forked from google-deepmind/learning-to-learn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
evaluate.py
93 lines (74 loc) · 3.05 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# Copyright 2016 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Learning 2 Learn evaluation."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from tensorflow.contrib.learn.python.learn import monitored_session as ms
import meta
import util
flags = tf.flags
logging = tf.logging
FLAGS = flags.FLAGS
flags.DEFINE_string("optimizer", "L2L", "Optimizer.")
flags.DEFINE_string("path", None, "Path to saved meta-optimizer network.")
flags.DEFINE_integer("num_epochs", 100, "Number of evaluation epochs.")
flags.DEFINE_integer("seed", None, "Seed for TensorFlow's RNG.")
flags.DEFINE_string("problem", "simple", "Type of problem.")
flags.DEFINE_integer("num_steps", 100,
"Number of optimization steps per epoch.")
flags.DEFINE_float("learning_rate", 0.001, "Learning rate.")
def main(_):
# Configuration.
num_unrolls = FLAGS.num_steps
if FLAGS.seed:
tf.set_random_seed(FLAGS.seed)
# Problem.
problem, net_config, net_assignments = util.get_config(FLAGS.problem,
FLAGS.path)
# Optimizer setup.
if FLAGS.optimizer == "Adam":
cost_op = problem()
problem_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)
problem_reset = tf.variables_initializer(problem_vars)
optimizer = tf.train.AdamOptimizer(FLAGS.learning_rate)
optimizer_reset = tf.variables_initializer(optimizer.get_slot_names())
update = optimizer.minimize(cost_op)
reset = [problem_reset, optimizer_reset]
elif FLAGS.optimizer == "L2L":
if FLAGS.path is None:
logging.warning("Evaluating untrained L2L optimizer")
optimizer = meta.MetaOptimizer(**net_config)
meta_loss = optimizer.meta_loss(problem, 1, net_assignments=net_assignments)
_, update, reset, cost_op, _ = meta_loss
else:
raise ValueError("{} is not a valid optimizer".format(FLAGS.optimizer))
with ms.MonitoredSession() as sess:
# Prevent accidental changes to the graph.
tf.get_default_graph().finalize()
total_time = 0
total_cost = 0
for _ in xrange(FLAGS.num_epochs):
# Training.
time, cost = util.run_epoch(sess, cost_op, [update], reset,
num_unrolls)
total_time += time
total_cost += cost
# Results.
util.print_stats("Epoch {}".format(FLAGS.num_epochs), total_cost,
total_time, FLAGS.num_epochs)
if __name__ == "__main__":
tf.app.run()