forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 9
/
binpacking_2d_sat.cc
542 lines (484 loc) · 20.8 KB
/
binpacking_2d_sat.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
// Copyright 2010-2024 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// This file solves a 2D Bin Packing problem.
// It loads the size of the main rectangle, all available items (rectangles
// too), and tries to fit all rectangles in the minimum numbers of bins (they
// have the size of the main rectangle.)
#include <algorithm>
#include <cstdint>
#include <cstdlib>
#include <string>
#include <string_view>
#include <utility>
#include <vector>
#include "absl/container/btree_map.h"
#include "absl/container/btree_set.h"
#include "absl/flags/flag.h"
#include "absl/log/check.h"
#include "absl/strings/str_cat.h"
#include "absl/types/span.h"
#include "google/protobuf/text_format.h"
#include "ortools/base/init_google.h"
#include "ortools/base/logging.h"
#include "ortools/base/path.h"
#include "ortools/packing/binpacking_2d_parser.h"
#include "ortools/packing/multiple_dimensions_bin_packing.pb.h"
#include "ortools/sat/cp_model.h"
#include "ortools/sat/cp_model.pb.h"
#include "ortools/sat/cp_model_solver.h"
#include "ortools/sat/sat_parameters.pb.h"
#include "ortools/sat/util.h"
ABSL_FLAG(std::string, input, "", "Input file.");
ABSL_FLAG(int, instance, -1, "Instance number if the file.");
ABSL_FLAG(std::string, params, "", "Sat parameters in text proto format.");
ABSL_FLAG(int, max_bins, 0,
"Maximum number of bins. The 0 default value implies the code will "
"use some heuristics to compute this number.");
ABSL_FLAG(int, symmetry_breaking_level, 2, "Use symmetry breaking constraints");
ABSL_FLAG(bool, use_global_cumulative, true,
"Use a global cumulative relaxation");
namespace operations_research {
namespace sat {
namespace {
class GreaterByArea {
public:
explicit GreaterByArea(
const packing::MultipleDimensionsBinPackingProblem& problem)
: problem_(problem) {}
bool operator()(int a, int b) const {
const auto& a_sizes = problem_.items(a).shapes(0).dimensions();
const auto& b_sizes = problem_.items(b).shapes(0).dimensions();
return a_sizes.Get(0) * a_sizes.Get(1) > b_sizes.Get(0) * b_sizes.Get(1);
}
private:
const packing::MultipleDimensionsBinPackingProblem& problem_;
};
bool ItemsAreIncompatible(
const packing::MultipleDimensionsBinPackingProblem& problem, int i1,
int i2) {
const auto& bin_sizes = problem.box_shape().dimensions();
const auto& i1_sizes = problem.items(i1).shapes(0).dimensions();
const auto& i2_sizes = problem.items(i2).shapes(0).dimensions();
return (i1_sizes.Get(0) + i2_sizes.Get(0) > bin_sizes[0]) &&
(i1_sizes.Get(1) + i2_sizes.Get(1) > bin_sizes[1]);
}
absl::btree_set<int> FindFixedItems(
const packing::MultipleDimensionsBinPackingProblem& problem) {
absl::btree_set<int> fixed_items;
// We start by fixing big pairwise incompatible items. Each to its own bin.
// See Côté; Haouari; Iori. (2019). A Primal Decomposition Algorithm for the
// Two-dimensional Bin Packing Problem (https://arxiv.org/pdf/1909.06835.pdf).
const int num_items = problem.items_size();
const auto bin_sizes = problem.box_shape().dimensions();
for (int i = 0; i < num_items; ++i) {
if (2 * problem.items(i).shapes(0).dimensions(0) > bin_sizes[0] &&
2 * problem.items(i).shapes(0).dimensions(1) > bin_sizes[1]) {
// Big items are pairwise incompatible. Just fix them in different bins.
fixed_items.insert(i);
}
}
// Now we fixed all items that are too big to fit any two of them in a bin.
