diff --git a/compiler/rustc_codegen_llvm/src/context.rs b/compiler/rustc_codegen_llvm/src/context.rs index ea930421b5869..14540d41e7c62 100644 --- a/compiler/rustc_codegen_llvm/src/context.rs +++ b/compiler/rustc_codegen_llvm/src/context.rs @@ -775,10 +775,10 @@ impl<'ll> CodegenCx<'ll, '_> { ifn!("llvm.debugtrap", fn() -> void); ifn!("llvm.frameaddress", fn(t_i32) -> ptr); - ifn!("llvm.powi.f16", fn(t_f16, t_i32) -> t_f16); - ifn!("llvm.powi.f32", fn(t_f32, t_i32) -> t_f32); - ifn!("llvm.powi.f64", fn(t_f64, t_i32) -> t_f64); - ifn!("llvm.powi.f128", fn(t_f128, t_i32) -> t_f128); + ifn!("llvm.powi.f16.i32", fn(t_f16, t_i32) -> t_f16); + ifn!("llvm.powi.f32.i32", fn(t_f32, t_i32) -> t_f32); + ifn!("llvm.powi.f64.i32", fn(t_f64, t_i32) -> t_f64); + ifn!("llvm.powi.f128.i32", fn(t_f128, t_i32) -> t_f128); ifn!("llvm.pow.f16", fn(t_f16, t_f16) -> t_f16); ifn!("llvm.pow.f32", fn(t_f32, t_f32) -> t_f32); diff --git a/compiler/rustc_codegen_llvm/src/intrinsic.rs b/compiler/rustc_codegen_llvm/src/intrinsic.rs index 040de1c7dd715..57d5f6fdf503f 100644 --- a/compiler/rustc_codegen_llvm/src/intrinsic.rs +++ b/compiler/rustc_codegen_llvm/src/intrinsic.rs @@ -35,10 +35,10 @@ fn get_simple_intrinsic<'ll>( sym::sqrtf64 => "llvm.sqrt.f64", sym::sqrtf128 => "llvm.sqrt.f128", - sym::powif16 => "llvm.powi.f16", - sym::powif32 => "llvm.powi.f32", - sym::powif64 => "llvm.powi.f64", - sym::powif128 => "llvm.powi.f128", + sym::powif16 => "llvm.powi.f16.i32", + sym::powif32 => "llvm.powi.f32.i32", + sym::powif64 => "llvm.powi.f64.i32", + sym::powif128 => "llvm.powi.f128.i32", sym::sinf16 => "llvm.sin.f16", sym::sinf32 => "llvm.sin.f32", diff --git a/library/core/src/intrinsics.rs b/library/core/src/intrinsics.rs index e9eacbcd25a0a..6f1e0cb747194 100644 --- a/library/core/src/intrinsics.rs +++ b/library/core/src/intrinsics.rs @@ -1528,6 +1528,12 @@ extern "rust-intrinsic" { #[rustc_diagnostic_item = "intrinsics_unaligned_volatile_store"] pub fn unaligned_volatile_store(dst: *mut T, val: T); + /// Returns the square root of an `f16` + /// + /// The stabilized version of this intrinsic is + /// [`f16::sqrt`](../../std/primitive.f16.html#method.sqrt) + #[rustc_nounwind] + pub fn sqrtf16(x: f16) -> f16; /// Returns the square root of an `f32` /// /// The stabilized version of this intrinsic is @@ -1540,6 +1546,12 @@ extern "rust-intrinsic" { /// [`f64::sqrt`](../../std/primitive.f64.html#method.sqrt) #[rustc_nounwind] pub fn sqrtf64(x: f64) -> f64; + /// Returns the square root of an `f128` + /// + /// The stabilized version of this intrinsic is + /// [`f128::sqrt`](../../std/primitive.f128.html#method.sqrt) + #[rustc_nounwind] + pub fn sqrtf128(x: f128) -> f128; /// Raises an `f16` to an integer power. /// @@ -1566,6 +1578,12 @@ extern "rust-intrinsic" { #[rustc_nounwind] pub fn powif128(a: f128, x: i32) -> f128; + /// Returns the sine of an `f16`. + /// + /// The stabilized version of this intrinsic is + /// [`f16::sin`](../../std/primitive.f16.html#method.sin) + #[rustc_nounwind] + pub fn sinf16(x: f16) -> f16; /// Returns the sine of an `f32`. /// /// The stabilized version of this intrinsic is @@ -1578,7 +1596,19 @@ extern "rust-intrinsic" { /// [`f64::sin`](../../std/primitive.f64.html#method.sin) #[rustc_nounwind] pub fn sinf64(x: f64) -> f64; + /// Returns the sine of an `f128`. + /// + /// The stabilized version of this intrinsic is + /// [`f128::sin`](../../std/primitive.f128.html#method.sin) + #[rustc_nounwind] + pub fn sinf128(x: f128) -> f128; + /// Returns the cosine of an `f16`. + /// + /// The stabilized version of this intrinsic is + /// [`f16::cos`](../../std/primitive.f16.html#method.cos) + #[rustc_nounwind] + pub fn cosf16(x: f16) -> f16; /// Returns the cosine of an `f32`. /// /// The stabilized version of this intrinsic is @@ -1591,7 +1621,19 @@ extern "rust-intrinsic" { /// [`f64::cos`](../../std/primitive.f64.html#method.cos) #[rustc_nounwind] pub fn cosf64(x: f64) -> f64; + /// Returns the cosine of an `f128`. + /// + /// The stabilized version of this intrinsic is + /// [`f128::cos`](../../std/primitive.f128.html#method.cos) + #[rustc_nounwind] + pub fn cosf128(x: f128) -> f128; + /// Raises an `f16` to an `f16` power. + /// + /// The stabilized version of this intrinsic is + /// [`f16::powf`](../../std/primitive.f16.html#method.powf) + #[rustc_nounwind] + pub fn powf16(a: f16, x: f16) -> f16; /// Raises an `f32` to an `f32` power. /// /// The stabilized version of this intrinsic is @@ -1604,7 +1646,19 @@ extern "rust-intrinsic" { /// [`f64::powf`](../../std/primitive.f64.html#method.powf) #[rustc_nounwind] pub fn powf64(a: f64, x: f64) -> f64; + /// Raises an `f128` to an `f128` power. + /// + /// The stabilized version of this intrinsic is + /// [`f128::powf`](../../std/primitive.f128.html#method.powf) + #[rustc_nounwind] + pub fn powf128(a: f128, x: f128) -> f128; + /// Returns the exponential of an `f16`. + /// + /// The stabilized version of this intrinsic is + /// [`f16::exp`](../../std/primitive.f16.html#method.exp) + #[rustc_nounwind] + pub fn expf16(x: f16) -> f16; /// Returns the exponential of an `f32`. /// /// The stabilized version of this intrinsic is @@ -1617,7 +1671,19 @@ extern "rust-intrinsic" { /// [`f64::exp`](../../std/primitive.f64.html#method.exp) #[rustc_nounwind] pub fn expf64(x: f64) -> f64; + /// Returns the exponential of an `f128`. + /// + /// The stabilized version of this intrinsic is + /// [`f128::exp`](../../std/primitive.f128.html#method.exp) + #[rustc_nounwind] + pub fn expf128(x: f128) -> f128; + /// Returns 2 raised to the power of an `f16`. + /// + /// The stabilized version of this intrinsic is + /// [`f16::exp2`](../../std/primitive.f16.html#method.exp2) + #[rustc_nounwind] + pub fn exp2f16(x: f16) -> f16; /// Returns 2 raised to the power of an `f32`. /// /// The stabilized version of this intrinsic is @@ -1630,7 +1696,19 @@ extern "rust-intrinsic" { /// [`f64::exp2`](../../std/primitive.f64.html#method.exp2) #[rustc_nounwind] pub fn exp2f64(x: f64) -> f64; + /// Returns 2 raised to the power of an `f128`. + /// + /// The stabilized version of this intrinsic is + /// [`f128::exp2`](../../std/primitive.f128.html#method.exp2) + #[rustc_nounwind] + pub fn exp2f128(x: f128) -> f128; + /// Returns the natural logarithm of an `f16`. + /// + /// The stabilized version of this intrinsic is + /// [`f16::ln`](../../std/primitive.f16.html#method.ln) + #[rustc_nounwind] + pub fn logf16(x: f16) -> f16; /// Returns the natural logarithm of an `f32`. /// /// The stabilized version of this intrinsic is @@ -1643,7 +1721,19 @@ extern "rust-intrinsic" { /// [`f64::ln`](../../std/primitive.f64.html#method.ln) #[rustc_nounwind] pub fn logf64(x: f64) -> f64; + /// Returns the natural logarithm of an `f128`. + /// + /// The stabilized version of this intrinsic is + /// [`f128::ln`](../../std/primitive.f128.html#method.ln) + #[rustc_nounwind] + pub fn logf128(x: f128) -> f128; + /// Returns the base 10 logarithm of an `f16`. + /// + /// The stabilized version of this intrinsic is + /// [`f16::log10`](../../std/primitive.f16.html#method.log10) + #[rustc_nounwind] + pub fn log10f16(x: f16) -> f16; /// Returns the base 10 logarithm of an `f32`. /// /// The stabilized version of this intrinsic is @@ -1656,7 +1746,19 @@ extern "rust-intrinsic" { /// [`f64::log10`](../../std/primitive.f64.html#method.log10) #[rustc_nounwind] pub fn log10f64(x: f64) -> f64; + /// Returns the base 10 logarithm of an `f128`. + /// + /// The stabilized version of this intrinsic is + /// [`f128::log10`](../../std/primitive.f128.html#method.log10) + #[rustc_nounwind] + pub fn log10f128(x: f128) -> f128; + /// Returns the base 2 logarithm of an `f16`. + /// + /// The stabilized version of this intrinsic is + /// [`f16::log2`](../../std/primitive.f16.html#method.log2) + #[rustc_nounwind] + pub fn log2f16(x: f16) -> f16; /// Returns the base 2 logarithm of an `f32`. /// /// The stabilized version of this intrinsic is @@ -1669,7 +1771,19 @@ extern "rust-intrinsic" { /// [`f64::log2`](../../std/primitive.f64.html#method.log2) #[rustc_nounwind] pub fn log2f64(x: f64) -> f64; + /// Returns the base 2 logarithm of an `f128`. + /// + /// The stabilized version of this intrinsic is + /// [`f128::log2`](../../std/primitive.f128.html#method.log2) + #[rustc_nounwind] + pub fn log2f128(x: f128) -> f128; + /// Returns `a * b + c` for `f16` values. + /// + /// The stabilized version of this intrinsic is + /// [`f16::mul_add`](../../std/primitive.f16.html#method.mul_add) + #[rustc_nounwind] + pub fn fmaf16(a: f16, b: f16, c: f16) -> f16; /// Returns `a * b + c` for `f32` values. /// /// The stabilized version of this intrinsic is @@ -1682,7 +1796,19 @@ extern "rust-intrinsic" { /// [`f64::mul_add`](../../std/primitive.f64.html#method.mul_add) #[rustc_nounwind] pub fn fmaf64(a: f64, b: f64, c: f64) -> f64; + /// Returns `a * b + c` for `f128` values. + /// + /// The stabilized version of this intrinsic is + /// [`f128::mul_add`](../../std/primitive.f128.html#method.mul_add) + #[rustc_nounwind] + pub fn fmaf128(a: f128, b: f128, c: f128) -> f128; + /// Returns the absolute value of an `f16`. + /// + /// The stabilized version of this intrinsic is + /// [`f16::abs`](../../std/primitive.f16.html#method.abs) + #[rustc_nounwind] + pub fn fabsf16(x: f16) -> f16; /// Returns the absolute value of an `f32`. /// /// The stabilized version of this intrinsic is @@ -1695,7 +1821,25 @@ extern "rust-intrinsic" { /// [`f64::abs`](../../std/primitive.f64.html#method.abs) #[rustc_nounwind] pub fn fabsf64(x: f64) -> f64; + /// Returns the absolute value of an `f128`. + /// + /// The stabilized version of this intrinsic is + /// [`f128::abs`](../../std/primitive.f128.html#method.abs) + #[rustc_nounwind] + pub fn fabsf128(x: f128) -> f128; + /// Returns the minimum of two `f16` values. + /// + /// Note that, unlike most intrinsics, this is safe to call; + /// it does not require an `unsafe` block. + /// Therefore, implementations must not require the user to uphold + /// any safety invariants. + /// + /// The stabilized version of this intrinsic is + /// [`f16::min`] + #[rustc_safe_intrinsic] + #[rustc_nounwind] + pub fn minnumf16(x: f16, y: f16) -> f16; /// Returns the minimum of two `f32` values. /// /// Note that, unlike most intrinsics, this is safe to call; @@ -1720,6 +1864,31 @@ extern "rust-intrinsic" { #[rustc_safe_intrinsic] #[rustc_nounwind] pub fn minnumf64(x: f64, y: f64) -> f64; + /// Returns the minimum of two `f128` values. + /// + /// Note that, unlike most intrinsics, this is safe to call; + /// it does not require an `unsafe` block. + /// Therefore, implementations must not require the user to uphold + /// any safety invariants. + /// + /// The stabilized version of this intrinsic is + /// [`f128::min`] + #[rustc_safe_intrinsic] + #[rustc_nounwind] + pub fn minnumf128(x: f128, y: f128) -> f128; + + /// Returns the maximum of two `f16` values. + /// + /// Note that, unlike most intrinsics, this is safe to call; + /// it does not require an `unsafe` block. + /// Therefore, implementations must not require the user to uphold + /// any safety invariants. + /// + /// The stabilized version of this intrinsic is + /// [`f16::max`] + #[rustc_safe_intrinsic] + #[rustc_nounwind] + pub fn maxnumf16(x: f16, y: f16) -> f16; /// Returns the maximum of two `f32` values. /// /// Note that, unlike most intrinsics, this is safe to call; @@ -1744,7 +1913,25 @@ extern "rust-intrinsic" { #[rustc_safe_intrinsic] #[rustc_nounwind] pub fn maxnumf64(x: f64, y: f64) -> f64; + /// Returns the maximum of two `f128` values. + /// + /// Note that, unlike most intrinsics, this is safe to call; + /// it does not require an `unsafe` block. + /// Therefore, implementations must not require the user to uphold + /// any safety invariants. + /// + /// The stabilized version of this intrinsic is + /// [`f128::max`] + #[rustc_safe_intrinsic] + #[rustc_nounwind] + pub fn maxnumf128(x: f128, y: f128) -> f128; + /// Copies the sign from `y` to `x` for `f16` values. + /// + /// The stabilized version of this intrinsic is + /// [`f16::copysign`](../../std/primitive.f16.html#method.copysign) + #[rustc_nounwind] + pub fn copysignf16(x: f16, y: f16) -> f16; /// Copies the sign from `y` to `x` for `f32` values. /// /// The stabilized version of this intrinsic is @@ -1757,7 +1944,19 @@ extern "rust-intrinsic" { /// [`f64::copysign`](../../std/primitive.f64.html#method.copysign) #[rustc_nounwind] pub fn copysignf64(x: f64, y: f64) -> f64; + /// Copies the sign from `y` to `x` for `f128` values. + /// + /// The stabilized version of this intrinsic is + /// [`f128::copysign`](../../std/primitive.f128.html#method.copysign) + #[rustc_nounwind] + pub fn copysignf128(x: f128, y: f128) -> f128; + /// Returns the largest integer less than or equal to an `f16`. + /// + /// The stabilized version of this intrinsic is + /// [`f16::floor`](../../std/primitive.f16.html#method.floor) + #[rustc_nounwind] + pub fn floorf16(x: f16) -> f16; /// Returns the largest integer less than or equal to an `f32`. /// /// The stabilized version of this intrinsic is @@ -1770,7 +1969,19 @@ extern "rust-intrinsic" { /// [`f64::floor`](../../std/primitive.f64.html#method.floor) #[rustc_nounwind] pub fn floorf64(x: f64) -> f64; + /// Returns the largest integer less than or equal to an `f128`. + /// + /// The stabilized version of this intrinsic is + /// [`f128::floor`](../../std/primitive.f128.html#method.floor) + #[rustc_nounwind] + pub fn floorf128(x: f128) -> f128; + /// Returns the smallest integer greater than or equal to an `f16`. + /// + /// The stabilized version of this intrinsic is + /// [`f16::ceil`](../../std/primitive.f16.html#method.ceil) + #[rustc_nounwind] + pub fn ceilf16(x: f16) -> f16; /// Returns the smallest integer greater than or equal to an `f32`. /// /// The stabilized version of this intrinsic is @@ -1783,7 +1994,19 @@ extern "rust-intrinsic" { /// [`f64::ceil`](../../std/primitive.f64.html#method.ceil) #[rustc_nounwind] pub fn ceilf64(x: f64) -> f64; + /// Returns the smallest integer greater than or equal to an `f128`. + /// + /// The stabilized version of this intrinsic is + /// [`f128::ceil`](../../std/primitive.f128.html#method.ceil) + #[rustc_nounwind] + pub fn ceilf128(x: f128) -> f128; + /// Returns the integer part of an `f16`. + /// + /// The stabilized version of this intrinsic is + /// [`f16::trunc`](../../std/primitive.f16.html#method.trunc) + #[rustc_nounwind] + pub fn truncf16(x: f16) -> f16; /// Returns the integer part of an `f32`. /// /// The stabilized version of this intrinsic is @@ -1796,7 +2019,25 @@ extern "rust-intrinsic" { /// [`f64::trunc`](../../std/primitive.f64.html#method.trunc) #[rustc_nounwind] pub fn truncf64(x: f64) -> f64; + /// Returns the integer part of an `f128`. + /// + /// The stabilized version of this intrinsic is + /// [`f128::trunc`](../../std/primitive.f128.html#method.trunc) + #[rustc_nounwind] + pub fn truncf128(x: f128) -> f128; + /// Returns the nearest integer to an `f16`. Changing the rounding mode is not possible in Rust, + /// so this rounds half-way cases to the number with an even least significant digit. + /// + /// May