-
Notifications
You must be signed in to change notification settings - Fork 8
/
phonemeSampleCollection.py
456 lines (370 loc) · 16.7 KB
/
phonemeSampleCollection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
#!/usr/bin/env python
# -*- coding: utf-8 -*-
'''
* Copyright (C) 2017 Music Technology Group - Universitat Pompeu Fabra
*
* This file is part of EUSIPCO2017 phoneme classification
*
* pypYIN is free software: you can redistribute it and/or modify it under
* the terms of the GNU Affero General Public License as published by the Free
* Software Foundation (FSF), either version 3 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the Affero GNU General Public License
* version 3 along with this program. If not, see http://www.gnu.org/licenses/
*
* If you have any problem about this python version code, please contact: Rong Gong
* rong.gong@upf.edu
*
*
* If you want to refer this code, please use this article:
*
'''
import os
import pickle,cPickle,gzip
import numpy as np
from sklearn import mixture,preprocessing
from sklearn.model_selection import train_test_split
import essentia.standard as ess
from phonemeMap import *
from parameters import *
from textgridParser import syllableTextgridExtraction
from trainTestSeparation import getRecordingNamesSimi
from Fdeltas import Fdeltas
from Fprev_sub import Fprev_sub
winAnalysis = 'hann'
N = 2 * framesize # padding 1 time framesize
SPECTRUM = ess.Spectrum(size=N)
MFCC80 = ess.MFCC(sampleRate =fs,
highFrequencyBound =highFrequencyBound,
inputSize =framesize+1,
numberBands =80)
# this MFCC is for pattern classification, which numberBands always be by default
MFCC40 = ess.MFCC(sampleRate =fs,
highFrequencyBound =highFrequencyBound,
inputSize =framesize+1)
WINDOW = ess.Windowing(type=winAnalysis, zeroPadding=N-framesize)
def getFeature(audio, d=True, nbf=False):
'''
MFCC of give audio interval [p[0],p[1]]
:param audio:
:param p:
:return:
'''
mfcc = []
# audio_p = audio[p[0]*fs:p[1]*fs]
for frame in ess.FrameGenerator(audio, frameSize=framesize, hopSize=hopsize):
frame = WINDOW(frame)
mXFrame = SPECTRUM(frame)
bands,mfccFrame = MFCC40(mXFrame)
# mfccFrame = mfccFrame[1:]
mfcc.append(mfccFrame)
if d:
mfcc = np.array(mfcc).transpose()
dmfcc = Fdeltas(mfcc,w=5)
ddmfcc = Fdeltas(dmfcc,w=5)
feature = np.transpose(np.vstack((mfcc,dmfcc,ddmfcc)))
else:
feature = np.array(mfcc)
if not d and nbf:
mfcc = np.array(mfcc).transpose()
mfcc_out = np.array(mfcc, copy=True)
for w_r in range(1,6):
mfcc_right_shifted = Fprev_sub(mfcc, w=w_r)
mfcc_left_shifted = Fprev_sub(mfcc, w=-w_r)
mfcc_out = np.vstack((mfcc_out, mfcc_left_shifted, mfcc_right_shifted))
feature = np.array(np.transpose(mfcc_out),dtype='float32')
# print feature.shape
return feature
def getMFCCBands1D(audio, nbf=False):
'''
mel bands feature [p[0],p[1]], this function only for pdnn acoustic model training
output feature is a 1d vector
it needs the array format float32
:param audio:
:param p:
:param nbf: bool, if we need to neighbor frames
:return:
'''
mfcc = []
# audio_p = audio[p[0]*fs:p[1]*fs]
for frame in ess.FrameGenerator(audio, frameSize=framesize, hopSize=hopsize):
frame = WINDOW(frame)
mXFrame = SPECTRUM(frame)
bands,mfccFrame = MFCC80(mXFrame)
mfcc.append(bands)
if nbf:
mfcc = np.array(mfcc).transpose()
mfcc_right_shifted_1 = Fprev_sub(mfcc, w=1)
mfcc_left_shifted_1 = Fprev_sub(mfcc, w=-1)
mfcc_right_shifted_2 = Fprev_sub(mfcc, w=2)
mfcc_left_shifted_2 = Fprev_sub(mfcc, w=-2)
feature = np.transpose(np.vstack((mfcc,