// There could still be two items that are incompatible with all the big ones
// and one with one another: a very wide one and a very tall one. Let's fix
// those two too if they exist. Note that if there are no big items
// incompatible_pair_candidates contains all items and we will fix the first
// pairwise incompatible pair.
absl::btree_set<int> incompatible_pair_candidates;
for (int i = 0; i < num_items; ++i) {
if (fixed_items.contains(i)) {
continue;
}
bool incompatible_with_all = true;
for (int item : fixed_items) {
if (!ItemsAreIncompatible(problem, item, i)) {
incompatible_with_all = false;
break;
}
}
if (incompatible_with_all) {
incompatible_pair_candidates.insert(i);
}
}
bool found_incompatible_pair = false;
for (const int i1 : incompatible_pair_candidates) {
for (const int i2 : incompatible_pair_candidates) {
if (i1 == i2) {
continue;
}
if (ItemsAreIncompatible(problem, i1, i2)) {
// We found a pair that is incompatible with all the big items and
// between one another.
fixed_items.insert(i1);
fixed_items.insert(i2);
found_incompatible_pair = true;
break;
}
}
if (found_incompatible_pair) {
break;
}
}
if (!found_incompatible_pair && !incompatible_pair_candidates.empty()) {
// We could not add a pair of mutually incompatible items to our list. But
// we know a set of elements that are incompatible with all the big ones.
// Let's add the one with the largest area. Note that if there are no big
// items, incompatible_pair_candidates contains all items and we will just
// fix the largest element.
fixed_items.insert(*std::min_element(incompatible_pair_candidates.begin(),
incompatible_pair_candidates.end(),
GreaterByArea(problem)));
}
if (fixed_items.size() > 1) {
std::string_view message_end = ".";
if (found_incompatible_pair) {
message_end =
" (including the extra two that are big in only one "
"dimensions).";
} else if (!incompatible_pair_candidates.empty()) {
message_end =
" (including an extra one that is incompatible with all big ones).";
}
LOG(INFO) << fixed_items.size() << " items are pairwise incompatible"
<< message_end;
}
return fixed_items;
}
// Solves a subset sum problem to find the maximum reachable max size.
int64_t MaxSubsetSumSize(absl::Span<const int64_t> sizes, int64_t max_size) {
CpModelBuilder builder;
LinearExpr weighed_sum;
for (const int size : sizes) {
weighed_sum += size * builder.NewBoolVar();
}
builder.AddLessOrEqual(weighed_sum, max_size);
builder.Maximize(weighed_sum);
const CpSolverResponse response = Solve(builder.Build());
CHECK_EQ(response.status(), CpSolverStatus::OPTIMAL);
return static_cast<int64_t>(response.objective_value());
}
} // namespace
// Load a 2D bin packing problem and solve it.
void LoadAndSolve(const std::string& file_name, int instance) {
packing::BinPacking2dParser parser;
if (!parser.Load2BPFile(file_name, instance)) {
LOG(FATAL) << "Cannot read instance " << instance << " from file '"
<< file_name << "'";
}
packing::MultipleDimensionsBinPackingProblem problem = parser.problem();
LOG(INFO) << "Successfully loaded instance " << instance << " from file '"
<< file_name << "'";
LOG(INFO) << "Instance has " << problem.items_size() << " items";
const auto original_bin_sizes = problem.box_shape().dimensions();
const int num_dimensions = original_bin_sizes.size();
const int num_items = problem.items_size();
// Non overlapping.
if (num_dimensions == 1) {
LOG(FATAL) << "One dimension is not supported.";
} else if (num_dimensions != 2) {
LOG(FATAL) << num_dimensions << " dimensions not supported.";
}
// Reduce the size of the bin with subset-sum.
//
// Short correctness proof: For any solution, we can transform it so that each
// item is packed to the bottom and left. That is, touch an item or the bin
// border on these sides. In that case, we can see that there is a "path" from
// the top item, only moving down via touching items, to the bottom edge. And
// similarly from the right most item, moving left, to the left edge. So on
// each coordinate, the maximum size must be expressible as an exact sum of
// the item sizes.
