forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 9
/
multi_knapsack_sat.cc
119 lines (101 loc) · 4.04 KB
/
multi_knapsack_sat.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
// Copyright 2010-2024 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Solve a scaled constrained two dimensional knapsack problem.
// Each bin must be filled with items with min and max weights, and min and max
// volumes. As is a knapsack, the objective is to maximize total value. It turns
// out that the objective is to maximize weights.
//
// Data is for 1 bin and 10 items. Scaling is done my having m bins and m copies
// of each items.
#include <cstdint>
#include <string>
#include <vector>
#include "absl/flags/flag.h"
#include "ortools/base/commandlineflags.h"
#include "ortools/base/init_google.h"
#include "ortools/base/logging.h"
#include "ortools/sat/cp_model.h"
ABSL_FLAG(int, size, 16, "scaling factor of the model");
ABSL_FLAG(std::string, params,
"num_workers:8,log_search_progress:true,max_time_in_seconds:10.0",
"Sat parameters");
namespace operations_research {
namespace sat {
static const int kWeightMin = 16000;
static const int kWeightMax = 22000;
static const int kVolumeMin = 1156;
static const int kVolumeMax = 1600;
// Data for a single bin problem
static const int kItemsWeights[] = {1008, 2087, 5522, 5250, 5720,
4998, 275, 3145, 12580, 382};
static const int kItemsVolumes[] = {281, 307, 206, 111, 275,
79, 23, 65, 261, 40};
static const int kNumItems = 10;
void MultiKnapsackSat(int scaling, const std::string& params) {
CpModelBuilder builder;
const int num_items = scaling * kNumItems;
const int num_bins = scaling;
std::vector<std::vector<BoolVar>> items_in_bins(num_bins);
for (int b = 0; b < num_bins; ++b) {
for (int i = 0; i < num_items; ++i) {
items_in_bins[b].push_back(builder.NewBoolVar());
}
}
std::vector<BoolVar> selected_items(num_items);
for (int i = 0; i < num_items; ++i) {
selected_items[i] = builder.NewBoolVar();
}
// Fill up scaled values, weights, volumes;
std::vector<int64_t> values(num_items);
std::vector<int64_t> weights(num_items);
std::vector<int64_t> volumes(num_items);
for (int i = 0; i < num_items; ++i) {
const int index = i % kNumItems;
weights[i] = kItemsWeights[index];
volumes[i] = kItemsVolumes[index];
}
// Constraints per bins.
std::vector<IntVar> bin_weights;
for (int b = 0; b < num_bins; ++b) {
IntVar bin_weight = builder.NewIntVar({kWeightMin, kWeightMax});
bin_weights.push_back(bin_weight);
builder.AddEquality(LinearExpr::WeightedSum(items_in_bins[b], weights),
bin_weight);
builder.AddLinearConstraint(
LinearExpr::WeightedSum(items_in_bins[b], volumes),
{kVolumeMin, kVolumeMax});
}
// Each item is selected at most one time.
for (int i = 0; i < num_items; ++i) {
std::vector<BoolVar> bin_contain_item(num_bins);
for (int b = 0; b < num_bins; ++b) {
bin_contain_item[b] = items_in_bins[b][i];
}
builder.AddEquality(LinearExpr::Sum(bin_contain_item), selected_items[i]);
}
// Maximize the sums of weights.
builder.Maximize(LinearExpr::Sum(bin_weights));
// And solve.
const CpSolverResponse response =
SolveWithParameters(builder.Build(), params);
LOG(INFO) << CpSolverResponseStats(response);
}
} // namespace sat
} // namespace operations_research
int main(int argc, char** argv) {
absl::SetFlag(&FLAGS_stderrthreshold, 0);
InitGoogle(argv[0], &argc, &argv, true);
operations_research::sat::MultiKnapsackSat(absl::GetFlag(FLAGS_size),
absl::GetFlag(FLAGS_params));
return EXIT_SUCCESS;
}