Skip to content

Latest commit

 

History

History
323 lines (251 loc) · 13.7 KB

README.md

File metadata and controls

323 lines (251 loc) · 13.7 KB

GL Mathematics with Numpy

GLM offers a set of objects and functions to ease the design of 3D applications while taking advantage of the numpy library. The main objects are vectors (vec2, vec3, vec4), matrices (mat2, mat3, mat4) and vectorized lists (vlist). Vectors and matrices possess several variants depending on the base type (see below) and are memory tracked. This means it is possible to know anytime the smallest contiguous block of memory that has changed. This can be used to maintain a GPU copy up-to-date.

Example usage

This is the code to get the 3D bunny display on the top-right corner. You'll need meshio to read the mesh file and matplotlib to display it.

import glm
import numpy as np

# Read mesh, get vertices (vec3) and face indices (int)
import meshio
mesh = meshio.read("bunny.obj")
vertices, indices = mesh.points, mesh.cells[0].data

# Transform: Model / View / Projection matrix (MVP)
MVP = glm.perspective(25, 1, 1, 100) @ glm.translate(0.1, -0.45, -2.5)
MVP = MVP @ glm.xrotate(20) @ glm.yrotate(45) @ glm.scale(5)

# Apply transform
vertices = glm.to_vec3(glm.to_vec4(vertices) @ M.T)

# Generate faces and sort them
faces = vertices[indices]
faces = faces[np.argsort(-faces[...,2].mean(axis=1))]

# Render faces using matplotlib
import matplotlib.pyplot as plt
from matplotlib.collections import PolyCollection
fig = plt.figure(figsize=(6,6))
ax = fig.add_axes([0,0,1,1], aspect=1, frameon=False, xlim=[-1,+1], ylim=[-1,+1])
ax.add_collection(PolyCollection(faces[...,:2], alpha=0.85, linewidth = 0.5,
                                 facecolor="white", edgecolor="black"))
plt.show()

Vectors & Matrices

The generic notation is:

  • TvecN for vectors
  • TmatN for matrices,

with T in [b, i , u, h, d, f, Ø] and N in [2,3,4].

Symbol Type Size Dtype
b unsigned integer 8 bits np.uint8
i signed integer 32 bits np.int32
u unsigned integer 32 bits np.uint32
h float 16 bits np.float16
Ø float 32 bits np.float32
h float 64 bits np.float64
import glm

# 10 x 3-components vectors of integers (32 bits)
V = glm.ivec3(10)
V.xyz = 1,2,3

# 10 x 3-components vectors of float (32 bits)
V = glm.vec3(10)

# Conversion from vec3 to vec4 (w set to 1)
V = glm.vec4(V)

# Conversion from vec4 to vec3 (xyz divided by w)
V = glm.vec3(V)

# A 4x4 matrix of floats (32 bits)
M = glm.mat4()
M.xyzw = 1,2,3,1

Back to top

Vectorized lists

Vectorized lists (vlist) correspond to ragged arrays where items have the same type but different lengths. There are three way to declare a vectorized list.

import glm

# A list of 3 groups of vectors with size 3,3,4
V = glm.vlist([glm.vec4(3), glm.vec4(3), glm.vec4(3)])

# A list of 3 groups of vectors with size 3,3,4
V = glm.vlist(glm.vec4(10), [3,3,4])

# A list of 5 groups of vectors with size 2
V = glm.vlist(glm.vec4(10), 2)

# Display each item
for v in V: print(v)

The underlying structure is a regular numpy array (vlist.data).

Back to top

GL and GLU

  • glm.viewport(x, y, width, height, dtype=np.float32, transpose=False)

    Return a 4x4 matrix that transforms normalized device coordinates to window coordinates.

    Parameters Type Description
    x float Viewport x origin (lower left)
    y float Viewport x origin (lower left)
    width float Viewport width
    height float Viewport height
    dtype dtype Dtype of the resulting matrix
    transpose boolean Whether to transpose result
  • glm.ortho(left, right, bottom, top, znear, zfar, dtype=np.float32, transpose=False)

    Return a 4x4 matrix that produces a parallel projection.

    Parameters Type Description
    left float Left clipping plane
    right float Right clipping plane
    bottom float Bottom clipping plane
    top float Top clipping plane
    znear float Near clipping plane
    zfar float Far clipping plane
    dtype dtype Dtype of the resulting matrix
    transpose boolean Whether to transpose result
  • glm.frustum(left, right, bottom, top, znear, zfar, dtype=np.float32, transpose=False)

    Return a 4x4 matrix that produces a perspective projection.