std::vector<int64_t> x_sizes;
std::vector<int64_t> y_sizes;
int64_t sum_of_items_area = 0;
for (const auto& item : problem.items()) {
CHECK_EQ(1, item.shapes_size());
const auto& shape = item.shapes(0);
CHECK_EQ(2, shape.dimensions_size());
sum_of_items_area += shape.dimensions(0) * shape.dimensions(1);
x_sizes.push_back(shape.dimensions(0));
y_sizes.push_back(shape.dimensions(1));
}
std::vector<int64_t> bin_sizes(2);
bin_sizes[0] = MaxSubsetSumSize(x_sizes, original_bin_sizes[0]);
bin_sizes[1] = MaxSubsetSumSize(y_sizes, original_bin_sizes[1]);
if (bin_sizes[0] == original_bin_sizes[0] &&
bin_sizes[1] == original_bin_sizes[1]) {
LOG(INFO) << "Box size: [" << bin_sizes[0] << " * " << bin_sizes[1] << "]";
} else {
LOG(INFO) << "Box size: [" << bin_sizes[0] << " * " << bin_sizes[1]
<< "] reduced from [" << original_bin_sizes[0] << " * "
<< original_bin_sizes[1] << "]";
}
const int64_t area_of_one_bin = bin_sizes[0] * bin_sizes[1];
const int64_t trivial_lb = CeilOfRatio(sum_of_items_area, area_of_one_bin);
LOG(INFO) << "Trivial lower bound of the number of bins = " << trivial_lb;
const int max_bins = absl::GetFlag(FLAGS_max_bins) == 0
? trivial_lb * 2
: absl::GetFlag(FLAGS_max_bins);
if (absl::GetFlag(FLAGS_max_bins) == 0) {
LOG(INFO) << "Setting max_bins to " << max_bins;
}
CpModelBuilder cp_model;
cp_model.SetName(absl::StrCat(
"binpacking_2d_", file::Stem(absl::GetFlag(FLAGS_input)), "_", instance));
// We do not support multiple shapes per item.
for (int item = 0; item < num_items; ++item) {
const int num_shapes = problem.items(item).shapes_size();
CHECK_EQ(1, num_shapes);
}
// Create one Boolean variable per item and per bin.
std::vector<std::vector<BoolVar>> item_to_bin(num_items);
for (int item = 0; item < num_items; ++item) {
item_to_bin[item].resize(max_bins);
for (int b = 0; b < max_bins; ++b) {
item_to_bin[item][b] = cp_model.NewBoolVar();
}
}
// Exactly one bin is selected for each item.
for (int item = 0; item < num_items; ++item) {
cp_model.AddExactlyOne(item_to_bin[item]);
}
const absl::btree_set<int> fixed_items = FindFixedItems(problem);
// Fix the fixed_items to the first fixed_items.size() bins.
CHECK_LE(fixed_items.size(), max_bins)
<< "Infeasible problem, increase max_bins";
int count = 0;
for (const int item : fixed_items) {
cp_model.FixVariable(item_to_bin[item][count], true);
++count;
}
// Detect incompatible pairs of items and add conflict at the bin level.
int num_incompatible_pairs = 0;
for (int i1 = 0; i1 + 1 < num_items; ++i1) {
for (int i2 = i1 + 1; i2 < num_items; ++i2) {
if (fixed_items.contains(i1) && fixed_items.contains(i2)) {
// Both are already fixed to different bins.
continue;
}
if (!ItemsAreIncompatible(problem, i1, i2)) {
continue;
}
num_incompatible_pairs++;
for (int b = 0; b < max_bins; ++b) {
cp_model.AddAtMostOne({item_to_bin[i1][b], item_to_bin[i2][b]});
}
}
}
if (num_incompatible_pairs > 0) {
LOG(INFO) << num_incompatible_pairs << " incompatible pairs of items";
}
// Compute the min size of all items in each dimension.
std::vector<int64_t> min_sizes_per_dimension = bin_sizes;
for (int item = 0; item < num_items; ++item) {
for (int dim = 0; dim < num_dimensions; ++dim) {
min_sizes_per_dimension[dim] =
std::min(min_sizes_per_dimension[dim],
problem.items(item).shapes(0).dimensions(dim));
}
}
// Manages positions and sizes for each item.