raise an inexact floating-point exception if the argument is not an integer. + /// However, Rust assumes floating-point exceptions cannot be observed, so these exceptions + /// cannot actually be utilized from Rust code. + /// In other words, this intrinsic is equivalent in behavior to `nearbyintf16` and `roundevenf16`. + /// + /// The stabilized version of this intrinsic is + /// [`f16::round_ties_even`](../../std/primitive.f16.html#method.round_ties_even) + #[rustc_nounwind] + pub fn rintf16(x: f16) -> f16; /// Returns the nearest integer to an `f32`. Changing the rounding mode is not possible in Rust, /// so this rounds half-way cases to the number with an even least significant digit. /// @@ -1821,7 +2062,25 @@ extern "rust-intrinsic" { /// [`f64::round_ties_even`](../../std/primitive.f64.html#method.round_ties_even) #[rustc_nounwind] pub fn rintf64(x: f64) -> f64; + /// Returns the nearest integer to an `f128`. Changing the rounding mode is not possible in Rust, + /// so this rounds half-way cases to the number with an even least significant digit. + /// + /// May raise an inexact floating-point exception if the argument is not an integer. + /// However, Rust assumes floating-point exceptions cannot be observed, so these exceptions + /// cannot actually be utilized from Rust code. + /// In other words, this intrinsic is equivalent in behavior to `nearbyintf128` and `roundevenf128`. + /// + /// The stabilized version of this intrinsic is + /// [`f128::round_ties_even`](../../std/primitive.f128.html#method.round_ties_even) + #[rustc_nounwind] + pub fn rintf128(x: f128) -> f128; + /// Returns the nearest integer to an `f16`. Changing the rounding mode is not possible in Rust, + /// so this rounds half-way cases to the number with an even least significant digit. + /// + /// This intrinsic does not have a stable counterpart. + #[rustc_nounwind] + pub fn nearbyintf16(x: f16) -> f16; /// Returns the nearest integer to an `f32`. Changing the rounding mode is not possible in Rust, /// so this rounds half-way cases to the number with an even least significant digit. /// @@ -1834,7 +2093,19 @@ extern "rust-intrinsic" { /// This intrinsic does not have a stable counterpart. #[rustc_nounwind] pub fn nearbyintf64(x: f64) -> f64; + /// Returns the nearest integer to an `f128`. Changing the rounding mode is not possible in Rust, + /// so this rounds half-way cases to the number with an even least significant digit. + /// + /// This intrinsic does not have a stable counterpart. + #[rustc_nounwind] + pub fn nearbyintf128(x: f128) -> f128; + /// Returns the nearest integer to an `f16`. Rounds half-way cases away from zero. + /// + /// The stabilized version of this intrinsic is + /// [`f16::round`](../../std/primitive.f16.html#method.round) + #[rustc_nounwind] + pub fn roundf16(x: f16) -> f16; /// Returns the nearest integer to an `f32`. Rounds half-way cases away from zero. /// /// The stabilized version of this intrinsic is @@ -1847,7 +2118,19 @@ extern "rust-intrinsic" { /// [`f64::round`](../../std/primitive.f64.html#method.round) #[rustc_nounwind] pub fn roundf64(x: f64) -> f64; + /// Returns the nearest integer to an `f128`. Rounds half-way cases away from zero. + /// + /// The stabilized version of this intrinsic is + /// [`f128::round`](../../std/primitive.f128.html#method.round) + #[rustc_nounwind] + pub fn roundf128(x: f128) -> f128; + /// Returns the nearest integer to an `f16`. Rounds half-way cases to the number + /// with an even least significant digit. + /// + /// This intrinsic does not have a stable counterpart. + #[rustc_nounwind] + pub fn roundevenf16(x: f16) -> f16; /// Returns the nearest integer to an `f32`. Rounds half-way cases to the number /// with an even least significant digit. /// @@ -1860,6 +2143,12 @@ extern "rust-intrinsic" { /// This intrinsic does not have a stable counterpart. #[rustc_nounwind] pub fn roundevenf64(x: f64) -> f64; + /// Returns the nearest integer to an `f128`. Rounds half-way cases to the number + /// with an even least significant digit. + /// + /// This intrinsic does not have a stable counterpart. + #[rustc_nounwind] + pub fn roundevenf128(x: f128) -> f128; /// Float addition that allows optimizations based on algebraic rules. /// May assume inputs are finite. diff --git a/library/core/src/num/f128.rs b/library/core/src/num/f128.rs index 6a24748fd9e87..0c04f47fe7df1 100644 --- a/library/core/src/num/f128.rs +++ b/library/core/src/num/f128.rs @@ -686,6 +686,182 @@ impl f128 { self * RADS_PER_DEG } + /// Returns the maximum of the two numbers, ignoring NaN. + /// + /// If one of the arguments is NaN, then the other argument is returned. + /// This follows the IEEE 754-2008 semantics for maxNum, except for handling of signaling NaNs; + /// this function handles all NaNs the same way and avoids maxNum's problems with associativity. + /// This also matches the behavior of libm’s fmax. + /// + /// ``` + /// #![feature(f128)] + /// # // Using aarch64 because `reliable_f128_math` is needed + /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] { + /// + /// let x = 1.0f128; + /// let y = 2.0f128; + /// + /// assert_eq!(x.max(y), y); + /// # } + /// ``` + #[inline] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "this returns the result of the comparison, without modifying either input"] + pub fn max(self, other: f128) -> f128 { + intrinsics::maxnumf128(self, other) + } + + /// Returns the minimum of the two numbers, ignoring NaN. + /// + /// If one of the arguments is NaN, then the other argument is returned. + /// This follows the IEEE 754-2008 semantics for minNum, except for handling of signaling NaNs; + /// this function handles all NaNs the same way and avoids minNum's problems with associativity. + /// This also matches the behavior of libm’s fmin. + /// + /// ``` + /// #![feature(f128)] + /// # // Using aarch64 because `reliable_f128_math` is needed + /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] { + /// + /// let x = 1.0f128; + /// let y = 2.0f128; + /// + /// assert_eq!(x.min(y), x); + /// # } + /// ``` + #[inline] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "this returns the result of the comparison, without modifying either input"] + pub fn min(self, other: f128) -> f128 { + intrinsics::minnumf128(self, other) + } + + /// Returns the maximum of the two numbers, propagating NaN. + /// + /// This returns NaN when *either* argument is NaN, as opposed to + /// [`f128::max`] which only returns NaN when *both* arguments are NaN. + /// + /// ``` + /// #![feature(f128)] + /// #![feature(float_minimum_maximum)] + /// # // Using aarch64 because `reliable_f128_math` is needed + /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] { + /// + /// let x = 1.0f128; + /// let y = 2.0f128; + /// + /// assert_eq!(x.maximum(y), y); + /// assert!(x.maximum(f128::NAN).is_nan()); + /// # } + /// ``` + /// + /// If one of the arguments is NaN, then NaN is returned. Otherwise this returns the greater + /// of the two numbers. For this operation, -0.0 is considered to be less than +0.0. + /// Note that this follows the semantics specified in IEEE 754-2019. + /// + /// Also note that "propagation" of NaNs here doesn't necessarily mean that the bitpattern of a NaN + /// operand is conserved; see [explanation of NaN as a special value](f128) for more info. + #[inline] + #[unstable(feature = "f128", issue = "116909")] + // #[unstable(feature = "float_minimum_maximum", issue = "91079")] + #[must_use = "this returns the result of the comparison, without modifying either input"] + pub fn maximum(self, other: f128) -> f128 { + if self > other { + self + } else if other > self { + other + } else if self == other { + if self.is_sign_positive() && other.is_sign_negative() { self } else { other } + } else { + self + other + } + } + + /// Returns the minimum of the two numbers, propagating NaN. + /// + /// This returns NaN when *either* argument is NaN, as opposed to + /// [`f128::min`] which only returns NaN when *both* arguments are NaN. + /// + /// ``` + /// #![feature(f128)] + /// #![feature(float_minimum_maximum)] + /// # // Using aarch64 because `reliable_f128_math` is needed + /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] { + /// + /// let x = 1.0f128; + /// let y = 2.0f128; + /// + /// assert_eq!(x.minimum(y), x); + /// assert!(x.minimum(f128::NAN).is_nan()); + /// # } + /// ``` + /// + /// If one of the arguments is NaN, then NaN is returned. Otherwise this returns the lesser + /// of the two numbers. For this operation, -0.0 is considered to be less than +0.0. + /// Note that this follows the semantics specified in IEEE 754-2019. + /// + /// Also note that "propagation" of NaNs here doesn't necessarily mean that the bitpattern of a NaN + /// operand is conserved; see [explanation of NaN as a special value](f128) for more info. + #[inline] + #[unstable(feature = "f128", issue = "116909")] + // #[unstable(feature = "float_minimum_maximum", issue = "91079")] + #[must_use = "this returns the result of the comparison, without modifying either input"] + pub fn minimum(self, other: f128) -> f128 { + if self < other { + self + } else if other < self { + other + } else if self == other { + if self.is_sign_negative() && other.is_sign_positive() { self } else { other } + } else { + // At least one input is NaN. Use `+` to perform NaN propagation and quieting. + self + other + } + } + + /// Calculates the middle point of `self` and `rhs`. + /// + /// This returns NaN when *either* argument is NaN or if a combination of + /// +inf and -inf is provided as arguments. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// #![feature(num_midpoint)] + /// # // Using aarch64 because `reliable_f128_math` is needed + /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] { + /// + /// assert_eq!(1f128.midpoint(4.0), 2.5); + /// assert_eq!((-5.5f128).midpoint(8.0), 1.25); + /// # } + /// ``` + #[inline] + #[unstable(feature = "f128", issue = "116909")] + // #[unstable(feature = "num_midpoint", issue = "110840")] + pub fn midpoint(self, other: f128) -> f128 { + const LO: f128 = f128::MIN_POSITIVE * 2.; + const HI: f128 = f128::MAX / 2.; + + let (a, b) = (self, other); + let abs_a = a.abs_private(); + let abs_b = b.abs_private(); + + if abs_a <= HI && abs_b <= HI { + // Overflow is impossible + (a + b) / 2. + } else if abs_a < LO { + // Not safe to halve `a` (would underflow) + a + (b / 2.) + } else if abs_b < LO { + // Not safe to halve `b` (would underflow) + (a / 2.) + b + } else { + // Safe to halve `a` and `b` + (a / 2.) + (b / 2.) + } + } + /// Rounds toward zero and converts to any primitive integer type, /// assuming that the value is finite and fits in that type. /// diff --git a/library/core/src/num/f16.rs b/library/core/src/num/f16.rs index 054897b3c96bc..e5b1148e19215 100644 --- a/library/core/src/num/f16.rs +++ b/library/core/src/num/f16.rs @@ -720,6 +720,177 @@ impl f16 { self * RADS_PER_DEG } + /// Returns the maximum of the two numbers, ignoring NaN. + /// + /// If one of the arguments is NaN, then the other argument is returned. + /// This follows the IEEE 754-2008 semantics for maxNum, except for handling of signaling NaNs; + /// this function handles all NaNs the same way and avoids maxNum's problems with associativity. + /// This also matches the behavior of libm’s fmax. + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(target_arch = "aarch64")] { // FIXME(f16_F128): rust-lang/rust#123885 + /// + /// let x = 1.0f16; + /// let y = 2.0f16; + /// + /// assert_eq!(x.max(y), y); + /// # } + /// ``` + #[inline] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "this returns the result of the comparison, without modifying either input"] + pub fn max(self, other: f16) -> f16 { + intrinsics::maxnumf16(self, other) + } + + /// Returns the minimum of the two numbers, ignoring NaN. + /// + /// If one of the arguments is NaN, then the other argument is returned. + /// This follows the IEEE 754-2008 semantics for minNum, except for handling of signaling NaNs; + /// this function handles all NaNs the same way and avoids minNum's problems with associativity. + /// This also matches the behavior of libm’s fmin. + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(target_arch = "aarch64")] { // FIXME(f16_F128): rust-lang/rust#123885 + /// + /// let x = 1.0f16; + /// let y = 2.0f16; + /// + /// assert_eq!(x.min(y), x); + /// # } + /// ``` + #[inline] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "this returns the result of the comparison, without modifying either input"] + pub fn min(self, other: f16) -> f16 { + intrinsics::minnumf16(self, other) + } + + /// Returns the maximum of the two numbers, propagating NaN. + /// + /// This returns NaN when *either* argument is NaN, as opposed to + /// [`f16::max`] which only returns NaN when *both* arguments are NaN. + /// + /// ``` + /// #![feature(f16)] + /// #![feature(float_minimum_maximum)] + /// # #[cfg(target_arch = "aarch64")] { // FIXME(f16_F128): rust-lang/rust#123885 + /// + /// let x = 1.0f16; + /// let y = 2.0f16; + /// + /// assert_eq!(x.maximum(y), y); + /// assert!(x.maximum(f16::NAN).is_nan()); + /// # } + /// ``` + /// + /// If one of the arguments is NaN, then NaN is returned. Otherwise this returns the greater + /// of the two numbers. For this operation, -0.0 is considered to be less than +0.0. + /// Note that this follows the semantics specified in IEEE 754-2019. + /// + /// Also note that "propagation" of NaNs here doesn't necessarily mean that the bitpattern of a NaN + /// operand is conserved; see [explanation of NaN as a special value](f16) for more info. + #[inline] + #[unstable(feature = "f16", issue = "116909")] + // #[unstable(feature = "float_minimum_maximum", issue = "91079")] + #[must_use = "this returns the result of the comparison, without modifying either input"] + pub fn maximum(self, other: f16) -> f16 { + if self > other { + self + } else if other > self { + other + } else if self == other { + if self.is_sign_positive() && other.is_sign_negative() { self } else { other } + } else { + self + other + } + } + + /// Returns the minimum of the two numbers, propagating NaN. + /// + /// This returns NaN when *either* argument is NaN, as opposed to + /// [`f16::min`] which only returns NaN when *both* arguments are NaN. + /// + /// ``` + /// #![feature(f16)] + /// #![feature(float_minimum_maximum)] + /// # #[cfg(target_arch = "aarch64")] { // FIXME(f16_F128): rust-lang/rust#123885 + /// + /// let x = 1.0f16; + /// let y = 2.0f16; + /// + /// assert_eq!(x.minimum(y), x); + /// assert!