mfcc_right_shifted_1,
mfcc_left_shifted_1,
mfcc_right_shifted_2,
mfcc_left_shifted_2)))
else:
feature = mfcc
# the mel bands features
feature = np.array(feature,dtype='float32')
return feature
def getMFCCBands2D(audio, nbf=False, nlen=10):
'''
mel bands feature [p[0],p[1]]
output feature for each time stamp is a 2D matrix
it needs the array format float32
:param audio:
:param p:
:param nbf: bool, if we need to neighbor frames
:return:
'''
mfcc = []
# audio_p = audio[p[0]*fs:p[1]*fs]
for frame in ess.FrameGenerator(audio, frameSize=framesize, hopSize=hopsize):
frame = WINDOW(frame)
mXFrame = SPECTRUM(frame)
bands,mfccFrame = MFCC80(mXFrame)
mfcc.append(bands)
if nbf:
mfcc = np.array(mfcc).transpose()
mfcc_out = np.array(mfcc, copy=True)
for ii in range(1,nlen+1):
mfcc_right_shift = Fprev_sub(mfcc, w=ii)
mfcc_left_shift = Fprev_sub(mfcc, w=-ii)
mfcc_out = np.vstack((mfcc_right_shift, mfcc_out, mfcc_left_shift))
feature = mfcc_out.transpose()
else:
feature = mfcc
# the mel bands features
feature = np.array(feature,dtype='float32')
return feature
def getMBE(audio):
'''
mel band energy feature
:param audio:
:return:
'''
mfccBands = []
for frame in ess.FrameGenerator(audio, frameSize=framesize, hopSize=hopsize):
frame = WINDOW(frame)
mXFrame = SPECTRUM(frame)
bands,mfccFrame = MFCC40(mXFrame)
mfccBands.append(bands)
feature = np.array(mfccBands)
return feature
def featureLabel(dic_pho_feature_train):
'''
organize the training feature and label
:param dic_pho_feature_train: input dictionary, key: phoneme, value: feature vectors
:return:
'''
feature_all = []
label_all = []
for key in dic_pho_feature_train:
feature = dic_pho_feature_train[key]
label = [dic_pho_label[key]] * len(feature)
if len(feature):
if not len(feature_all):
feature_all = feature
else:
feature_all = np.vstack((feature_all, feature))
label_all += label
label_all = np.array(label_all,dtype='int64')
scaler = preprocessing.StandardScaler()
scaler.fit(feature_all)
feature_all = scaler.transform(feature_all)
return feature_all, label_all, scaler
def featureReshape(feature, nlen=10):
"""
reshape mfccBands feature into n_sample * n_row * n_col
:param feature:
:return:
"""
n_sample = feature.shape[0]
n_row = 80
n_col = nlen*2+1
feature_reshaped = np.zeros((n_sample,n_row,n_col),dtype='float32')
for ii in range(n_sample):
print ii
feature_frame = np.zeros((n_row,n_col),dtype='float32')
for jj in range(n_col):
feature_frame[:,jj] = feature[ii][n_row*jj:n_row*(jj+1)]
feature_reshaped[ii,:,:] = feature_frame
return feature_reshaped
def dumpFeature(recordings,syllableTierName,phonemeTierName,feature_type='mfcc',dmfcc=True,nbf=False):
'''
dump the MFCC for each phoneme
:param recordings:
:return:
'''
##-- dictionary feature
dic_pho_feature = {}
for _,pho in enumerate(set(dic_pho_map.values())):
dic_pho_feature[pho] = np.array([])
for recording in recordings:
nestedPhonemeLists, numSyllables, numPhonemes \
= syllableTextgridExtraction(textgrid_path,recording,syllableTierName,phonemeTierName)
# audio
wav_full_filename = os.path.join(wav_path,recording+'.wav')
audio = ess.MonoLoader(downmix = 'left', filename = wav_full_filename, sampleRate = fs)()
if feature_type == 'mfcc':
# MFCC feature
mfcc = getFeature(audio, d=dmfcc, nbf=nbf)
elif feature_type == 'mfccBands1D':
mfcc = getMFCCBands1D(audio, nbf=nbf)
mfcc = np.log(100000*mfcc+1)
elif feature_type == 'mfccBands2D':
mfcc = getMFCCBands2D(audio, nbf=nbf, nlen=varin['nlen'])
mfcc = np.log(100000*mfcc+1)
else:
print(feature_type+' is not exist.')