//
// Creates the starts variables.
std::vector<std::vector<IntVar>> starts_by_dimension(num_items);
absl::btree_set<int> items_exclusive_in_at_least_one_dimension;
for (int item = 0; item < num_items; ++item) {
starts_by_dimension[item].resize(num_dimensions);
for (int dim = 0; dim < num_dimensions; ++dim) {
const int64_t bin_size = bin_sizes[dim];
const int64_t item_size = problem.items(item).shapes(0).dimensions(dim);
// For item fixed to a given bin, by symmetry, we can also assume it
// is in the lower left corner.
const int64_t start_max = fixed_items.contains(item)
? (bin_size - item_size + 1) / 2
: bin_size - item_size;
starts_by_dimension[item][dim] = cp_model.NewIntVar({0, start_max});
const int64_t size = problem.items(item).shapes(0).dimensions(dim);
if (size + min_sizes_per_dimension[dim] > bin_size) {
items_exclusive_in_at_least_one_dimension.insert(item);
}
}
}
// Creates the optional interval variables, sharing the same IntVar.
std::vector<std::vector<std::vector<IntervalVar>>>
interval_by_item_bin_dimension(num_items);
for (int item = 0; item < num_items; ++item) {
interval_by_item_bin_dimension[item].resize(max_bins);
for (int b = 0; b < max_bins; ++b) {
interval_by_item_bin_dimension[item][b].resize(num_dimensions);
for (int dim = 0; dim < num_dimensions; ++dim) {
const int64_t size = problem.items(item).shapes(0).dimensions(dim);
const IntVar start = starts_by_dimension[item][dim];
interval_by_item_bin_dimension[item][b][dim] =
cp_model.NewOptionalFixedSizeIntervalVar(start, size,
item_to_bin[item][b]);
}
}
}
if (!items_exclusive_in_at_least_one_dimension.empty()) {
int num_items_fixed_in_corner = 0;
int num_items_fixed_on_one_border = 0;
for (const int item : items_exclusive_in_at_least_one_dimension) {
for (int dim = 0; dim < num_dimensions; ++dim) {
if (fixed_items.contains(item)) {
// Since this item is alone on its line (respectively column) and
// effectively divides the bin in two we can put it in one corner. For
// example, for a horizontal long item, solutions where the long item
// sits in the middle would mean that there is also a solution where
// the long item is moved all the way to the bottom.
cp_model.FixVariable(starts_by_dimension[item][dim], 0);
if (dim == 0) ++num_items_fixed_in_corner;
} else {
// Since this item is alone on its line (respectively column), we can
// fix it at the beginning of the line (respectively column). Because
// this item can be in the same bin as a fixed item or another
// exclusive item, we cannot fix it to the bottom left corner.
const int64_t bin_size = bin_sizes[dim];
const int64_t item_size =
problem.items(item).shapes(0).dimensions(dim);
if (item_size + min_sizes_per_dimension[dim] > bin_size) {
cp_model.FixVariable(starts_by_dimension[item][dim], 0);
++num_items_fixed_on_one_border;
}
}
}
}
LOG(INFO) << num_items_fixed_in_corner << " items fixed in one corner";
LOG(INFO) << num_items_fixed_on_one_border << " items fixed on one border";
}
if (absl::GetFlag(FLAGS_symmetry_breaking_level) >= 2) {
// Break symmetry of a permutation of identical items
absl::btree_map<std::pair<int64_t, int64_t>, std::vector<int>>
item_indexes_for_dimensions;
for (int item = 0; item < num_items; ++item) {
item_indexes_for_dimensions[{problem.items(item).shapes(0).dimensions(0),
problem.items(item).shapes(0).dimensions(1)}]
.push_back(item);
}
int num_identical_items = 0;
for (const auto& [dim, item_indexes] : item_indexes_for_dimensions) {
if (item_indexes.size() == 1) {
continue;
}
++num_identical_items;
for (int i = 1; i < item_indexes.size(); ++i) {
const IntVar prev_start_x = starts_by_dimension[item_indexes[i - 1]][0];
const IntVar curr_start_x = starts_by_dimension[item_indexes[i]][0];
const IntVar prev_start_y = starts_by_dimension[item_indexes[i - 1]][1];
const IntVar curr_start_y = starts_by_dimension[item_indexes[i]][1];
cp_model.AddLessOrEqual(prev_start_x * bin_sizes[1] + prev_start_y,
curr_start_x * bin_sizes[1] + curr_start_y);
}
}
if (num_identical_items > 0) {
LOG(INFO) << num_identical_items << " identical items";
}
}
// Add non overlapping constraint.
for (int b = 0; b < max_bins; ++b) {
NoOverlap2DConstraint no_overlap_2d = cp_model.AddNoOverlap2D();
for (int item = 0; item < num_items; ++item) {
no_overlap_2d.AddRectangle(interval_by_item_bin_dimension[item][b][0],
interval_by_item_bin_dimension[item][b][1]);
}
}
// Objective variable.