(x.minimum(f16::NAN).is_nan()); + /// # } + /// ``` + /// + /// If one of the arguments is NaN, then NaN is returned. Otherwise this returns the lesser + /// of the two numbers. For this operation, -0.0 is considered to be less than +0.0. + /// Note that this follows the semantics specified in IEEE 754-2019. + /// + /// Also note that "propagation" of NaNs here doesn't necessarily mean that the bitpattern of a NaN + /// operand is conserved; see [explanation of NaN as a special value](f16) for more info. + #[inline] + #[unstable(feature = "f16", issue = "116909")] + // #[unstable(feature = "float_minimum_maximum", issue = "91079")] + #[must_use = "this returns the result of the comparison, without modifying either input"] + pub fn minimum(self, other: f16) -> f16 { + if self < other { + self + } else if other < self { + other + } else if self == other { + if self.is_sign_negative() && other.is_sign_positive() { self } else { other } + } else { + // At least one input is NaN. Use `+` to perform NaN propagation and quieting. + self + other + } + } + + /// Calculates the middle point of `self` and `rhs`. + /// + /// This returns NaN when *either* argument is NaN or if a combination of + /// +inf and -inf is provided as arguments. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// #![feature(num_midpoint)] + /// # #[cfg(target_arch = "aarch64")] { // FIXME(f16_F128): rust-lang/rust#123885 + /// + /// assert_eq!(1f16.midpoint(4.0), 2.5); + /// assert_eq!((-5.5f16).midpoint(8.0), 1.25); + /// # } + /// ``` + #[inline] + #[unstable(feature = "f16", issue = "116909")] + // #[unstable(feature = "num_midpoint", issue = "110840")] + pub fn midpoint(self, other: f16) -> f16 { + const LO: f16 = f16::MIN_POSITIVE * 2.; + const HI: f16 = f16::MAX / 2.; + + let (a, b) = (self, other); + let abs_a = a.abs_private(); + let abs_b = b.abs_private(); + + if abs_a <= HI && abs_b <= HI { + // Overflow is impossible + (a + b) / 2. + } else if abs_a < LO { + // Not safe to halve `a` (would underflow) + a + (b / 2.) + } else if abs_b < LO { + // Not safe to halve `b` (would underflow) + (a / 2.) + b + } else { + // Safe to halve `a` and `b` + (a / 2.) + (b / 2.) + } + } + /// Rounds toward zero and converts to any primitive integer type, /// assuming that the value is finite and fits in that type. /// diff --git a/library/core/src/num/f32.rs b/library/core/src/num/f32.rs index 08d863f17caf7..e65c982b17227 100644 --- a/library/core/src/num/f32.rs +++ b/library/core/src/num/f32.rs @@ -1070,13 +1070,13 @@ impl f32 { // Overflow is impossible (a + b) / 2. } else if abs_a < LO { - // Not safe to halve a + // Not safe to halve `a` (would underflow) a + (b / 2.) } else if abs_b < LO { - // Not safe to halve b + // Not safe to halve `b` (would underflow) (a / 2.) + b } else { - // Not safe to halve a and b + // Safe to halve `a` and `b` (a / 2.) + (b / 2.) } } diff --git a/library/core/src/num/f64.rs b/library/core/src/num/f64.rs index 5d33eea6d011f..b27d47b07d544 100644 --- a/library/core/src/num/f64.rs +++ b/library/core/src/num/f64.rs @@ -1064,13 +1064,13 @@ impl f64 { // Overflow is impossible (a + b) / 2. } else if abs_a < LO { - // Not safe to halve a + // Not safe to halve `a` (would underflow) a + (b / 2.) } else if abs_b < LO { - // Not safe to halve b + // Not safe to halve `b` (would underflow) (a / 2.) + b } else { - // Not safe to halve a and b + // Safe to halve `a` and `b` (a / 2.) + (b / 2.) } } diff --git a/library/core/src/primitive_docs.rs b/library/core/src/primitive_docs.rs index 5989bcbcc5201..09ebef89fb0c2 100644 --- a/library/core/src/primitive_docs.rs +++ b/library/core/src/primitive_docs.rs @@ -1244,6 +1244,9 @@ mod prim_f64 {} /// actually implement it. For x86-64 and AArch64, ISA support is not even specified, /// so it will always be a software implementation significantly slower than `f64`. /// +/// _Note: `f128` support is incomplete. Many platforms will not be able to link math functions. On +/// x86 in particular, these functions do link but their results are always incorrect._ +/// /// *[See also the `std::f128::consts` module](crate::f128::consts).* /// /// [wikipedia]: https://en.wikipedia.org/wiki/Quadruple-precision_floating-point_format diff --git a/library/std/build.rs b/library/std/build.rs index 9b58dd53ba20a..18ca7b512a9b6 100644 --- a/library/std/build.rs +++ b/library/std/build.rs @@ -85,6 +85,11 @@ fn main() { println!("cargo:rustc-check-cfg=cfg(reliable_f16)"); println!("cargo:rustc-check-cfg=cfg(reliable_f128)"); + // This is a step beyond only having the types and basic functions available. Math functions + // aren't consistently available or correct. + println!("cargo:rustc-check-cfg=cfg(reliable_f16_math)"); + println!("cargo:rustc-check-cfg=cfg(reliable_f128_math)"); + let has_reliable_f16 = match (target_arch.as_str(), target_os.as_str()) { // Selection failure until recent LLVM // FIXME(llvm19): can probably be removed at the version bump @@ -130,10 +135,42 @@ fn main() { _ => false, }; + // These are currently empty, but will fill up as some platforms move from completely + // unreliable to reliable basics but unreliable math. + + // LLVM is currenlty adding missing routines, + let has_reliable_f16_math = has_reliable_f16 + && match (target_arch.as_str(), target_os.as_str()) { + // Currently nothing special. Hooray! + // This will change as platforms gain better better support for standard ops but math + // lags behind. + _ => true, + }; + + let has_reliable_f128_math = has_reliable_f128 + && match (target_arch.as_str(), target_os.as_str()) { + // LLVM lowers `fp128` math to `long double` symbols even on platforms where + // `long double` is not IEEE binary128. See + // . + // + // This rules out anything that doesn't have `long double` = `binary128`; <= 32 bits + // (ld is `f64`), anything other than Linux (Windows and MacOS use `f64`), and `x86` + // (ld is 80-bit extended precision). + ("x86_64", _) => false, + (_, "linux") if target_pointer_width == 64 => true, + _ => false, + }; + if has_reliable_f16 { println!("cargo:rustc-cfg=reliable_f16"); } if has_reliable_f128 { println!("cargo:rustc-cfg=reliable_f128"); } + if has_reliable_f16_math { + println!("cargo:rustc-cfg=reliable_f16_math"); + } + if has_reliable_f128_math { + println!("cargo:rustc-cfg=reliable_f128_math"); + } } diff --git a/library/std/src/f128.rs b/library/std/src/f128.rs index a5b00d57cefdd..f6df6259137bf 100644 --- a/library/std/src/f128.rs +++ b/library/std/src/f128.rs @@ -12,25 +12,180 @@ pub use core::f128::consts; #[cfg(not(test))] use crate::intrinsics; +#[cfg(not(test))] +use crate::sys::cmath; #[cfg(not(test))] impl f128 { - /// Raises a number to an integer power. + /// Returns the largest integer less than or equal to `self`. /// - /// Using this function is generally faster than using `powf`. - /// It might have a different sequence of rounding operations than `powf`, - /// so the results are not guaranteed to agree. + /// This function always returns the precise result. /// - /// # Unspecified precision + /// # Examples /// - /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and - /// can even differ within the same execution from one invocation to the next. + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let f = 3.7_f128; + /// let g = 3.0_f128; + /// let h = -3.7_f128; + /// + /// assert_eq!(f.floor(), 3.0); + /// assert_eq!(g.floor(), 3.0); + /// assert_eq!(h.floor(), -4.0); + /// # } + /// ``` #[inline] #[rustc_allow_incoherent_impl] #[unstable(feature = "f128", issue = "116909")] #[must_use = "method returns a new number and does not mutate the original value"] - pub fn powi(self, n: i32) -> f128 { - unsafe { intrinsics::powif128(self, n) } + pub fn floor(self) -> f128 { + unsafe { intrinsics::floorf128(self) } + } + + /// Returns the smallest integer greater than or equal to `self`. + /// + /// This function always returns the precise result. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let f = 3.01_f128; + /// let g = 4.0_f128; + /// + /// assert_eq!(f.ceil(), 4.0); + /// assert_eq!(g.ceil(), 4.0); + /// # } + /// ``` + #[inline] + #[doc(alias = "ceiling")] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn ceil(self) -> f128 { + unsafe { intrinsics::ceilf128(self) } + } + + /// Returns the nearest integer to `self`. If a value is half-way between two + /// integers, round away from `0.0`. + /// + /// This function always returns the precise result. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let f = 3.3_f128; + /// let g = -3.3_f128; + /// let h = -3.7_f128; + /// let i = 3.5_f128; + /// let j = 4.5_f128; + /// + /// assert_eq!(f.round(), 3.0); + /// assert_eq!(g.round(), -3.0); + /// assert_eq!(h.round(), -4.0); + /// assert_eq!(i.round(), 4.0); + /// assert_eq!(j.round(), 5.0); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn round(self) -> f128 { + unsafe { intrinsics::roundf128(self) } + } + + /// Returns the nearest integer to a number. Rounds half-way cases to the number + /// with an even least significant digit. + /// + /// This function always returns the precise result. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let f = 3.3_f128; + /// let g = -3.3_f128; + /// let h = 3.5_f128; + /// let i = 4.5_f128; + /// + /// assert_eq!(f.round_ties_even(), 3.0); + /// assert_eq!(g.round_ties_even(), -3.0); + /// assert_eq!(h.round_ties_even(), 4.0); + /// assert_eq!(i.round_ties_even(), 4.0); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn round_ties_even(self) -> f128 { + unsafe { intrinsics::rintf128(self) } + } + + /// Returns the integer part of `self`. + /// This means that non-integer numbers are always truncated towards zero. + /// + /// This function always returns the precise result. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let f = 3.7_f128; + /// let g = 3.0_f128; + /// let h = -3.7_f128; + /// + /// assert_eq!(f.trunc(), 3.0); + /// assert_eq!(g.trunc(), 3.0); + /// assert_eq!(h.trunc(), -3.0); + /// # } + /// ``` + #[inline] + #[doc(alias = "truncate")] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn trunc(self) -> f128 { + unsafe { intrinsics::truncf128(self) } + } + + /// Returns the fractional part of `self`. + /// + /// This function always returns the precise result. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let x = 3.6_f128; + /// let y = -3.6_f128; + /// let abs_difference_x = (x.fract() - 0.6).abs(); + /// let abs_difference_y = (y.fract() - (-0.6)).abs(); + /// + /// assert!(abs_difference_x <= f128::EPSILON); + /// assert!(abs_difference_y <= f128::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn fract(self) -> f128 { + self - self.trunc() } /// Computes the absolute value of `self`. @@ -41,7 +196,7 @@ impl f128 { /// /// ``` /// #![feature(f128)] - /// # #[cfg(reliable_f128)] { // FIXME(f16_f128): reliable_f128 + /// # #[cfg(reliable_f128)] { /// /// let x = 3.5_f128; /// let y = -3.5_f128; @@ -61,4 +216,1129 @@ impl f128 { // We don't do this now because LLVM has lowering bugs for f128 math. Self::from_bits(self.to_bits() & !(1 << 127)) } + + /// Returns a number that represents the sign of `self`. + /// + /// - `1.0` if the number is positive, `+0.0` or `INFINITY` + /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY` + /// - NaN if the number is NaN + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let f = 3.5_f128; + /// + /// assert_eq!(f.signum(), 1.0); + /// assert_eq!(f128::NEG_INFINITY.signum(), -1.0); + /// + /// assert!(f128::NAN.signum().is_nan()); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn signum(self) -> f128 { + if self.is_nan() { Self::NAN } else { 1.0_f128.copysign(self) } + } + + /// Returns a number composed of the magnitude of `self` and the sign of + /// `sign`. + /// + /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise + /// equal to `-self`. If `self` is a NaN, then a NaN with the sign bit of + /// `sign` is returned. Note, however, that conserving the sign bit on NaN + /// across arithmetical operations is not generally guaranteed. + /// See [explanation of NaN as a special value](primitive@f128) for more info. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let f = 3.5_f128; + /// + /// assert_eq!(f.copysign(0.42), 3.5_f128); + /// assert_eq!(f.copysign(-0.42), -3.5_f128); + /// assert_eq!((-f).copysign(0.42), 3.5_f128); + /// assert_eq!((-f).copysign(-0.42), -3.5_f128); + /// + /// assert!(f128::NAN.copysign(1.0).is_nan()); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn copysign(self, sign: f128) -> f128 { + unsafe { intrinsics::copysignf128(self, sign) } + } + + /// Fused multiply-add. Computes `(self * a) + b` with only one rounding + /// error, yielding a more accurate result than an unfused multiply-add. + /// + /// Using `mul_add` *may* be more performant than an unfused multiply-add if + /// the target architecture has a dedicated `fma` CPU instruction. However, + /// this is not always true, and will be heavily dependant on designing + /// algorithms with specific target hardware in mind. + /// + /// # Precision + /// + /// The result of this operation is guaranteed to be the rounded + /// infinite-precision result. It is specified by IEEE 754 as + /// `fusedMultiplyAdd` and guaranteed not to change. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let m = 10.0_f128; + /// let x = 4.0_f128; + /// let b = 60.0_f128; + /// + /// assert_eq!(m.mul_add(x, b), 100.0); + /// assert_eq!(m * x + b, 100.0); + /// + /// let one_plus_eps = 1.0_f128 + f128::EPSILON; + /// let one_minus_eps = 1.0_f128 - f128::EPSILON; + /// let minus_one = -1.0_f128; + /// + /// // The exact result (1 + eps) * (1 - eps) = 1 - eps * eps. + /// assert_eq!(one_plus_eps.mul_add(one_minus_eps, minus_one), -f128::EPSILON * f128::EPSILON); + /// // Different rounding with the non-fused multiply and add. + /// assert_eq!(one_plus_eps * one_minus_eps + minus_one, 0.0); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn mul_add(self, a: f128, b: f128) -> f128 { + unsafe { intrinsics::fmaf128(self, a, b) } + } + + /// Calculates Euclidean division, the matching method for `rem_euclid`. + /// + /// This computes the integer `n` such that + /// `self = n * rhs + self.rem_euclid(rhs)`. + /// In other words, the result is `self / rhs` rounded to the integer `n` + /// such that `self >= n * rhs`. + /// + /// # Precision + /// + /// The result of this operation is guaranteed to be the rounded + /// infinite-precision result. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let a: f128 = 7.0; + /// let b = 4.0; + /// assert_eq!(a.div_euclid(b), 1.0); // 7.0 > 4.0 * 1.0 + /// assert_eq!((-a).div_euclid(b), -2.0); // -7.0 >= 4.0 * -2.0 + /// assert_eq!(a.div_euclid(-b), -1.0); // 7.0 >= -4.0 * -1.0 + /// assert_eq!((-a).div_euclid(-b), 2.0); // -7.0 >= -4.0 * 2.0 + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn div_euclid(self, rhs: f128) -> f128 { + let q = (self / rhs).trunc(); + if self % rhs < 0.0 { + return if rhs > 0.0 { q - 1.0 } else { q + 1.0 }; + } + q + } + + /// Calculates the least nonnegative remainder of `self (mod rhs)`. + /// + /// In particular, the return value `r` satisfies `0.0 <= r < rhs.abs()` in + /// most cases. However, due to a floating point round-off error it can + /// result in `r == rhs.abs()`, violating the mathematical definition, if + /// `self` is much smaller than `rhs.abs()` in magnitude and `self < 0.0`. + /// This result is not an element of the function's codomain, but it is the + /// closest floating point number in the real numbers and thus fulfills the + /// property `self == self.div_euclid(rhs) * rhs + self.rem_euclid(rhs)` + /// approximately. + /// + /// # Precision + /// + /// The result of this operation is guaranteed to be the rounded + /// infinite-precision result. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let a: f128 = 7.0; + /// let b = 4.0; + /// assert_eq!(a.rem_euclid(b), 3.0); + /// assert_eq!((-a).rem_euclid(b), 1.0); + /// assert_eq!(a.rem_euclid(-b), 3.0); + /// assert_eq!((-a).rem_euclid(-b), 1.0); + /// // limitation due to round-off error + /// assert!((-f128::EPSILON).rem_euclid(3.0) != 0.0); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[doc(alias = "modulo", alias = "mod")] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn rem_euclid(self, rhs: f128) -> f128 { + let r = self % rhs; + if r < 0.0 { r + rhs.abs() } else { r } + } + + /// Raises a number to an integer power. + /// + /// Using this function is generally faster than using `powf`. + /// It might have a different sequence of rounding operations than `powf`, + /// so the results are not guaranteed to agree. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn powi(self, n: i32) -> f128 { + unsafe { intrinsics::powif128(self, n) } + } + + /// Raises a number to a floating point power. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let x = 2.0_f128; + /// let abs_difference = (x.powf(2.0) - (x * x)).abs(); + /// + /// assert!(abs_difference <= f128::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn powf(self, n: f128) -> f128 { + unsafe { intrinsics::powf128(self, n) } + } + + /// Returns the square root of a number. + /// + /// Returns NaN if `self` is a negative number other than `-0.0`. + /// + /// # Precision + /// + /// The result of this operation is guaranteed to be the rounded + /// infinite-precision result. It is specified by IEEE 754 as `squareRoot` + /// and guaranteed not to change. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let positive = 4.0_f128; + /// let negative = -4.0_f128; + /// let negative_zero = -0.0_f128; + /// + /// assert_eq!(positive.sqrt(), 2.0); + /// assert!(negative.sqrt().is_nan()); + /// assert!(negative_zero.sqrt() == negative_zero); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn sqrt(self) -> f128 { + unsafe { intrinsics::sqrtf128(self) } + } + + /// Returns `e^(self)`, (the exponential function). + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let one = 1.0f128; + /// // e^1 + /// let e = one.exp(); + /// + /// // ln(e) - 1 == 0 + /// let abs_difference = (e.ln() - 1.0).abs(); + /// + /// assert!(abs_difference <= f128::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn exp(self) -> f128 { + unsafe { intrinsics::expf128(self) } + } + + /// Returns `2^(self)`. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let f = 2.0f128; + /// + /// // 2^2 - 4 == 0 + /// let abs_difference = (f.exp2() - 4.0).abs(); + /// + /// assert!(abs_difference <= f128::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn exp2(self) -> f128 { + unsafe { intrinsics::exp2f128(self) } + } + + /// Returns the natural logarithm of the number. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let one = 1.0f128; + /// // e^1 + /// let e = one.exp(); + /// + /// // ln(e) - 1 == 0 + /// let abs_difference = (e.ln() - 1.0).abs(); + /// + /// assert!(abs_difference <= f128::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn ln(self) -> f128 { + unsafe { intrinsics::logf128(self) } + } + + /// Returns the logarithm of the number with respect to an arbitrary base. + /// + /// The result might not be correctly rounded owing to implementation details; + /// `self.log2()` can produce more accurate results for base 2, and + /// `self.log10()` can produce more accurate results for base 10. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let five = 5.0f128; + /// + /// // log5(5) - 1 == 0 + /// let abs_difference = (five.log(5.0) - 1.0).abs(); + /// + /// assert!(abs_difference <= f128::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn log(self, base: f128) -> f128 { + self.ln() / base.ln() + } + + /// Returns the base 2 logarithm of the number. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let two = 2.0f128; + /// + /// // log2(2) - 1 == 0 + /// let abs_difference = (two.log2() - 1.0).abs(); + /// + /// assert!(abs_difference <= f128::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn log2(self) -> f128 { + unsafe { intrinsics::log2f128(self) } + } + + /// Returns the base 10 logarithm of the number. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let ten = 10.0f128; + /// + /// // log10(10) - 1 == 0 + /// let abs_difference = (ten.log10() - 1.0).abs(); + /// + /// assert!(abs_difference <= f128::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn log10(self) -> f128 { + unsafe { intrinsics::log10f128(self) } + } + + /// Returns the cube root of a number. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// + /// This function currently corresponds to the `cbrtf128` from libc on Unix + /// and Windows. Note that this might change in the future. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let x = 8.0f128; + /// + /// // x^(1/3) - 2 == 0 + /// let abs_difference = (x.cbrt() - 2.0).abs(); + /// + /// assert!(abs_difference <= f128::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn cbrt(self) -> f128 { + unsafe { cmath::cbrtf128(self) } + } + + /// Compute the distance between the origin and a point (`x`, `y`) on the + /// Euclidean plane. Equivalently, compute the length of the hypotenuse of a + /// right-angle triangle with other sides having length `x.abs()` and + /// `y.abs()`. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// + /// This function currently corresponds to the `hypotf128` from libc on Unix + /// and Windows. Note that this might change in the future. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let x = 2.0f128; + /// let y = 3.0f128; + /// + /// // sqrt(x^2 + y^2) + /// let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs(); + /// + /// assert!(abs_difference <= f128::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn hypot(self, other: f128) -> f128 { + unsafe { cmath::hypotf128(self, other) } + } + + /// Computes the sine of a number (in radians). + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let x = std::f128::consts::FRAC_PI_2; + /// + /// let abs_difference = (x.sin() - 1.0).abs(); + /// + /// assert!(abs_difference <= f128::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn sin(self) -> f128 { + unsafe { intrinsics::sinf128(self) } + } + + /// Computes the cosine of a number (in radians). + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let x = 2.0 * std::f128::consts::PI; + /// + /// let abs_difference = (x.cos() - 1.0).abs(); + /// + /// assert!(abs_difference <= f128::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn cos(self) -> f128 { + unsafe { intrinsics::cosf128(self) } + } + + /// Computes the tangent of a number (in radians). + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// This function currently corresponds to the `tanf128` from libc on Unix and + /// Windows. Note that this might change in the future. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let x = std::f128::consts::FRAC_PI_4; + /// let abs_difference = (x.tan() - 1.0).abs(); + /// + /// assert!(abs_difference <= f128::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn tan(self) -> f128 { + unsafe { cmath::tanf128(self) } + } + + /// Computes the arcsine of a number. Return value is in radians in + /// the range [-pi/2, pi/2] or NaN if the number is outside the range + /// [-1, 1]. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// This function currently corresponds to the `asinf128` from libc on Unix + /// and Windows. Note that this might change in the future. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let f = std::f128::consts::FRAC_PI_2; + /// + /// // asin(sin(pi/2)) + /// let abs_difference = (f.sin().asin() - std::f128::consts::FRAC_PI_2).abs(); + /// + /// assert!(abs_difference <= f128::EPSILON); + /// # } + /// ``` + #[inline] + #[doc(alias = "arcsin")] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn asin(self) -> f128 { + unsafe { cmath::asinf128(self) } + } + + /// Computes the arccosine of a number. Return value is in radians in + /// the range [0, pi] or NaN if the number is outside the range + /// [-1, 1]. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// This function currently corresponds to the `acosf128` from libc on Unix + /// and Windows. Note that this might change in the future. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let f = std::f128::consts::FRAC_PI_4; + /// + /// // acos(cos(pi/4)) + /// let abs_difference = (f.cos().acos() - std::f128::consts::FRAC_PI_4).abs(); + /// + /// assert!(abs_difference <= f128::EPSILON); + /// # } + /// ``` + #[inline] + #[doc(alias = "arccos")] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn acos(self) -> f128 { + unsafe { cmath::acosf128(self) } + } + + /// Computes the arctangent of a number. Return value is in radians in the + /// range [-pi/2, pi/2]; + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// This function currently corresponds to the `atanf128` from libc on Unix + /// and Windows. Note that this might change in the future. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let f = 1.0f128; + /// + /// // atan(tan(1)) + /// let abs_difference = (f.tan().atan() - 1.0).abs(); + /// + /// assert!(abs_difference <= f128::EPSILON); + /// # } + /// ``` + #[inline] + #[doc(alias = "arctan")] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn atan(self) -> f128 { + unsafe { cmath::atanf128(self) } + } + + /// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`) in radians. + /// + /// * `x = 0`, `y = 0`: `0` + /// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]` + /// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]` + /// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)` + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// This function currently corresponds to the `atan2f128` from libc on Unix + /// and Windows. Note that this might change in the future. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// // Positive angles measured counter-clockwise + /// // from positive x axis + /// // -pi/4 radians (45 deg clockwise) + /// let x1 = 3.0f128; + /// let y1 = -3.0f128; + /// + /// // 3pi/4 radians (135 deg counter-clockwise) + /// let x2 = -3.0f128; + /// let y2 = 3.0f128; + /// + /// let abs_difference_1 = (y1.atan2(x1) - (-std::f128::consts::FRAC_PI_4)).abs(); + /// let abs_difference_2 = (y2.atan2(x2) - (3.0 * std::f128::consts::FRAC_PI_4)).abs(); + /// + /// assert!(abs_difference_1 <= f128::EPSILON); + /// assert!(abs_difference_2 <= f128::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn atan2(self, other: f128) -> f128 { + unsafe { cmath::atan2f128(self, other) } + } + + /// Simultaneously computes the sine and cosine of the number, `x`. Returns + /// `(sin(x), cos(x))`. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// This function currently corresponds to the `(f128::sin(x), + /// f128::cos(x))`. Note that this might change in the future. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let x = std::f128::consts::FRAC_PI_4; + /// let f = x.sin_cos(); + /// + /// let abs_difference_0 = (f.0 - x.sin()).abs(); + /// let abs_difference_1 = (f.1 - x.cos()).abs(); + /// + /// assert!(abs_difference_0 <= f128::EPSILON); + /// assert!(abs_difference_1 <= f128::EPSILON); + /// # } + /// ``` + #[inline] + #[doc(alias = "sincos")] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + pub fn sin_cos(self) -> (f128, f128) { + (self.sin(), self.cos()) + } + + /// Returns `e^(self) - 1` in a way that is accurate even if the + /// number is close to zero. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// This function currently corresponds to the `expm1f128` from libc on Unix + /// and Windows. Note that this might change in the future. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let x = 1e-8_f128; + /// + /// // for very small x, e^x is approximately 1 + x + x^2 / 2 + /// let approx = x + x * x / 2.0; + /// let abs_difference = (x.exp_m1() - approx).abs(); + /// + /// assert!(abs_difference < 1e-10); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn exp_m1(self) -> f128 { + unsafe { cmath::expm1f128(self) } + } + + /// Returns `ln(1+n)` (natural logarithm) more accurately than if + /// the operations were performed separately. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// This function currently corresponds to the `log1pf128` from libc on Unix + /// and Windows. Note that this might change in the future. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let x = 1e-8_f128; + /// + /// // for very small x, ln(1 + x) is approximately x - x^2 / 2 + /// let approx = x - x * x / 2.0; + /// let abs_difference = (x.ln_1p() - approx).abs(); + /// + /// assert!(abs_difference < 1e-10); + /// # } + /// ``` + #[inline] + #[doc(alias = "log1p")] + #[must_use = "method returns a new number and does not mutate the original value"] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + pub fn ln_1p(self) -> f128 { + unsafe { cmath::log1pf128(self) } + } + + /// Hyperbolic sine function. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// This function currently corresponds to the `sinhf128` from libc on Unix + /// and Windows. Note that this might change in the future. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let e = std::f128::consts::E; + /// let x = 1.0f128; + /// + /// let f = x.sinh(); + /// // Solving sinh() at 1 gives `(e^2-1)/(2e)` + /// let g = ((e * e) - 1.0) / (2.0 * e); + /// let abs_difference = (f - g).abs(); + /// + /// assert!(abs_difference <= f128::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn sinh(self) -> f128 { + unsafe { cmath::sinhf128(self) } + } + + /// Hyperbolic cosine function. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// This function currently corresponds to the `coshf128` from libc on Unix + /// and Windows. Note that this might change in the future. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let e = std::f128::consts::E; + /// let x = 1.0f128; + /// let f = x.cosh(); + /// // Solving cosh() at 1 gives this result + /// let g = ((e * e) + 1.0) / (2.0 * e); + /// let abs_difference = (f - g).abs(); + /// + /// // Same result + /// assert!(abs_difference <= f128::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn cosh(self) -> f128 { + unsafe { cmath::coshf128(self) } + } + + /// Hyperbolic tangent function. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// This function currently corresponds to the `tanhf128` from libc on Unix + /// and Windows. Note that this might change in the future. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let e = std::f128::consts::E; + /// let x = 1.0f128; + /// + /// let f = x.tanh(); + /// // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))` + /// let g = (1.0 - e.powi(-2)) / (1.0 + e.powi(-2)); + /// let abs_difference = (f - g).abs(); + /// + /// assert!(abs_difference <= f128::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn tanh(self) -> f128 { + unsafe { cmath::tanhf128(self) } + } + + /// Inverse hyperbolic sine function. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let x = 1.0f128; + /// let f = x.sinh().asinh(); + /// + /// let abs_difference = (f - x).abs(); + /// + /// assert!