raise
for ii,pho in enumerate(nestedPhonemeLists):
print 'calculating ', recording, ' and phoneme ', str(ii), ' of ', str(len(nestedPhonemeLists))
for p in pho[1]:
# map from annotated xsampa to readable notation
key = dic_pho_map[p[2]]
sf = round(p[0]*fs/float(hopsize)) # starting frame
ef = round(p[1]*fs/float(hopsize)) # ending frame
mfcc_p = mfcc[sf:ef,:] # phoneme syllable
if not len(dic_pho_feature[key]):
dic_pho_feature[key] = mfcc_p
else:
dic_pho_feature[key] = np.vstack((dic_pho_feature[key],mfcc_p))
return dic_pho_feature
def bicGMMModelSelection(X):
'''
bic model selection
:param X: features - observation * dimension
:return:
'''
lowest_bic = np.infty
bic = []
n_components_range = [10,15,20,25,30,35,40,45,50,55,60,65,70]
best_n_components = n_components_range[0]
for n_components in n_components_range:
# Fit a Gaussian mixture with EM
print 'Fitting GMM with n_components =',str(n_components)
gmm = mixture.GaussianMixture(n_components=n_components,
covariance_type='diag')
gmm.fit(X)
bic.append(gmm.bic(X))
if bic[-1] < lowest_bic:
lowest_bic = bic[-1]
best_n_components = n_components
best_gmm = gmm
return best_n_components,gmm
def modelSelection(featureFilename):
'''
print the best n_component for the phoneme in feature file
:param featureFilename:
:return:
'''
# model loading
pkl_file = open(featureFilename, 'rb')
dic_pho_feature_train = pickle.load(pkl_file)
pkl_file.close()
print len(dic_pho_feature_train.keys())
for ii,key in enumerate(dic_pho_feature_train):
X = dic_pho_feature_train[key]
best_n_components = bicGMMModelSelection(X)
print 'The best n_components for',key,'is',str(best_n_components)
def processAcousticModelTrain(mode,syllableTierName,phonemeTierName,featureFilename,gmmModel_path):
'''
:param mode: sourceSeparation, qmLonUpfLaosheng
:param syllableTierName: 'pinyin', 'dian'
:param phonemeTierName: 'details'
:param featureFilename: 'dic_pho_feature_train.pkl'
:param gmmModel_path: in parameters.py
:return:
'''
# model training
dic_pho_feature_train = dumpFeature(recordings_train,syllableTierName,phonemeTierName)
output = open(featureFilename, 'wb')
pickle.dump(dic_pho_feature_train, output)
output.close()
# model loading
pkl_file = open(featureFilename, 'rb')
dic_pho_feature_train = pickle.load(pkl_file)
pkl_file.close()
g = mixture.GaussianMixture(n_components=40,covariance_type='diag')
print len(dic_pho_feature_train.keys())
for ii,key in enumerate(dic_pho_feature_train):
# print key, dic_pho_feature_train[key].shape
print 'fitting gmm ', key, ' ', str(ii), ' of ', str(len(dic_pho_feature_train.keys()))
##-- try just fit the first dim of MFCC
# x = np.expand_dims(dic_pho_feature_train[key][:,0],axis=1)
x = dic_pho_feature_train[key]
print x.shape
g.fit(x)
output = open(os.path.join(gmmModel_path,key+'.pkl'),'wb')
pickle.dump(g, output)
output.close()
if __name__ == '__main__':
if am == 'gmm':
# dump GMM acoustic models
processAcousticModelTrain(mode=dataset,
syllableTierName=syllableTierName,
phonemeTierName=phonemeTierName,
featureFilename='./trainingData/dic_pho_feature_train_'+dataset+'.pkl',
gmmModel_path=gmmModel_path)
elif am == 'cnn':
# dump feature for CNN acoustic model training
recordings_train = getRecordingNamesSimi('TRAIN', dataset)