const IntVar obj = cp_model.NewIntVar({trivial_lb, max_bins});
// Global cumulative.
if (absl::GetFlag(FLAGS_use_global_cumulative)) {
DCHECK_EQ(num_dimensions, 2);
for (int dim = 0; dim < num_dimensions; ++dim) {
const int other_size = bin_sizes[1 - dim];
CumulativeConstraint cumul = cp_model.AddCumulative(obj * other_size);
for (int item = 0; item < num_items; ++item) {
const int size = problem.items(item).shapes(0).dimensions(dim);
const int demand = problem.items(item).shapes(0).dimensions(1 - dim);
cumul.AddDemand(cp_model.NewFixedSizeIntervalVar(
starts_by_dimension[item][dim], size),
demand);
}
}
}
// Maintain one Boolean variable per bin that indicates if the bin is used
// or not.
std::vector<BoolVar> bin_is_used(max_bins);
for (int b = 0; b < max_bins; ++b) {
bin_is_used[b] = cp_model.NewBoolVar();
// Link bin_is_used[i] with the items in bin i.
std::vector<BoolVar> all_items_in_bin;
for (int item = 0; item < num_items; ++item) {
cp_model.AddImplication(item_to_bin[item][b], bin_is_used[b]);
all_items_in_bin.push_back(item_to_bin[item][b]);
}
cp_model.AddBoolOr(all_items_in_bin).OnlyEnforceIf(bin_is_used[b]);
}
// Objective definition.
cp_model.Minimize(obj);
CHECK_GT(trivial_lb, 0);
for (int b = trivial_lb; b < max_bins; ++b) {
cp_model.AddGreaterOrEqual(obj, b + 1).OnlyEnforceIf(bin_is_used[b]);
cp_model.AddImplication(bin_is_used[b], bin_is_used[b - 1]);
}
if (absl::GetFlag(FLAGS_symmetry_breaking_level) >= 1) {
// First sort the items not yet fixed by area.
std::vector<int> not_placed_items;
for (int item = 0; item < num_items; ++item) {
if (!fixed_items.contains(item)) {
not_placed_items.push_back(item);
}
}
std::sort(not_placed_items.begin(), not_placed_items.end(),
GreaterByArea(problem));
// Symmetry breaking: i-th biggest item is in bin <= i for the first
// max_bins items.
int first_empty_bin = fixed_items.size();
for (const int item : not_placed_items) {
if (first_empty_bin + 1 >= max_bins) break;
for (int b = first_empty_bin + 1; b < max_bins; ++b) {
cp_model.FixVariable(item_to_bin[item][b], false);
}
++first_empty_bin;
}
}
// Setup parameters.
SatParameters parameters;
parameters.set_log_search_progress(true);
// Parse the --params flag.
if (!absl::GetFlag(FLAGS_params).empty()) {
CHECK(google::protobuf::TextFormat::MergeFromString(
absl::GetFlag(FLAGS_params), ¶meters))
<< absl::GetFlag(FLAGS_params);
}
// If number of workers is >= 16 and < 24, we prefer replacing
// objective_lb_search by objective_shaving_search.
if (parameters.num_workers() >= 16 && parameters.num_workers() < 24) {
parameters.add_ignore_subsolvers("objective_lb_search");
parameters.add_extra_subsolvers("objective_shaving_search");
}
// We rely on the solver default logging to log the number of bins.
const CpSolverResponse response =
SolveWithParameters(cp_model.Build(), parameters);
}
} // namespace sat
} // namespace operations_research
int main(int argc, char** argv) {
absl::SetFlag(&FLAGS_stderrthreshold, 0);
InitGoogle(argv[0], &argc, &argv, true);
if (absl::GetFlag(FLAGS_input).empty()) {
LOG(FATAL) << "Please supply a data file with --input=";
}
if (absl::GetFlag(FLAGS_instance) == -1) {
LOG(FATAL) << "Please supply a valid instance number with --instance=";
}
operations_research::sat::LoadAndSolve(absl::GetFlag(FLAGS_input),
absl::GetFlag(FLAGS_instance));
return EXIT_SUCCESS;
}