(abs_difference <= f128::EPSILON); + /// # } + /// ``` + #[inline] + #[doc(alias = "arcsinh")] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn asinh(self) -> f128 { + let ax = self.abs(); + let ix = 1.0 / ax; + (ax + (ax / (Self::hypot(1.0, ix) + ix))).ln_1p().copysign(self) + } + + /// Inverse hyperbolic cosine function. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let x = 1.0f128; + /// let f = x.cosh().acosh(); + /// + /// let abs_difference = (f - x).abs(); + /// + /// assert!(abs_difference <= f128::EPSILON); + /// # } + /// ``` + #[inline] + #[doc(alias = "arccosh")] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn acosh(self) -> f128 { + if self < 1.0 { + Self::NAN + } else { + (self + ((self - 1.0).sqrt() * (self + 1.0).sqrt())).ln() + } + } + + /// Inverse hyperbolic tangent function. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let e = std::f128::consts::E; + /// let f = e.tanh().atanh(); + /// + /// let abs_difference = (f - e).abs(); + /// + /// assert!(abs_difference <= 1e-5); + /// # } + /// ``` + #[inline] + #[doc(alias = "arctanh")] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn atanh(self) -> f128 { + 0.5 * ((2.0 * self) / (1.0 - self)).ln_1p() + } + + /// Gamma function. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// This function currently corresponds to the `tgammaf128` from libc on Unix + /// and Windows. Note that this might change in the future. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// #![feature(float_gamma)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let x = 5.0f128; + /// + /// let abs_difference = (x.gamma() - 24.0).abs(); + /// + /// assert!(abs_difference <= f128::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn gamma(self) -> f128 { + unsafe { cmath::tgammaf128(self) } + } + + /// Natural logarithm of the absolute value of the gamma function + /// + /// The integer part of the tuple indicates the sign of the gamma function. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// This function currently corresponds to the `lgammaf128_r` from libc on Unix + /// and Windows. Note that this might change in the future. + /// + /// # Examples + /// + /// ``` + /// #![feature(f128)] + /// #![feature(float_gamma)] + /// # #[cfg(reliable_f128_math)] { + /// + /// let x = 2.0f128; + /// + /// let abs_difference = (x.ln_gamma().0 - 0.0).abs(); + /// + /// assert!(abs_difference <= f128::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f128", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn ln_gamma(self) -> (f128, i32) { + let mut signgamp: i32 = 0; + let x = unsafe { cmath::lgammaf128_r(self, &mut signgamp) }; + (x, signgamp) + } } diff --git a/library/std/src/f128/tests.rs b/library/std/src/f128/tests.rs index 162c8dbad81a1..7051c051bf723 100644 --- a/library/std/src/f128/tests.rs +++ b/library/std/src/f128/tests.rs @@ -4,6 +4,21 @@ use crate::f128::consts; use crate::num::{FpCategory as Fp, *}; +// Note these tolerances make sense around zero, but not for more extreme exponents. + +/// For operations that are near exact, usually not involving math of different +/// signs. +const TOL_PRECISE: f128 = 1e-28; + +/// Default tolerances. Works for values that should be near precise but not exact. Roughly +/// the precision carried by `100 * 100`. +const TOL: f128 = 1e-12; + +/// Tolerances for math that is allowed to be imprecise, usually due to multiple chained +/// operations. +#[cfg(reliable_f128_math)] +const TOL_IMPR: f128 = 1e-10; + /// Smallest number const TINY_BITS: u128 = 0x1; @@ -41,7 +56,33 @@ fn test_num_f128() { test_num(10f128, 2f128); } -// FIXME(f16_f128): add min and max tests when available +#[test] +#[cfg(reliable_f128_math)] +fn test_min_nan() { + assert_eq!(f128::NAN.min(2.0), 2.0); + assert_eq!(2.0f128.min(f128::NAN), 2.0); +} + +#[test] +#[cfg(reliable_f128_math)] +fn test_max_nan() { + assert_eq!(f128::NAN.max(2.0), 2.0); + assert_eq!(2.0f128.max(f128::NAN), 2.0); +} + +#[test] +#[cfg(reliable_f128_math)] +fn test_minimum() { + assert!(f128::NAN.minimum(2.0).is_nan()); + assert!(2.0f128.minimum(f128::NAN).is_nan()); +} + +#[test] +#[cfg(reliable_f128_math)] +fn test_maximum() { + assert!(f128::NAN.maximum(2.0).is_nan()); + assert!(2.0f128.maximum(f128::NAN).is_nan()); +} #[test] fn test_nan() { @@ -191,9 +232,100 @@ fn test_classify() { assert_eq!(1e-4932f128.classify(), Fp::Subnormal); } -// FIXME(f16_f128): add missing math functions when available +#[test] +#[cfg(reliable_f128_math)] +fn test_floor() { + assert_approx_eq!(1.0f128.floor(), 1.0f128, TOL_PRECISE); + assert_approx_eq!(1.3f128.floor(), 1.0f128, TOL_PRECISE); + assert_approx_eq!(1.5f128.floor(), 1.0f128, TOL_PRECISE); + assert_approx_eq!(1.7f128.floor(), 1.0f128, TOL_PRECISE); + assert_approx_eq!(0.0f128.floor(), 0.0f128, TOL_PRECISE); + assert_approx_eq!((-0.0f128).floor(), -0.0f128, TOL_PRECISE); + assert_approx_eq!((-1.0f128).floor(), -1.0f128, TOL_PRECISE); + assert_approx_eq!((-1.3f128).floor(), -2.0f128, TOL_PRECISE); + assert_approx_eq!((-1.5f128).floor(), -2.0f128, TOL_PRECISE); + assert_approx_eq!((-1.7f128).floor(), -2.0f128, TOL_PRECISE); +} + +#[test] +#[cfg(reliable_f128_math)] +fn test_ceil() { + assert_approx_eq!(1.0f128.ceil(), 1.0f128, TOL_PRECISE); + assert_approx_eq!(1.3f128.ceil(), 2.0f128, TOL_PRECISE); + assert_approx_eq!(1.5f128.ceil(), 2.0f128, TOL_PRECISE); + assert_approx_eq!(1.7f128.ceil(), 2.0f128, TOL_PRECISE); + assert_approx_eq!(0.0f128.ceil(), 0.0f128, TOL_PRECISE); + assert_approx_eq!((-0.0f128).ceil(), -0.0f128, TOL_PRECISE); + assert_approx_eq!((-1.0f128).ceil(), -1.0f128, TOL_PRECISE); + assert_approx_eq!((-1.3f128).ceil(), -1.0f128, TOL_PRECISE); + assert_approx_eq!((-1.5f128).ceil(), -1.0f128, TOL_PRECISE); + assert_approx_eq!((-1.7f128).ceil(), -1.0f128, TOL_PRECISE); +} #[test] +#[cfg(reliable_f128_math)] +fn test_round() { + assert_approx_eq!(2.5f128.round(), 3.0f128, TOL_PRECISE); + assert_approx_eq!(1.0f128.round(), 1.0f128, TOL_PRECISE); + assert_approx_eq!(1.3f128.round(), 1.0f128, TOL_PRECISE); + assert_approx_eq!(1.5f128.round(), 2.0f128, TOL_PRECISE); + assert_approx_eq!(1.7f128.round(), 2.0f128, TOL_PRECISE); + assert_approx_eq!(0.0f128.round(), 0.0f128, TOL_PRECISE); + assert_approx_eq!((-0.0f128).round(), -0.0f128, TOL_PRECISE); + assert_approx_eq!((-1.0f128).round(), -1.0f128, TOL_PRECISE); + assert_approx_eq!((-1.3f128).round(), -1.0f128, TOL_PRECISE); + assert_approx_eq!((-1.5f128).round(), -2.0f128, TOL_PRECISE); + assert_approx_eq!((-1.7f128).round(), -2.0f128, TOL_PRECISE); +} + +#[test] +#[cfg(reliable_f128_math)] +fn test_round_ties_even() { + assert_approx_eq!(2.5f128.round_ties_even(), 2.0f128, TOL_PRECISE); + assert_approx_eq!(1.0f128.round_ties_even(), 1.0f128, TOL_PRECISE); + assert_approx_eq!(1.3f128.round_ties_even(), 1.0f128, TOL_PRECISE); + assert_approx_eq!(1.5f128.round_ties_even(), 2.0f128, TOL_PRECISE); + assert_approx_eq!(1.7f128.round_ties_even(), 2.0f128, TOL_PRECISE); + assert_approx_eq!(0.0f128.round_ties_even(), 0.0f128, TOL_PRECISE); + assert_approx_eq!((-0.0f128).round_ties_even(), -0.0f128, TOL_PRECISE); + assert_approx_eq!((-1.0f128).round_ties_even(), -1.0f128, TOL_PRECISE); + assert_approx_eq!((-1.3f128).round_ties_even(), -1.0f128, TOL_PRECISE); + assert_approx_eq!((-1.5f128).round_ties_even(), -2.0f128, TOL_PRECISE); + assert_approx_eq!((-1.7f128).round_ties_even(), -2.0f128, TOL_PRECISE); +} + +#[test] +#[cfg(reliable_f128_math)] +fn test_trunc() { + assert_approx_eq!(1.0f128.trunc(), 1.0f128, TOL_PRECISE); + assert_approx_eq!(1.3f128.trunc(), 1.0f128, TOL_PRECISE); + assert_approx_eq!(1.5f128.trunc(), 1.0f128, TOL_PRECISE); + assert_approx_eq!(1.7f128.trunc(), 1.0f128, TOL_PRECISE); + assert_approx_eq!(0.0f128.trunc(), 0.0f128, TOL_PRECISE); + assert_approx_eq!((-0.0f128).trunc(), -0.0f128, TOL_PRECISE); + assert_approx_eq!((-1.0f128).trunc(), -1.0f128, TOL_PRECISE); + assert_approx_eq!((-1.3f128).trunc(), -1.0f128, TOL_PRECISE); + assert_approx_eq!((-1.5f128).trunc(), -1.0f128, TOL_PRECISE); + assert_approx_eq!((-1.7f128).trunc(), -1.0f128, TOL_PRECISE); +} + +#[test] +#[cfg(reliable_f128_math)] +fn test_fract() { + assert_approx_eq!(1.0f128.fract(), 0.0f128, TOL_PRECISE); + assert_approx_eq!(1.3f128.fract(), 0.3f128, TOL_PRECISE); + assert_approx_eq!(1.5f128.fract(), 0.5f128, TOL_PRECISE); + assert_approx_eq!(1.7f128.fract(), 0.7f128, TOL_PRECISE); + assert_approx_eq!(0.0f128.fract(), 0.0f128, TOL_PRECISE); + assert_approx_eq!((-0.0f128).fract(), -0.0f128, TOL_PRECISE); + assert_approx_eq!((-1.0f128).fract(), -0.0f128, TOL_PRECISE); + assert_approx_eq!((-1.3f128).fract(), -0.3f128, TOL_PRECISE); + assert_approx_eq!((-1.5f128).fract(), -0.5f128, TOL_PRECISE); + assert_approx_eq!((-1.7f128).fract(), -0.7f128, TOL_PRECISE); +} + +#[test] +#[cfg(reliable_f128_math)] fn test_abs() { assert_eq!(f128::INFINITY.abs(), f128::INFINITY); assert_eq!(1f128.abs(), 1f128); @@ -293,6 +425,24 @@ fn test_next_down() { } #[test] +#[cfg(reliable_f128_math)] +fn test_mul_add() { + let nan: f128 = f128::NAN; + let inf: f128 = f128::INFINITY; + let neg_inf: f128 = f128::NEG_INFINITY; + assert_approx_eq!(12.3f128.mul_add(4.5, 6.7), 62.05, TOL_PRECISE); + assert_approx_eq!((-12.3f128).mul_add(-4.5, -6.7), 48.65, TOL_PRECISE); + assert_approx_eq!(0.0f128.mul_add(8.9, 1.2), 1.2, TOL_PRECISE); + assert_approx_eq!(3.4f128.mul_add(-0.0, 5.6), 5.6, TOL_PRECISE); + assert!(nan.mul_add(7.8, 9.0).is_nan()); + assert_eq!(inf.mul_add(7.8, 9.0), inf); + assert_eq!(neg_inf.mul_add(7.8, 9.0), neg_inf); + assert_eq!(8.9f128.mul_add(inf, 3.2), inf); + assert_eq!((-3.2f128).mul_add(2.4, neg_inf), neg_inf); +} + +#[test] +#[cfg(reliable_f16_math)] fn test_recip() { let nan: f128 = f128::NAN; let inf: f128 = f128::INFINITY; @@ -301,11 +451,161 @@ fn test_recip() { assert_eq!(2.0f128.recip(), 0.5); assert_eq!((-0.4f128).recip(), -2.5); assert_eq!(0.0f128.recip(), inf); + assert_approx_eq!( + f128::MAX.recip(), + 8.40525785778023376565669454330438228902076605e-4933, + 1e-4900 + ); assert!(nan.recip().is_nan()); assert_eq!(inf.recip(), 0.0); assert_eq!(neg_inf.recip(), 0.0); } +// Many math functions allow for less accurate results, so the next tolerance up is used + +#[test] +#[cfg(reliable_f128_math)] +fn test_powi() { + let nan: f128 = f128::NAN; + let inf: f128 = f128::INFINITY; + let neg_inf: f128 = f128::NEG_INFINITY; + assert_eq!(1.0f128.powi(1), 1.0); + assert_approx_eq!((-3.1f128).powi(2), 9.6100000000000005506706202140776519387, TOL); + assert_approx_eq!(5.9f128.powi(-2), 0.028727377190462507313100483690639638451, TOL); + assert_eq!(8.3f128.powi(0), 1.0); + assert!(nan.powi(2).is_nan()); + assert_eq!(inf.powi(3), inf); + assert_eq!(neg_inf.powi(2), inf); +} + +#[test] +#[cfg(reliable_f128_math)] +fn test_powf() { + let nan: f128 = f128::NAN; + let inf: f128 = f128::INFINITY; + let neg_inf: f128 = f128::NEG_INFINITY; + assert_eq!(1.0f128.powf(1.0), 1.0); + assert_approx_eq!(3.4f128.powf(4.5), 246.40818323761892815995637964326426756, TOL_IMPR); + assert_approx_eq!(2.7f128.powf(-3.2), 0.041652009108526178281070304373500889273, TOL_IMPR); + assert_approx_eq!((-3.1f128).powf(2.0), 9.6100000000000005506706202140776519387, TOL_IMPR); + assert_approx_eq!(5.9f128.powf(-2.0), 0.028727377190462507313100483690639638451, TOL_IMPR); + assert_eq!(8.3f128.powf(0.0), 1.0); + assert!(nan.powf(2.0).is_nan()); + assert_eq!(inf.powf(2.0), inf); + assert_eq!(neg_inf.powf(3.0), neg_inf); +} + +#[test] +#[cfg(reliable_f128_math)] +fn test_sqrt_domain() { + assert!(f128::NAN.sqrt().is_nan()); + assert!(f128::NEG_INFINITY.sqrt().is_nan()); + assert!((-1.0f128).sqrt().is_nan()); + assert_eq!((-0.0f128).sqrt(), -0.0); + assert_eq!(0.0f128.sqrt(), 0.0); + assert_eq!(1.0f128.sqrt(), 1.0); + assert_eq!(f128::INFINITY.sqrt(), f128::INFINITY); +} + +#[test] +#[cfg(reliable_f128_math)] +fn test_exp() { + assert_eq!(1.0, 0.0f128.exp()); + assert_approx_eq!(consts::E, 1.0f128.exp(), TOL); + assert_approx_eq!(148.41315910257660342111558004055227962348775, 5.0f128.exp(), TOL); + + let inf: f128 = f128::INFINITY; + let neg_inf: f128 = f128::NEG_INFINITY; + let nan: f128 = f128::NAN; + assert_eq!(inf, inf.exp()); + assert_eq!(0.0, neg_inf.exp()); + assert!(nan.exp().is_nan()); +} + +#[test] +#[cfg(reliable_f128_math)] +fn test_exp2() { + assert_eq!(32.0, 5.0f128.exp2()); + assert_eq!(1.0, 0.0f128.exp2()); + + let inf: f128 = f128::INFINITY; + let neg_inf: f128 = f128::NEG_INFINITY; + let nan: f128 = f128::NAN; + assert_eq!(inf, inf.exp2()); + assert_eq!(0.0, neg_inf.exp2()); + assert!(nan.exp2().is_nan()); +} + +#[test] +#[cfg(reliable_f128_math)] +fn test_ln() { + let nan: f128 = f128::NAN; + let inf: f128 = f128::INFINITY; + let neg_inf: f128 = f128::NEG_INFINITY; + assert_approx_eq!(1.0f128.exp().ln(), 1.0, TOL); + assert!(nan.ln().is_nan()); + assert_eq!(inf.ln(), inf); + assert!(neg_inf.ln().is_nan()); + assert!((-2.3f128).ln().is_nan()); + assert_eq!((-0.0f128).ln(), neg_inf); + assert_eq!(0.0f128.ln(), neg_inf); + assert_approx_eq!(4.0f128.ln(), 1.3862943611198906188344642429163531366, TOL); +} + +#[test] +#[cfg(reliable_f128_math)] +fn test_log() { + let nan: f128 = f128::NAN; + let inf: f128 = f128::INFINITY; + let neg_inf: f128 = f128::NEG_INFINITY; + assert_eq!(10.0f128.log(10.0), 1.0); + assert_approx_eq!(2.3f128.log(3.5), 0.66485771361478710036766645911922010272, TOL); + assert_eq!(1.0f128.exp().log(1.0f128.exp()), 1.0); + assert!(1.0f128.log(1.0).is_nan()); + assert!(1.0f128.log(-13.9).is_nan()); + assert!(nan.log(2.3).is_nan()); + assert_eq!(inf.log(10.0), inf); + assert!(neg_inf.log(8.8).is_nan()); + assert!((-2.3f128).log(0.1).is_nan()); + assert_eq!((-0.0f128).log(2.0), neg_inf); + assert_eq!(0.0f128.log(7.0), neg_inf); +} + +#[test] +#[cfg(reliable_f128_math)] +fn test_log2() { + let nan: f128 = f128::NAN; + let inf: f128 = f128::INFINITY; + let neg_inf: f128 = f128::NEG_INFINITY; + assert_approx_eq!(10.0f128.log2(), 3.32192809488736234787031942948939017, TOL); + assert_approx_eq!(2.3f128.log2(), 1.2016338611696504130002982471978765921, TOL); + assert_approx_eq!(1.0f128.exp().log2(), 1.4426950408889634073599246810018921381, TOL); + assert!(nan.log2().is_nan()); + assert_eq!(inf.log2(), inf); + assert!(neg_inf.log2().is_nan()); + assert!((-2.3f128).log2().is_nan()); + assert_eq!((-0.0f128).log2(), neg_inf); + assert_eq!(0.0f128.log2(), neg_inf); +} + +#[test] +#[cfg(reliable_f128_math)] +fn test_log10() { + let nan: f128 = f128::NAN; + let inf: f128 = f128::INFINITY; + let neg_inf: f128 = f128::NEG_INFINITY; + assert_eq!(10.0f128.log10(), 1.0); + assert_approx_eq!(2.3f128.log10(), 0.36172783601759284532595218865859309898, TOL); + assert_approx_eq!(1.0f128.exp().log10(), 0.43429448190325182765112891891660508222, TOL); + assert_eq!(1.0f128.log10(), 0.0); + assert!(nan.log10().is_nan()); + assert_eq!(inf.log10(), inf); + assert!(neg_inf.log10().is_nan()); + assert!((-2.3f128).log10().is_nan()); + assert_eq!((-0.0f128).log10(), neg_inf); + assert_eq!(0.0f128.log10(), neg_inf); +} + #[test] fn test_to_degrees() { let pi: f128 = consts::PI; @@ -313,8 +613,8 @@ fn test_to_degrees() { let inf: f128 = f128::INFINITY; let neg_inf: f128 = f128::NEG_INFINITY; assert_eq!