(n.changes ~ time, type="l"))

In this chart, some line segments are almost vertical (e.g.,

the line between 2002 and 2004). Such segments mark dates

with mass updates.

Solution 2. Here is a sample R code to count updates by

user, date, and comment. First, select only verifications, and

then use the merge operation to associate them with their

respective comments. After that, group and count them as

usual. The 6 records with the highest counts are shown in

Table II.

> library(plyr)

> ver <- subset(changes, field == "bug_status"

+ & new.value == "VERIFIED")

> ver$date <- as.Date(ver$time)

> full <- merge(ver, comments)

> cnt <- count(full, c("date", "user",

+ "comment.md5"))

> cnt <- cnt[order(cnt$freq, decreasing=T),]

27

TABLE II
SAMPLE OF MASS UPDATES, COMMENTS OMITTED.

date user freq

2003-07-01 17822 1703
2003-07-01 17822 972
2003-07-02 17822 447
2005-07-12 182 437
2005-12-20 182 209
2005-07-13 182 181

IV. OLD WINE TASTES BETTER

A. Problem

Determine bug reports that are too recent to be classified.

B. Context

Bug reports change over time. Sometimes, one needs to

classify a bug report according to the eventual occurrence

of some change. For example, suppose that one wants to

predict whether future bug reports will be reopened. To train a

prediction model, each existing bug report has to be classified

as reopening (if it was or will be reopened) or non-reopening

(if it will likely never be reopened). However, for recent bug

reports, it is likely that they were not reopened yet—even

if they will be, eventually. Therefore, recent reports cannot

be accurately classified with available data, and should be

discarded from the training set. The question is how long one

should wait for a change to happen before assuming it will

never happen.

C. Solution

Assume you want to classify each bug report, according to a

particular change (e.g., reopening, fixing), as eventually (if the

change happened or will happen, eventually) or never (if the

change will likely never happen). If the bug report has already

undergone the change, classify it as eventually. If not, then

measure its lifetime, from creation to the last date available in

the data. If the lifetime is long enough (i.e., it is above some

threshold), then classify it as never. If the lifetime is short,

however, one cannot be confident that the change will never

happen, hence discard it from the analysis.

The key is to choose an appropriate threshold for the

lifetime of bug reports. At first, just choose any value (e.g., 30

days). Then, compute the confidence, α, that bugs older than

the threshold will never undergo the change. To do that, first

compute the proportion, c of bug reports that have undergone

the change. Then, compute the proportion of older bug reports

(i.e., which have a lifetime greater than the threshold), t,
that did not undergo the change within the threshold. The

confidence, α, can be approximated by the quotient c/t.
Assess whether α is high enough (most data scientists find

0.95 to be an acceptable value). If it is not, choose another

threshold and recompute α until you are satisfied. After finding

an appropriate threshold, discard bugs with lifetime shorter

than the threshold, because it is not possible to determine,

with confidence α, that they will never undergo the change.

D. Discussion

It is a common mistake to keep recent bug reports. This

is equivalent to choosing a threshold of 0, a value that is too

optimistic. There is a trade-off between the confidence, α, and

the size of the final data set: the higher the confidence, the

higher the number of discarded bugs.

E. Examples

Here’s how to apply this pattern using R to analyze the

change of a bug status to REOPENED. First of all, create a

data frame data, augmenting bugs with information about

their first reopening and their lifetime.

> library(data.table)

> reopenings <- data.table(changes)[

+ field == "bug_status" & new.value == "REOPENED",

+ list(time.first.reopen = min(time)), by=bug]

> data <- merge(bugs, reopenings, all.x=T)

> data$days.to.reopen <- as.numeric(

+ data$time.first.reopen - data$creation.time,

+ units="days")

> last.time <- max(data$modif.time)

> data$lifetime <- as.numeric(

+ last.time - data$creation.time,

+ units="days")

In this example, we use a threshold of 42 days (6 weeks).

Use it to compute α (alpha):

> threshold <- 42

> older <- subset(data, lifetime > threshold)

> c <- sum(is.na(data$days.to.reopen)) / nrow(data)

> t <- sum(is.na(older$days.to.reopen)

+ | older$days.to.reopen > threshold) / nrow(older)

> alpha <- c / t

In this case, we find α = 0.95, an acceptable value.

Therefore, you should only analyze bug reports older than 42

days—which are already stored in the variable older—and

discard the rest. In this case, only 0.7% of the bugs needed to

be discarded.

REFERENCES

[1] J. Aranda and G. Venolia, “The secret life of bugs: Going past the errors
and omissions in software repositories,” in Proc. of the 31st Int. Conf. on

Soft. Engineering, 2009, pp. 298–308.

[2] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein, V. Filkov, and
P. Devanbu, “Fair and balanced?: bias in bug-fix datasets,” in European

Soft. Eng. Conf. and Symposium on the Foundations of Soft. Eng., ser.
ESEC/FSE ’09. ACM, 2009.

[3] R. Souza and C. Chavez, “Characterizing verification of bug fixes in two
open source IDEs.” in Proceedings of the 9th Working Conference on

Mining Software Repositories. IEEE, June 2012.

[4] R. Souza, C. Chavez, and R. Bittencourt, “Patterns for extracting high
level information from bug reports,” in Proceedings of the First Workshop

on Data Analysis Patterns in Software Engineering. IEEE, May 2013.

28