    Parameters Type Description
    left float Left clipping plane
    right float Right clipping plane
    bottom float Bottom clipping plane
    top float Top clipping plane
    znear float Near clipping plane
    zfar float Far clipping plane
    dtype dtype Dtype of the resulting matrix
    transpose boolean Whether to transpose result
  • glm.perpective(fovy, aspect, znear, zfar, dtype=np.float32, transpose=False)

    Return a 4x4 matrix corresponding to a viewing frustum into the world coordinate system. In general, the aspect ratio in perspective should match the aspect ratio of the associated viewport. For example, aspect = 2.0 means the viewer's angle of view is twice as wide in x as it is in y. If the viewport is twice as wide as it is tall, it displays the image without distortion.

    Parameters Type Description
    fovy float Field of view angle (degrees in the y direction
    aspect float Aspect ratio that determines the field of view in the x direction
    znear float Near clipping plane
    zfar float Far clipping plane
    dtype dtype Dtype of the resulting matrix
    transpose boolean Whether to transpose result
  • glm.scale(x, y, z, dtype=np.float32, transpose=False)

    Return a 4x4 matrix for nonuniform scaling along the x, y, and z axes. The three parameters indicate the desired scale factor along each of the three axes.

    Parameters Type Description
    x float x scale factor
    y float y scale factor
    z float z scale factor
    dtype dtype Dtype of the resulting matrix
    transpose boolean Whether to transpose result
  • glm.fit(V)

    Return vertices fitted to the normalized cube.

    Parameters Type Description
    V vecN Vertices to fit
  • glm.rotate(angle, x, y, z, dtype=np.float32, transpose=False)

    Return a 4x4 matrix for a rotation of angle degrees around the vector (x,y,z).

    Parameters Type Description
    angle float angle in degrees
    x float x scale factor
    y float y scale factor
    z float z scale factor
    dtype dtype Dtype of the resulting matrix
    transpose boolean Whether to transpose result
  • glm.xrotate(angle, dtype=np.float32, transpose=False)

    Return a 4x4 matrix for a rotation of angle degrees around the x axis

    Parameters Type Description
    angle float angle in degrees
    dtype dtype Dtype of the resulting matrix
    transpose boolean Whether to transpose result
  • glm.yrotate(angle, dtype=np.float32, transpose=False)

    Return a 4x4 matrix for a rotation of angle degrees around the y axis

    Parameters Type Description
    angle float angle in degrees
    dtype dtype Dtype of the resulting matrix
    transpose boolean Whether to transpose result
  • glm.zrotate(angle, dtype=np.float32, transpose=False)

    Return a 4x4 matrix for a rotation of angle degrees around the z axis

    Parameters Type Description
    angle float angle in degrees
    dtype dtype Dtype of the resulting matrix
    transpose boolean Whether to transpose result
  • glm.align(U, V, dtype=np.float32, transpose=False)

    Return the rotation matrix M that aligns U to V such that V = U @ M.T

    Parameters Type Description
    U vecN First vector
    V vecN Second vector
    dtype dtype Dtype of the resulting matrix
    transpose boolean Whether to transpose result
  • glm.translate(x, y, z, dtype=np.float32, transpose=False)

    Return a 4x4 matrix for a translation by (x,y,z).

    Parameters Type Description
    x float x scale factor
    y float y scale factor
    z float z scale factor
    dtype dtype Dtype of the resulting matrix
    transpose boolean Whether to transpose result
  • glm.center(V)

    Return vertices centered aroung the origin

    Parameters Type Description
    V vecN Vectices to center
  • glm.lookat(eye, center, up, dtype=np.float32, transpose=False)

    Return a 4x4 a viewing matrix derived from an eye point, a reference point indicating the center of the scene, and an UP vector.

    The matrix maps the reference point to the negative z axis and the eye point to the origin. When a typical projection matrix is used, the center of the scene therefore maps to the center of the viewport. Similarly, the direction described by the UP vector projected onto the viewing plane is mapped to the positive y axis so that it points upward in the viewport. The UP vector must not be parallel to the line of sight from the eye point to the reference point.

    Parameters Type Description
    eye vec3 Eye position
    center vec3 Reference point
    up vec3 Direction of the up vector
    dtype dtype Dtype of the resulting matrix
    transpose boolean Whether to transpose result
  • glm.normalize(V)

    Return the unit vector in the same direction as the original vector

    Parameters Type Description
    V vecN Vector to normalize
  • glm.clamp(value, vmin, vmax)

    Return value bound between vmin and vmax

    Parameters Type Description
    value float or vecN Value to normalize
    vmin float Minimum value
    vmax float Maximum value

Back to top