dic_pho_feature_train = dumpFeature(recordings_train,
syllableTierName,
phonemeTierName,
feature_type='mfccBands2D',
dmfcc=False,
nbf=True)
if dataset == 'qmLonUpfLaosheng':
# dump feature dan role-type, dan dataset is bigger so we split it to two parts
feature_all,label_all, scaler = featureLabel(dic_pho_feature_train)
pickle.dump(scaler,open('./pretrainedDLModels/qmLonUpf/laosheng/scaler_'+dataset+'_phonemeSeg_mfccBands2D.pkl', 'wb'))
feature_all = featureReshape(feature_all,nlen=varin['nlen'])
cPickle.dump((feature_all, label_all),
gzip.open('./trainingData/train_set_all_'+dataset+'_phonemeSeg_mfccBands2D.pickle.gz', 'wb'), cPickle.HIGHEST_PROTOCOL)
feature_train, feature_validation, label_train, label_validation = \
train_test_split(feature_all, label_all, test_size=0.2, stratify=label_all)
#-- dump feature vectors training and validation sets separately
cPickle.dump((feature_train, label_train),
gzip.open('./trainingData/train_set_'+dataset+'_phonemeSeg_mfccBands2D.pickle.gz', 'wb'), cPickle.HIGHEST_PROTOCOL)
cPickle.dump((feature_validation, label_validation),
gzip.open('./trainingData/validation_set_'+dataset+'_phonemeSeg_mfccBands2D.pickle.gz', 'wb'), cPickle.HIGHEST_PROTOCOL)
print feature_train.shape, len(feature_validation), len(label_train), len(label_validation)
elif dataset == 'danAll':
# dump feature dan role-type, dan dataset is bigger so we split it to two parts
feature_all,label_all, scaler = featureLabel(dic_pho_feature_train)
pickle.dump(scaler, open('./pretrainedDLModels/danAll/scaler_' + dataset + '_phonemeSeg_mfccBands2D.pkl', 'wb'))
feature_all = featureReshape(feature_all, nlen=varin['nlen'])
# split feature all
n_sample_all = int(feature_all.shape[0] / 3)
cPickle.dump((feature_all[:n_sample_all, :, :], label_all[:n_sample_all]),
gzip.open('./trainingData/train_set_all_' + dataset + '_phonemeSeg_mfccBands2D_part0.pickle.gz', 'wb'),
cPickle.HIGHEST_PROTOCOL)
cPickle.dump((feature_all[n_sample_all:2 * n_sample_all, :, :], label_all[n_sample_all:2 * n_sample_all]),
gzip.open('./trainingData/train_set_all_' + dataset + '_phonemeSeg_mfccBands2D_part1.pickle.gz', 'wb'),
cPickle.HIGHEST_PROTOCOL)
cPickle.dump((feature_all[2 * n_sample_all:, :, :], label_all[2 * n_sample_all:]),
gzip.open('./trainingData/train_set_all_' + dataset + '_phonemeSeg_mfccBands2D_part2.pickle.gz', 'wb'),
cPickle.HIGHEST_PROTOCOL)
feature_train, feature_validation, label_train, label_validation = \
train_test_split(feature_all, label_all, test_size=0.2, stratify=label_all)
# -- dump feature vectors training and validation sets separately
n_sample_train = int(feature_train.shape[0]/2)
cPickle.dump((feature_train[:n_sample_train,:,:], label_train[:n_sample_train]),
gzip.open('./trainingData/train_set_' + dataset + '_phonemeSeg_mfccBands2D_part0.pickle.gz', 'wb'),
cPickle.HIGHEST_PROTOCOL)
cPickle.dump((feature_train[n_sample_train:,:,:], label_train[n_sample_train:]),
gzip.open('./trainingData/train_set_' + dataset + '_phonemeSeg_mfccBands2D_part1.pickle.gz', 'wb'),
cPickle.HIGHEST_PROTOCOL)
cPickle.dump((feature_validation, label_validation),
gzip.open('./trainingData/validation_set_' + dataset + '_phonemeSeg_mfccBands2D.pickle.gz', 'wb'),
cPickle.HIGHEST_PROTOCOL)
print feature_train.shape, len(label_train), len(label_validation)