(0.0f128.to_degrees(), 0.0); - assert_approx_eq!((-5.8f128).to_degrees(), -332.315521); - assert_eq!(pi.to_degrees(), 180.0); + assert_approx_eq!((-5.8f128).to_degrees(), -332.31552117587745090765431723855668471, TOL); + assert_approx_eq!(pi.to_degrees(), 180.0, TOL); assert!(nan.to_degrees().is_nan()); assert_eq!(inf.to_degrees(), inf); assert_eq!(neg_inf.to_degrees(), neg_inf); @@ -328,19 +628,122 @@ fn test_to_radians() { let inf: f128 = f128::INFINITY; let neg_inf: f128 = f128::NEG_INFINITY; assert_eq!(0.0f128.to_radians(), 0.0); - assert_approx_eq!(154.6f128.to_radians(), 2.698279); - assert_approx_eq!((-332.31f128).to_radians(), -5.799903); + assert_approx_eq!(154.6f128.to_radians(), 2.6982790235832334267135442069489767804, TOL); + assert_approx_eq!((-332.31f128).to_radians(), -5.7999036373023566567593094812182763013, TOL); // check approx rather than exact because round trip for pi doesn't fall on an exactly // representable value (unlike `f32` and `f64`). - assert_approx_eq!(180.0f128.to_radians(), pi); + assert_approx_eq!(180.0f128.to_radians(), pi, TOL_PRECISE); assert!(nan.to_radians().is_nan()); assert_eq!(inf.to_radians(), inf); assert_eq!(neg_inf.to_radians(), neg_inf); } +#[test] +#[cfg(reliable_f128_math)] +fn test_asinh() { + // Lower accuracy results are allowed, use increased tolerances + assert_eq!(0.0f128.asinh(), 0.0f128); + assert_eq!((-0.0f128).asinh(), -0.0f128); + + let inf: f128 = f128::INFINITY; + let neg_inf: f128 = f128::NEG_INFINITY; + let nan: f128 = f128::NAN; + assert_eq!(inf.asinh(), inf); + assert_eq!(neg_inf.asinh(), neg_inf); + assert!(nan.asinh().is_nan()); + assert!((-0.0f128).asinh().is_sign_negative()); + + // issue 63271 + assert_approx_eq!(2.0f128.asinh(), 1.443635475178810342493276740273105f128, TOL_IMPR); + assert_approx_eq!((-2.0f128).asinh(), -1.443635475178810342493276740273105f128, TOL_IMPR); + // regression test for the catastrophic cancellation fixed in 72486 + assert_approx_eq!( + (-67452098.07139316f128).asinh(), + -18.720075426274544393985484294000831757220, + TOL_IMPR + ); + + // test for low accuracy from issue 104548 + assert_approx_eq!(60.0f128, 60.0f128.sinh().asinh(), TOL_IMPR); + // mul needed for approximate comparison to be meaningful + assert_approx_eq!(1.0f128, 1e-15f128.sinh().asinh() * 1e15f128, TOL_IMPR); +} + +#[test] +#[cfg(reliable_f128_math)] +fn test_acosh() { + assert_eq!(1.0f128.acosh(), 0.0f128); + assert!(0.999f128.acosh().is_nan()); + + let inf: f128 = f128::INFINITY; + let neg_inf: f128 = f128::NEG_INFINITY; + let nan: f128 = f128::NAN; + assert_eq!(inf.acosh(), inf); + assert!(neg_inf.acosh().is_nan()); + assert!(nan.acosh().is_nan()); + assert_approx_eq!(2.0f128.acosh(), 1.31695789692481670862504634730796844f128, TOL_IMPR); + assert_approx_eq!(3.0f128.acosh(), 1.76274717403908605046521864995958461f128, TOL_IMPR); + + // test for low accuracy from issue 104548 + assert_approx_eq!(60.0f128, 60.0f128.cosh().acosh(), TOL_IMPR); +} + +#[test] +#[cfg(reliable_f128_math)] +fn test_atanh() { + assert_eq!(0.0f128.atanh(), 0.0f128); + assert_eq!((-0.0f128).atanh(), -0.0f128); + + let inf: f128 = f128::INFINITY; + let neg_inf: f128 = f128::NEG_INFINITY; + let nan: f128 = f128::NAN; + assert_eq!(1.0f128.atanh(), inf); + assert_eq!((-1.0f128).atanh(), neg_inf); + assert!(2f128.atanh().atanh().is_nan()); + assert!((-2f128).atanh().atanh().is_nan()); + assert!(inf.atanh().is_nan()); + assert!(neg_inf.atanh().is_nan()); + assert!(nan.atanh().is_nan()); + assert_approx_eq!(0.5f128.atanh(), 0.54930614433405484569762261846126285f128, TOL_IMPR); + assert_approx_eq!((-0.5f128).atanh(), -0.54930614433405484569762261846126285f128, TOL_IMPR); +} + +#[test] +#[cfg(reliable_f128_math)] +fn test_gamma() { + // precision can differ among platforms + assert_approx_eq!(1.0f128.gamma(), 1.0f128, TOL_IMPR); + assert_approx_eq!(2.0f128.gamma(), 1.0f128, TOL_IMPR); + assert_approx_eq!(3.0f128.gamma(), 2.0f128, TOL_IMPR); + assert_approx_eq!(4.0f128.gamma(), 6.0f128, TOL_IMPR); + assert_approx_eq!(5.0f128.gamma(), 24.0f128, TOL_IMPR); + assert_approx_eq!(0.5f128.gamma(), consts::PI.sqrt(), TOL_IMPR); + assert_approx_eq!((-0.5f128).gamma(), -2.0 * consts::PI.sqrt(), TOL_IMPR); + assert_eq!(0.0f128.gamma(), f128::INFINITY); + assert_eq!((-0.0f128).gamma(), f128::NEG_INFINITY); + assert!((-1.0f128).gamma().is_nan()); + assert!((-2.0f128).gamma().is_nan()); + assert!(f128::NAN.gamma().is_nan()); + assert!(f128::NEG_INFINITY.gamma().is_nan()); + assert_eq!(f128::INFINITY.gamma(), f128::INFINITY); + assert_eq!(1760.9f128.gamma(), f128::INFINITY); +} + +#[test] +#[cfg(reliable_f128_math)] +fn test_ln_gamma() { + assert_approx_eq!(1.0f128.ln_gamma().0, 0.0f128, TOL_IMPR); + assert_eq!(1.0f128.ln_gamma().1, 1); + assert_approx_eq!(2.0f128.ln_gamma().0, 0.0f128, TOL_IMPR); + assert_eq!(2.0f128.ln_gamma().1, 1); + assert_approx_eq!(3.0f128.ln_gamma().0, 2.0f128.ln(), TOL_IMPR); + assert_eq!(3.0f128.ln_gamma().1, 1); + assert_approx_eq!((-0.5f128).ln_gamma().0, (2.0 * consts::PI.sqrt()).ln(), TOL_IMPR); + assert_eq!((-0.5f128).ln_gamma().1, -1); +} + #[test] fn test_real_consts() { - // FIXME(f16_f128): add math tests when available use super::consts; let pi: f128 = consts::PI; @@ -351,29 +754,34 @@ fn test_real_consts() { let frac_pi_8: f128 = consts::FRAC_PI_8; let frac_1_pi: f128 = consts::FRAC_1_PI; let frac_2_pi: f128 = consts::FRAC_2_PI; - // let frac_2_sqrtpi: f128 = consts::FRAC_2_SQRT_PI; - // let sqrt2: f128 = consts::SQRT_2; - // let frac_1_sqrt2: f128 = consts::FRAC_1_SQRT_2; - // let e: f128 = consts::E; - // let log2_e: f128 = consts::LOG2_E; - // let log10_e: f128 = consts::LOG10_E; - // let ln_2: f128 = consts::LN_2; - // let ln_10: f128 = consts::LN_10; - - assert_approx_eq!(frac_pi_2, pi / 2f128); - assert_approx_eq!(frac_pi_3, pi / 3f128); - assert_approx_eq!(frac_pi_4, pi / 4f128); - assert_approx_eq!(frac_pi_6, pi / 6f128); - assert_approx_eq!(frac_pi_8, pi / 8f128); - assert_approx_eq!(frac_1_pi, 1f128 / pi); - assert_approx_eq!(frac_2_pi, 2f128 / pi); - // assert_approx_eq!(frac_2_sqrtpi, 2f128 / pi.sqrt()); - // assert_approx_eq!(sqrt2, 2f128.sqrt()); - // assert_approx_eq!(frac_1_sqrt2, 1f128 / 2f128.sqrt()); - // assert_approx_eq!(log2_e, e.log2()); - // assert_approx_eq!(log10_e, e.log10()); - // assert_approx_eq!(ln_2, 2f128.ln()); - // assert_approx_eq!(ln_10, 10f128.ln()); + + assert_approx_eq!(frac_pi_2, pi / 2f128, TOL_PRECISE); + assert_approx_eq!(frac_pi_3, pi / 3f128, TOL_PRECISE); + assert_approx_eq!(frac_pi_4, pi / 4f128, TOL_PRECISE); + assert_approx_eq!(frac_pi_6, pi / 6f128, TOL_PRECISE); + assert_approx_eq!(frac_pi_8, pi / 8f128, TOL_PRECISE); + assert_approx_eq!(frac_1_pi, 1f128 / pi, TOL_PRECISE); + assert_approx_eq!(frac_2_pi, 2f128 / pi, TOL_PRECISE); + + #[cfg(reliable_f128_math)] + { + let frac_2_sqrtpi: f128 = consts::FRAC_2_SQRT_PI; + let sqrt2: f128 = consts::SQRT_2; + let frac_1_sqrt2: f128 = consts::FRAC_1_SQRT_2; + let e: f128 = consts::E; + let log2_e: f128 = consts::LOG2_E; + let log10_e: f128 = consts::LOG10_E; + let ln_2: f128 = consts::LN_2; + let ln_10: f128 = consts::LN_10; + + assert_approx_eq!(frac_2_sqrtpi, 2f128 / pi.sqrt(), TOL_PRECISE); + assert_approx_eq!(sqrt2, 2f128.sqrt(), TOL_PRECISE); + assert_approx_eq!(frac_1_sqrt2, 1f128 / 2f128.sqrt(), TOL_PRECISE); + assert_approx_eq!(log2_e, e.log2(), TOL_PRECISE); + assert_approx_eq!(log10_e, e.log10(), TOL_PRECISE); + assert_approx_eq!(ln_2, 2f128.ln(), TOL_PRECISE); + assert_approx_eq!(ln_10, 10f128.ln(), TOL_PRECISE); + } } #[test] @@ -382,10 +790,10 @@ fn test_float_bits_conv() { assert_eq!((12.5f128).to_bits(), 0x40029000000000000000000000000000); assert_eq!((1337f128).to_bits(), 0x40094e40000000000000000000000000); assert_eq!((-14.25f128).to_bits(), 0xc002c800000000000000000000000000); - assert_approx_eq!(f128::from_bits(0x3fff0000000000000000000000000000), 1.0); - assert_approx_eq!(f128::from_bits(0x40029000000000000000000000000000), 12.5); - assert_approx_eq!(f128::from_bits(0x40094e40000000000000000000000000), 1337.0); - assert_approx_eq!(f128::from_bits(0xc002c800000000000000000000000000), -14.25); + assert_approx_eq!(f128::from_bits(0x3fff0000000000000000000000000000), 1.0, TOL_PRECISE); + assert_approx_eq!(f128::from_bits(0x40029000000000000000000000000000), 12.5, TOL_PRECISE); + assert_approx_eq!(f128::from_bits(0x40094e40000000000000000000000000), 1337.0, TOL_PRECISE); + assert_approx_eq!(f128::from_bits(0xc002c800000000000000000000000000), -14.25, TOL_PRECISE); // Check that NaNs roundtrip their bits regardless of signaling-ness // 0xA is 0b1010; 0x5 is 0b0101 -- so these two together clobbers all the mantissa bits diff --git a/library/std/src/f16.rs b/library/std/src/f16.rs index e3024defed734..10908332762d5 100644 --- a/library/std/src/f16.rs +++ b/library/std/src/f16.rs @@ -12,25 +12,180 @@ pub use core::f16::consts; #[cfg(not(test))] use crate::intrinsics; +#[cfg(not(test))] +use crate::sys::cmath; #[cfg(not(test))] impl f16 { - /// Raises a number to an integer power. + /// Returns the largest integer less than or equal to `self`. /// - /// Using this function is generally faster than using `powf`. - /// It might have a different sequence of rounding operations than `powf`, - /// so the results are not guaranteed to agree. + /// This function always returns the precise result. /// - /// # Unspecified precision + /// # Examples /// - /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and - /// can even differ within the same execution from one invocation to the next. + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let f = 3.7_f16; + /// let g = 3.0_f16; + /// let h = -3.7_f16; + /// + /// assert_eq!(f.floor(), 3.0); + /// assert_eq!(g.floor(), 3.0); + /// assert_eq!(h.floor(), -4.0); + /// # } + /// ``` #[inline] #[rustc_allow_incoherent_impl] #[unstable(feature = "f16", issue = "116909")] #[must_use = "method returns a new number and does not mutate the original value"] - pub fn powi(self, n: i32) -> f16 { - unsafe { intrinsics::powif16(self, n) } + pub fn floor(self) -> f16 { + unsafe { intrinsics::floorf16(self) } + } + + /// Returns the smallest integer greater than or equal to `self`. + /// + /// This function always returns the precise result. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let f = 3.01_f16; + /// let g = 4.0_f16; + /// + /// assert_eq!(f.ceil(), 4.0); + /// assert_eq!(g.ceil(), 4.0); + /// # } + /// ``` + #[inline] + #[doc(alias = "ceiling")] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn ceil(self) -> f16 { + unsafe { intrinsics::ceilf16(self) } + } + + /// Returns the nearest integer to `self`. If a value is half-way between two + /// integers, round away from `0.0`. + /// + /// This function always returns the precise result. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let f = 3.3_f16; + /// let g = -3.3_f16; + /// let h = -3.7_f16; + /// let i = 3.5_f16; + /// let j = 4.5_f16; + /// + /// assert_eq!(f.round(), 3.0); + /// assert_eq!(g.round(), -3.0); + /// assert_eq!(h.round(), -4.0); + /// assert_eq!(i.round(), 4.0); + /// assert_eq!(j.round(), 5.0); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn round(self) -> f16 { + unsafe { intrinsics::roundf16(self) } + } + + /// Returns the nearest integer to a number. Rounds half-way cases to the number + /// with an even least significant digit. + /// + /// This function always returns the precise result. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let f = 3.3_f16; + /// let g = -3.3_f16; + /// let h = 3.5_f16; + /// let i = 4.5_f16; + /// + /// assert_eq!(f.round_ties_even(), 3.0); + /// assert_eq!(g.round_ties_even(), -3.0); + /// assert_eq!(h.round_ties_even(), 4.0); + /// assert_eq!(i.round_ties_even(), 4.0); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn round_ties_even(self) -> f16 { + unsafe { intrinsics::rintf16(self) } + } + + /// Returns the integer part of `self`. + /// This means that non-integer numbers are always truncated towards zero. + /// + /// This function always returns the precise result. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let f = 3.7_f16; + /// let g = 3.0_f16; + /// let h = -3.7_f16; + /// + /// assert_eq!(f.trunc(), 3.0); + /// assert_eq!(g.trunc(), 3.0); + /// assert_eq!(h.trunc(), -3.0); + /// # } + /// ``` + #[inline] + #[doc(alias = "truncate")] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn trunc(self) -> f16 { + unsafe { intrinsics::truncf16(self) } + } + + /// Returns the fractional part of `self`. + /// + /// This function always returns the precise result. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let x = 3.6_f16; + /// let y = -3.6_f16; + /// let abs_difference_x = (x.fract() - 0.6).abs(); + /// let abs_difference_y = (y.fract() - (-0.6)).abs(); + /// + /// assert!(abs_difference_x <= f16::EPSILON); + /// assert!(abs_difference_y <= f16::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn fract(self) -> f16 { + self - self.trunc() } /// Computes the absolute value of `self`. @@ -60,4 +215,1127 @@ impl f16 { // FIXME(f16_f128): replace with `intrinsics::fabsf16` when available Self::from_bits(self.to_bits() & !(1 << 15)) } + + /// Returns a number that represents the sign of `self`. + /// + /// - `1.0` if the number is positive, `+0.0` or `INFINITY` + /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY` + /// - NaN if the number is NaN + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let f = 3.5_f16; + /// + /// assert_eq!(f.signum(), 1.0); + /// assert_eq!(f16::NEG_INFINITY.signum(), -1.0); + /// + /// assert!(f16::NAN.signum().is_nan()); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn signum(self) -> f16 { + if self.is_nan() { Self::NAN } else { 1.0_f16.copysign(self) } + } + + /// Returns a number composed of the magnitude of `self` and the sign of + /// `sign`. + /// + /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise + /// equal to `-self`. If `self` is a NaN, then a NaN with the sign bit of + /// `sign` is returned. Note, however, that conserving the sign bit on NaN + /// across arithmetical operations is not generally guaranteed. + /// See [explanation of NaN as a special value](primitive@f16) for more info. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let f = 3.5_f16; + /// + /// assert_eq!(f.copysign(0.42), 3.5_f16); + /// assert_eq!(f.copysign(-0.42), -3.5_f16); + /// assert_eq!((-f).copysign(0.42), 3.5_f16); + /// assert_eq!((-f).copysign(-0.42), -3.5_f16); + /// + /// assert!(f16::NAN.copysign(1.0).is_nan()); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn copysign(self, sign: f16) -> f16 { + unsafe { intrinsics::copysignf16(self, sign) } + } + + /// Fused multiply-add. Computes `(self * a) + b` with only one rounding + /// error, yielding a more accurate result than an unfused multiply-add. + /// + /// Using `mul_add` *may* be more performant than an unfused multiply-add if + /// the target architecture has a dedicated `fma` CPU instruction. However, + /// this is not always true, and will be heavily dependant on designing + /// algorithms with specific target hardware in mind. + /// + /// # Precision + /// + /// The result of this operation is guaranteed to be the rounded + /// infinite-precision result. It is specified by IEEE 754 as + /// `fusedMultiplyAdd` and guaranteed not to change. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let m = 10.0_f16; + /// let x = 4.0_f16; + /// let b = 60.0_f16; + /// + /// assert_eq!(m.mul_add(x, b), 100.0); + /// assert_eq!(m * x + b, 100.0); + /// + /// let one_plus_eps = 1.0_f16 + f16::EPSILON; + /// let one_minus_eps = 1.0_f16 - f16::EPSILON; + /// let minus_one = -1.0_f16; + /// + /// // The exact result (1 + eps) * (1 - eps) = 1 - eps * eps. + /// assert_eq!(one_plus_eps.mul_add(one_minus_eps, minus_one), -f16::EPSILON * f16::EPSILON); + /// // Different rounding with the non-fused multiply and add. + /// assert_eq!(one_plus_eps * one_minus_eps + minus_one, 0.0); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn mul_add(self, a: f16, b: f16) -> f16 { + unsafe { intrinsics::fmaf16(self, a, b) } + } + + /// Calculates Euclidean division, the matching method for `rem_euclid`. + /// + /// This computes the integer `n` such that + /// `self = n * rhs + self.rem_euclid(rhs)`. + /// In other words, the result is `self / rhs` rounded to the integer `n` + /// such that `self >= n * rhs`. + /// + /// # Precision + /// + /// The result of this operation is guaranteed to be the rounded + /// infinite-precision result. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let a: f16 = 7.0; + /// let b = 4.0; + /// assert_eq!(a.div_euclid(b), 1.0); // 7.0 > 4.0 * 1.0 + /// assert_eq!((-a).div_euclid(b), -2.0); // -7.0 >= 4.0 * -2.0 + /// assert_eq!(a.div_euclid(-b), -1.0); // 7.0 >= -4.0 * -1.0 + /// assert_eq!((-a).div_euclid(-b), 2.0); // -7.0 >= -4.0 * 2.0 + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn div_euclid(self, rhs: f16) -> f16 { + let q = (self / rhs).trunc(); + if self % rhs < 0.0 { + return if rhs > 0.0 { q - 1.0 } else { q + 1.0 }; + } + q + } + + /// Calculates the least nonnegative remainder of `self (mod rhs)`. + /// + /// In particular, the return value `r` satisfies `0.0 <= r < rhs.abs()` in + /// most cases. However, due to a floating point round-off error it can + /// result in `r == rhs.abs()`, violating the mathematical definition, if + /// `self` is much smaller than `rhs.abs()` in magnitude and `self < 0.0`. + /// This result is not an element of the function's codomain, but it is the + /// closest floating point number in the real numbers and thus fulfills the + /// property `self == self.div_euclid(rhs) * rhs + self.rem_euclid(rhs)` + /// approximately. + /// + /// # Precision + /// + /// The result of this operation is guaranteed to be the rounded + /// infinite-precision result. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let a: f16 = 7.0; + /// let b = 4.0; + /// assert_eq!(a.rem_euclid(b), 3.0); + /// assert_eq!((-a).rem_euclid(b), 1.0); + /// assert_eq!(a.rem_euclid(-b), 3.0); + /// assert_eq!((-a).rem_euclid(-b), 1.0); + /// // limitation due to round-off error + /// assert!((-f16::EPSILON).rem_euclid(3.0) != 0.0); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[doc(alias = "modulo", alias = "mod")] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn rem_euclid(self, rhs: f16) -> f16 { + let r = self % rhs; + if r < 0.0 { r + rhs.abs() } else { r } + } + + /// Raises a number to an integer power. + /// + /// Using this function is generally faster than using `powf`. + /// It might have a different sequence of rounding operations than `powf`, + /// so the results are not guaranteed to agree. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn powi(self, n: i32) -> f16 { + unsafe { intrinsics::powif16(self, n) } + } + + /// Raises a number to a floating point power. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let x = 2.0_f16; + /// let abs_difference = (x.powf(2.0) - (x * x)).abs(); + /// + /// assert!(abs_difference <= f16::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn powf(self, n: f16) -> f16 { + unsafe { intrinsics::powf16(self, n) } + } + + /// Returns the square root of a number. + /// + /// Returns NaN if `self` is a negative number other than `-0.0`. + /// + /// # Precision + /// + /// The result of this operation is guaranteed to be the rounded + /// infinite-precision result. It is specified by IEEE 754 as `squareRoot` + /// and guaranteed not to change. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let positive = 4.0_f16; + /// let negative = -4.0_f16; + /// let negative_zero = -0.0_f16; + /// + /// assert_eq!(positive.sqrt(), 2.0); + /// assert!(negative.sqrt().is_nan()); + /// assert!(negative_zero.sqrt() == negative_zero); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn sqrt(self) -> f16 { + unsafe { intrinsics::sqrtf16(self) } + } + + /// Returns `e^(self)`, (the exponential function). + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let one = 1.0f16; + /// // e^1 + /// let e = one.exp(); + /// + /// // ln(e) - 1 == 0 + /// let abs_difference = (e.ln() - 1.0).abs(); + /// + /// assert!(abs_difference <= f16::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn exp(self) -> f16 { + unsafe { intrinsics::expf16(self) } + } + + /// Returns `2^(self)`. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let f = 2.0f16; + /// + /// // 2^2 - 4 == 0 + /// let abs_difference = (f.exp2() - 4.0).abs(); + /// + /// assert!(abs_difference <= f16::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn exp2(self) -> f16 { + unsafe { intrinsics::exp2f16(self) } + } + + /// Returns the natural logarithm of the number. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let one = 1.0f16; + /// // e^1 + /// let e = one.exp(); + /// + /// // ln(e) - 1 == 0 + /// let abs_difference = (e.ln() - 1.0).abs(); + /// + /// assert!(abs_difference <= f16::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn ln(self) -> f16 { + unsafe { intrinsics::logf16(self) } + } + + /// Returns the logarithm of the number with respect to an arbitrary base. + /// + /// The result might not be correctly rounded owing to implementation details; + /// `self.log2()` can produce more accurate results for base 2, and + /// `self.log10()` can produce more accurate results for base 10. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let five = 5.0f16; + /// + /// // log5(5) - 1 == 0 + /// let abs_difference = (five.log(5.0) - 1.0).abs(); + /// + /// assert!(abs_difference <= f16::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn log(self, base: f16) -> f16 { + self.ln() / base.ln() + } + + /// Returns the base 2 logarithm of the number. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let two = 2.0f16; + /// + /// // log2(2) - 1 == 0 + /// let abs_difference = (two.log2() - 1.0).abs(); + /// + /// assert!(abs_difference <= f16::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn log2(self) -> f16 { + unsafe { intrinsics::log2f16(self) } + } + + /// Returns the base 10 logarithm of the number. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let ten = 10.0f16; + /// + /// // log10(10) - 1 == 0 + /// let abs_difference = (ten.log10() - 1.0).abs(); + /// + /// assert!(abs_difference <= f16::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn log10(self) -> f16 { + unsafe { intrinsics::log10f16(self) } + } + + /// Returns the cube root of a number. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// This function currently corresponds to the `cbrtf` from libc on Unix + /// and Windows. Note that this might change in the future. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let x = 8.0f16; + /// + /// // x^(1/3) - 2 == 0 + /// let abs_difference = (x.cbrt() - 2.0).abs(); + /// + /// assert!(abs_difference <= f16::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn cbrt(self) -> f16 { + (unsafe { cmath::cbrtf(self as f32) }) as f16 + } + + /// Compute the distance between the origin and a point (`x`, `y`) on the + /// Euclidean plane. Equivalently, compute the length of the hypotenuse of a + /// right-angle triangle with other sides having length `x.abs()` and + /// `y.abs()`. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// This function currently corresponds to the `hypotf` from libc on Unix + /// and Windows. Note that this might change in the future. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let x = 2.0f16; + /// let y = 3.0f16; + /// + /// // sqrt(x^2 + y^2) + /// let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs(); + /// + /// assert!(abs_difference <= f16::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn hypot(self, other: f16) -> f16 { + (unsafe { cmath::hypotf(self as f32, other as f32) }) as f16 + } + + /// Computes the sine of a number (in radians). + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let x = std::f16::consts::FRAC_PI_2; + /// + /// let abs_difference = (x.sin() - 1.0).abs(); + /// + /// assert!(abs_difference <= f16::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn sin(self) -> f16 { + unsafe { intrinsics::sinf16(self) } + } + + /// Computes the cosine of a number (in radians). + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let x = 2.0 * std::f16::consts::PI; + /// + /// let abs_difference = (x.cos() - 1.0).abs(); + /// + /// assert!(abs_difference <= f16::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn cos(self) -> f16 { + unsafe { intrinsics::cosf16(self) } + } + + /// Computes the tangent of a number (in radians). + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// This function currently corresponds to the `tanf` from libc on Unix and + /// Windows. Note that this might change in the future. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let x = std::f16::consts::FRAC_PI_4; + /// let abs_difference = (x.tan() - 1.0).abs(); + /// + /// assert!(abs_difference <= f16::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn tan(self) -> f16 { + (unsafe { cmath::tanf(self as f32) }) as f16 + } + + /// Computes the arcsine of a number. Return value is in radians in + /// the range [-pi/2, pi/2] or NaN if the number is outside the range + /// [-1, 1]. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// This function currently corresponds to the `asinf` from libc on Unix + /// and Windows. Note that this might change in the future. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let f = std::f16::consts::FRAC_PI_2; + /// + /// // asin(sin(pi/2)) + /// let abs_difference = (f.sin().asin() - std::f16::consts::FRAC_PI_2).abs(); + /// + /// assert!(abs_difference <= f16::EPSILON); + /// # } + /// ``` + #[inline] + #[doc(alias = "arcsin")] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn asin(self) -> f16 { + (unsafe { cmath::asinf(self as f32) }) as f16 + } + + /// Computes the arccosine of a number. Return value is in radians in + /// the range [0, pi] or NaN if the number is outside the range + /// [-1, 1]. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// This function currently corresponds to the `acosf` from libc on Unix + /// and Windows. Note that this might change in the future. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let f = std::f16::consts::FRAC_PI_4; + /// + /// // acos(cos(pi/4)) + /// let abs_difference = (f.cos().acos() - std::f16::consts::FRAC_PI_4).abs(); + /// + /// assert!(abs_difference <= f16::EPSILON); + /// # } + /// ``` + #[inline] + #[doc(alias = "arccos")] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn acos(self) -> f16 { + (unsafe { cmath::acosf(self as f32) }) as f16 + } + + /// Computes the arctangent of a number. Return value is in radians in the + /// range [-pi/2, pi/2]; + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// This function currently corresponds to the `atanf` from libc on Unix + /// and Windows. Note that this might change in the future. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let f = 1.0f16; + /// + /// // atan(tan(1)) + /// let abs_difference = (f.tan().atan() - 1.0).abs(); + /// + /// assert!(abs_difference <= f16::EPSILON); + /// # } + /// ``` + #[inline] + #[doc(alias = "arctan")] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn atan(self) -> f16 { + (unsafe { cmath::atanf(self as f32) }) as f16 + } + + /// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`) in radians. + /// + /// * `x = 0`, `y = 0`: `0` + /// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]` + /// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]` + /// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)` + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// This function currently corresponds to the `atan2f` from libc on Unix + /// and Windows. Note that this might change in the future. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// // Positive angles measured counter-clockwise + /// // from positive x axis + /// // -pi/4 radians (45 deg clockwise) + /// let x1 = 3.0f16; + /// let y1 = -3.0f16; + /// + /// // 3pi/4 radians (135 deg counter-clockwise) + /// let x2 = -3.0f16; + /// let y2 = 3.0f16; + /// + /// let abs_difference_1 = (y1.atan2(x1) - (-std::f16::consts::FRAC_PI_4)).abs(); + /// let abs_difference_2 = (y2.atan2(x2) - (3.0 * std::f16::consts::FRAC_PI_4)).abs(); + /// + /// assert!(abs_difference_1 <= f16::EPSILON); + /// assert!(abs_difference_2 <= f16::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn atan2(self, other: f16) -> f16 { + (unsafe { cmath::atan2f(self as f32, other as f32) }) as f16 + } + + /// Simultaneously computes the sine and cosine of the number, `x`. Returns + /// `(sin(x), cos(x))`. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// This function currently corresponds to the `(f16::sin(x), + /// f16::cos(x))`. Note that this might change in the future. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let x = std::f16::consts::FRAC_PI_4; + /// let f = x.sin_cos(); + /// + /// let abs_difference_0 = (f.0 - x.sin()).abs(); + /// let abs_difference_1 = (f.1 - x.cos()).abs(); + /// + /// assert!(abs_difference_0 <= f16::EPSILON); + /// assert!(abs_difference_1 <= f16::EPSILON); + /// # } + /// ``` + #[inline] + #[doc(alias = "sincos")] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + pub fn sin_cos(self) -> (f16, f16) { + (self.sin(), self.cos()) + } + + /// Returns `e^(self) - 1` in a way that is accurate even if the + /// number is close to zero. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// This function currently corresponds to the `expm1f` from libc on Unix + /// and Windows. Note that this might change in the future. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let x = 1e-4_f16; + /// + /// // for very small x, e^x is approximately 1 + x + x^2 / 2 + /// let approx = x + x * x / 2.0; + /// let abs_difference = (x.exp_m1() - approx).abs(); + /// + /// assert!(abs_difference < 1e-4); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn exp_m1(self) -> f16 { + (unsafe { cmath::expm1f(self as f32) }) as f16 + } + + /// Returns `ln(1+n)` (natural logarithm) more accurately than if + /// the operations were performed separately. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// This function currently corresponds to the `log1pf` from libc on Unix + /// and Windows. Note that this might change in the future. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let x = 1e-4_f16; + /// + /// // for very small x, ln(1 + x) is approximately x - x^2 / 2 + /// let approx = x - x * x / 2.0; + /// let abs_difference = (x.ln_1p() - approx).abs(); + /// + /// assert!(abs_difference < 1e-4); + /// # } + /// ``` + #[inline] + #[doc(alias = "log1p")] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn ln_1p(self) -> f16 { + (unsafe { cmath::log1pf(self as f32) }) as f16 + } + + /// Hyperbolic sine function. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// This function currently corresponds to the `sinhf` from libc on Unix + /// and Windows. Note that this might change in the future. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let e = std::f16::consts::E; + /// let x = 1.0f16; + /// + /// let f = x.sinh(); + /// // Solving sinh() at 1 gives `(e^2-1)/(2e)` + /// let g = ((e * e) - 1.0) / (2.0 * e); + /// let abs_difference = (f - g).abs(); + /// + /// assert!(abs_difference <= f16::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn sinh(self) -> f16 { + (unsafe { cmath::sinhf(self as f32) }) as f16 + } + + /// Hyperbolic cosine function. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// This function currently corresponds to the `coshf` from libc on Unix + /// and Windows. Note that this might change in the future. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let e = std::f16::consts::E; + /// let x = 1.0f16; + /// let f = x.cosh(); + /// // Solving cosh() at 1 gives this result + /// let g = ((e * e) + 1.0) / (2.0 * e); + /// let abs_difference = (f - g).abs(); + /// + /// // Same result + /// assert!(abs_difference <= f16::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn cosh(self) -> f16 { + (unsafe { cmath::coshf(self as f32) }) as f16 + } + + /// Hyperbolic tangent function. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// This function currently corresponds to the `tanhf` from libc on Unix + /// and Windows. Note that this might change in the future. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let e = std::f16::consts::E; + /// let x = 1.0f16; + /// + /// let f = x.tanh(); + /// // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))` + /// let g = (1.0 - e.powi(-2)) / (1.0 + e.powi(-2)); + /// let abs_difference = (f - g).abs(); + /// + /// assert!(abs_difference <= f16::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn tanh(self) -> f16 { + (unsafe { cmath::tanhf(self as f32) }) as f16 + } + + /// Inverse hyperbolic sine function. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let x = 1.0f16; + /// let f = x.sinh().asinh(); + /// + /// let abs_difference = (f - x).abs(); + /// + /// assert!(abs_difference <= f16::EPSILON); + /// # } + /// ``` + #[inline] + #[doc(alias = "arcsinh")] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn asinh(self) -> f16 { + let ax = self.abs(); + let ix = 1.0 / ax; + (ax + (ax / (Self::hypot(1.0, ix) + ix))).ln_1p().copysign(self) + } + + /// Inverse hyperbolic cosine function. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let x = 1.0f16; + /// let f = x.cosh().acosh(); + /// + /// let abs_difference = (f - x).abs(); + /// + /// assert!(abs_difference <= f16::EPSILON); + /// # } + /// ``` + #[inline] + #[doc(alias = "arccosh")] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn acosh(self) -> f16 { + if self < 1.0 { + Self::NAN + } else { + (self + ((self - 1.0).sqrt() * (self + 1.0).sqrt())).ln() + } + } + + /// Inverse hyperbolic tangent function. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let e = std::f16::consts::E; + /// let f = e.tanh().atanh(); + /// + /// let abs_difference = (f - e).abs(); + /// + /// assert!(abs_difference <= 0.01); + /// # } + /// ``` + #[inline] + #[doc(alias = "arctanh")] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn atanh(self) -> f16 { + 0.5 * ((2.0 * self) / (1.0 - self)).ln_1p() + } + + /// Gamma function. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// This function currently corresponds to the `tgammaf` from libc on Unix + /// and Windows. Note that this might change in the future. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// #![feature(float_gamma)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let x = 5.0f16; + /// + /// let abs_difference = (x.gamma() - 24.0).abs(); + /// + /// assert!(abs_difference <= f16::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn gamma(self) -> f16 { + (unsafe { cmath::tgammaf(self as f32) }) as f16 + } + + /// Natural logarithm of the absolute value of the gamma function + /// + /// The integer part of the tuple indicates the sign of the gamma function. + /// + /// # Unspecified precision + /// + /// The precision of this function is non-deterministic. This means it varies by platform, + /// Rust version, and can even differ within the same execution from one invocation to the next. + /// + /// This function currently corresponds to the `lgamma_r` from libc on Unix + /// and Windows. Note that this might change in the future. + /// + /// # Examples + /// + /// ``` + /// #![feature(f16)] + /// #![feature(float_gamma)] + /// # #[cfg(reliable_f16_math)] { + /// + /// let x = 2.0f16; + /// + /// let abs_difference = (x.ln_gamma().0 - 0.0).abs(); + /// + /// assert!(abs_difference <= f16::EPSILON); + /// # } + /// ``` + #[inline] + #[rustc_allow_incoherent_impl] + #[unstable(feature = "f16", issue = "116909")] + #[must_use = "method returns a new number and does not mutate the original value"] + pub fn ln_gamma(self) -> (f16, i32) { + let mut signgamp: i32 = 0; + let x = (unsafe { cmath::lgammaf_r(self as f32, &mut signgamp) }) as f16; + (x, signgamp) + } } diff --git a/library/std/src/f16/tests.rs b/library/std/src/f16/tests.rs index f73bdf68e8295..50504e7ffd94f 100644 --- a/library/std/src/f16/tests.rs +++ b/library/std/src/f16/tests.rs @@ -4,11 +4,21 @@ use crate::f16::consts; use crate::num::{FpCategory as Fp, *}; -// We run out of precision pretty quickly with f16 -// const F16_APPROX_L1: f16 = 0.001; -const F16_APPROX_L2: f16 = 0.01; -// const F16_APPROX_L3: f16 = 0.1; -const F16_APPROX_L4: f16 = 0.5; +/// Tolerance for results on the order of 10.0e-2; +#[cfg(reliable_f16_math)] +const TOL_N2: f16 = 0.0001; + +/// Tolerance for results on the order of 10.0e+0 +#[cfg(reliable_f16_math)] +const TOL_0: f16 = 0.01; + +/// Tolerance for results on the order of 10.0e+2 +#[cfg(reliable_f16_math)] +const TOL_P2: f16 = 0.5; + +/// Tolerance for results on the order of 10.0e+4 +#[cfg(reliable_f16_math)] +const TOL_P4: f16 = 10.0; /// Smallest number const TINY_BITS: u16 = 0x1; @@ -47,7 +57,33 @@ fn test_num_f16() { test_num(10f16, 2f16); } -// FIXME(f16_f128): add min and max tests when available +#[test] +#[cfg(reliable_f16_math)] +fn test_min_nan() { + assert_eq!(f16::NAN.min(2.0), 2.0); + assert_eq!(2.0f16.min(f16::NAN), 2.0); +} + +#[test] +#[cfg(reliable_f16_math)] +fn test_max_nan() { + assert_eq!(f16::NAN.max(2.0), 2.0); + assert_eq!(2.0f16.max(f16::NAN), 2.0); +} + +#[test] +#[cfg(reliable_f16_math)] +fn test_minimum() { + assert!(f16::NAN.minimum(2.0).is_nan()); + assert!(2.0f16.minimum(f16::NAN).is_nan()); +} + +#[test] +#[cfg(reliable_f16_math)] +fn test_maximum() { + assert!(f16::NAN.maximum(2.0).is_nan()); + assert!(2.0f16.maximum(f16::NAN).is_nan()); +} #[test] fn test_nan() { @@ -197,9 +233,100 @@ fn test_classify() { assert_eq!(1e-5f16.classify(), Fp::Subnormal); } -// FIXME(f16_f128): add missing math functions when available +#[test] +#[cfg(reliable_f16_math)] +fn test_floor() { + assert_approx_eq!(1.0f16.floor(), 1.0f16, TOL_0); + assert_approx_eq!(1.3f16.floor(), 1.0f16, TOL_0); + assert_approx_eq!(1.5f16.floor(), 1.0f16, TOL_0); + assert_approx_eq!(1.7f16.floor(), 1.0f16, TOL_0); + assert_approx_eq!(0.0f16.floor(), 0.0f16, TOL_0); + assert_approx_eq!((-0.0f16).floor(), -0.0f16, TOL_0); + assert_approx_eq!((-1.0f16).floor(), -1.0f16, TOL_0); + assert_approx_eq!((-1.3f16).floor(), -2.0f16, TOL_0); + assert_approx_eq!((-1.5f16).floor(), -2.0f16, TOL_0); + assert_approx_eq!((-1.7f16).floor(), -2.0f16, TOL_0); +} + +#[test] +#[cfg(reliable_f16_math)] +fn test_ceil() { + assert_approx_eq!(1.0f16.ceil(), 1.0f16, TOL_0); + assert_approx_eq!(1.3f16.ceil(), 2.0f16, TOL_0); + assert_approx_eq!(1.5f16.ceil(), 2.0f16, TOL_0); + assert_approx_eq!(1.7f16.ceil(), 2.0f16, TOL_0); + assert_approx_eq!(0.0f16.ceil(), 0.0f16, TOL_0); + assert_approx_eq!((-0.0f16).ceil(), -0.0f16, TOL_0); + assert_approx_eq!((-1.0f16).ceil(), -1.0f16, TOL_0); + assert_approx_eq!((-1.3f16).ceil(), -1.0f16, TOL_0); + assert_approx_eq!((-1.5f16).ceil(), -1.0f16, TOL_0); + assert_approx_eq!((-1.7f16).ceil(), -1.0f16, TOL_0); +} + +#[test] +#[cfg(reliable_f16_math)] +fn test_round() { + assert_approx_eq!(2.5f16.round(), 3.0f16, TOL_0); + assert_approx_eq!(1.0f16.round(), 1.0f16, TOL_0); + assert_approx_eq!(1.3f16.round(), 1.0f16, TOL_0); + assert_approx_eq!(1.5f16.round(), 2.0f16, TOL_0); + assert_approx_eq!(1.7f16.round(), 2.0f16, TOL_0); + assert_approx_eq!(0.0f16.round(), 0.0f16, TOL_0); + assert_approx_eq!((-0.0f16).round(), -0.0f16, TOL_0); + assert_approx_eq!((-1.0f16).round(), -1.0f16, TOL_0); + assert_approx_eq!((-1.3f16).round(), -1.0f16, TOL_0); + assert_approx_eq!((-1.5f16).round(), -2.0f16, TOL_0); + assert_approx_eq!((-1.7f16).round(), -2.0f16, TOL_0); +} + +#[test] +#[cfg(reliable_f16_math)] +fn test_round_ties_even() { + assert_approx_eq!(2.5f16.round_ties_even(), 2.0f16, TOL_0); + assert_approx_eq!(1.0f16.round_ties_even(), 1.0f16, TOL_0); + assert_approx_eq!(1.3f16.round_ties_even(), 1.0f16, TOL_0); + assert_approx_eq!(1.5f16.round_ties_even(), 2.0f16, TOL_0); + assert_approx_eq!(1.7f16.round_ties_even(), 2.0f16, TOL_0); + assert_approx_eq!(0.0f16.round_ties_even(), 0.0f16, TOL_0); + assert_approx_eq!((-0.0f16).round_ties_even(), -0.0f16, TOL_0); + assert_approx_eq!((-1.0f16).round_ties_even(), -1.0f16, TOL_0); + assert_approx_eq!((-1.3f16).round_ties_even(), -1.0f16, TOL_0); + assert_approx_eq!((-1.5f16).round_ties_even(), -2.0f16, TOL_0); + assert_approx_eq!((-1.7f16).round_ties_even(), -2.0f16, TOL_0); +} + +#[test] +#[cfg(reliable_f16_math)] +fn test_trunc() { + assert_approx_eq!(1.0f16.trunc(), 1.0f16, TOL_0); + assert_approx_eq!(1.3f16.trunc(), 1.0f16, TOL_0); + assert_approx_eq!(1.5f16.trunc(), 1.0f16, TOL_0); + assert_approx_eq!(1.7f16.trunc(), 1.0f16, TOL_0); + assert_approx_eq!(0.0f16.trunc(), 0.0f16, TOL_0); + assert_approx_eq!((-0.0f16).trunc(), -0.0f16, TOL_0); + assert_approx_eq!((-1.0f16).trunc(), -1.0f16, TOL_0); + assert_approx_eq!((-1.3f16).trunc(), -1.0f16, TOL_0); + assert_approx_eq!((-1.5f16).trunc(), -1.0f16, TOL_0); + assert_approx_eq!((-1.7f16).trunc(), -1.0f16, TOL_0); +} + +#[test] +#[cfg(reliable_f16_math)] +fn test_fract() { + assert_approx_eq!(1.0f16.fract(), 0.0f16, TOL_0); + assert_approx_eq!(1.3f16.fract(), 0.3f16, TOL_0); + assert_approx_eq!(1.5f16.fract(), 0.5f16, TOL_0); + assert_approx_eq!(1.7f16.fract(), 0.7f16, TOL_0); + assert_approx_eq!(0.0f16.fract(), 0.0f16, TOL_0); + assert_approx_eq!((-0.0f16).fract(), -0.0f16, TOL_0); + assert_approx_eq!((-1.0f16).fract(), -0.0f16, TOL_0); + assert_approx_eq!((-1.3f16).fract(), -0.3f16, TOL_0); + assert_approx_eq!((-1.5f16).fract(), -0.5f16, TOL_0); + assert_approx_eq!((-1.7f16).fract(), -0.7f16, TOL_0); +} #[test] +#[cfg(reliable_f16_math)] fn test_abs() { assert_eq!(f16::INFINITY.abs(), f16::INFINITY); assert_eq!(1f16.abs(), 1f16); @@ -299,6 +426,24 @@ fn test_next_down() { } #[test] +#[cfg(reliable_f16_math)] +fn test_mul_add() { + let nan: f16 = f16::NAN; + let inf: f16 = f16::INFINITY; + let neg_inf: f16 = f16::NEG_INFINITY; + assert_approx_eq!(12.3f16.mul_add(4.5, 6.7), 62.05, TOL_P2); + assert_approx_eq!((-12.3f16).mul_add(-4.5, -6.7), 48.65, TOL_P2); + assert_approx_eq!(0.0f16.mul_add(8.9, 1.2), 1.2, TOL_0); + assert_approx_eq!(3.4f16.mul_add(-0.0, 5.6), 5.6, TOL_0); + assert!(nan.mul_add(7.8, 9.0).is_nan()); + assert_eq!(inf.mul_add(7.8, 9.0), inf); + assert_eq!(neg_inf.mul_add(7.8, 9.0), neg_inf); + assert_eq!(8.9f16.mul_add(inf, 3.2), inf); + assert_eq!((-3.2f16).mul_add(2.4, neg_inf), neg_inf); +} + +#[test] +#[cfg(reliable_f16_math)] fn test_recip() { let nan: f16 = f16::NAN; let inf: f16 = f16::INFINITY; @@ -307,11 +452,157 @@ fn test_recip() { assert_eq!(2.0f16.recip(), 0.5); assert_eq!((-0.4f16).recip(), -2.5); assert_eq!(0.0f16.recip(), inf); + assert_approx_eq!(f16::MAX.recip(), 1.526624e-5f16, 1e-4); assert!(nan.recip().is_nan()); assert_eq!(inf.recip(), 0.0); assert_eq!(neg_inf.recip(), 0.0); } +#[test] +#[cfg(reliable_f16_math)] +fn test_powi() { + // FIXME(llvm19): LLVM misoptimizes `powi.f16` + // + // let nan: f16 = f16::NAN; + // let inf: f16 = f16::INFINITY; + // let neg_inf: f16 = f16::NEG_INFINITY; + // assert_eq!(1.0f16.powi(1), 1.0); + // assert_approx_eq!((-3.1f16).powi(2), 9.61, TOL_0); + // assert_approx_eq!(5.9f16.powi(-2), 0.028727, TOL_N2); + // assert_eq!(8.3f16.powi(0), 1.0); + // assert!(nan.powi(2).is_nan()); + // assert_eq!(inf.powi(3), inf); + // assert_eq!(neg_inf.powi(2), inf); +} + +#[test] +#[cfg(reliable_f16_math)] +fn test_powf() { + let nan: f16 = f16::NAN; + let inf: f16 = f16::INFINITY; + let neg_inf: f16 = f16::NEG_INFINITY; + assert_eq!(1.0f16.powf(1.0), 1.0); + assert_approx_eq!(3.4f16.powf(4.5), 246.408183, TOL_P2); + assert_approx_eq!(2.7f16.powf(-3.2), 0.041652, TOL_N2); + assert_approx_eq!((-3.1f16).powf(2.0), 9.61, TOL_P2); + assert_approx_eq!(5.9f16.powf(-2.0), 0.028727, TOL_N2); + assert_eq!(8.3f16.powf(0.0), 1.0); + assert!(nan.powf(2.0).is_nan()); + assert_eq!(inf.powf(2.0), inf); + assert_eq!(neg_inf.powf(3.0), neg_inf); +} + +#[test] +#[cfg(reliable_f16_math)] +fn test_sqrt_domain() { + assert!(f16::NAN.sqrt().is_nan()); + assert!(f16::NEG_INFINITY.sqrt().is_nan()); + assert!((-1.0f16).sqrt().is_nan()); + assert_eq!((-0.0f16).sqrt(), -0.0); + assert_eq!(0.0f16.sqrt(), 0.0); + assert_eq!(1.0f16.sqrt(), 1.0); + assert_eq!(f16::INFINITY.sqrt(), f16::INFINITY); +} + +#[test] +#[cfg(reliable_f16_math)] +fn test_exp() { + assert_eq!(1.0, 0.0f16.exp()); + assert_approx_eq!(2.718282, 1.0f16.exp(), TOL_0); + assert_approx_eq!(148.413159, 5.0f16.exp(), TOL_0); + + let inf: f16 = f16::INFINITY; + let neg_inf: f16 = f16::NEG_INFINITY; + let nan: f16 = f16::NAN; + assert_eq!(inf, inf.exp()); + assert_eq!(0.0, neg_inf.exp()); + assert!(nan.exp().is_nan()); +} + +#[test] +#[cfg(reliable_f16_math)] +fn test_exp2() { + assert_eq!(32.0, 5.0f16.exp2()); + assert_eq!(1.0, 0.0f16.exp2()); + + let inf: f16 = f16::INFINITY; + let neg_inf: f16 = f16::NEG_INFINITY; + let nan: f16 = f16::NAN; + assert_eq!(inf, inf.exp2()); + assert_eq!(0.0, neg_inf.exp2()); + assert!(nan.exp2().is_nan()); +} + +#[test] +#[cfg(reliable_f16_math)] +fn test_ln() { + let nan: f16 = f16::NAN; + let inf: f16 = f16::INFINITY; + let neg_inf: f16 = f16::NEG_INFINITY; + assert_approx_eq!(1.0f16.exp().ln(), 1.0, TOL_0); + assert!(nan.ln().is_nan()); + assert_eq!(inf.ln(), inf); + assert!(neg_inf.ln().is_nan()); + assert!((-2.3f16).ln().is_nan()); + assert_eq!((-0.0f16).ln(), neg_inf); + assert_eq!(0.0f16.ln(), neg_inf); + assert_approx_eq!(4.0f16.ln(), 1.386294, TOL_0); +} + +#[test] +#[cfg(reliable_f16_math)] +fn test_log() { + let nan: f16 = f16::NAN; + let inf: f16 = f16::INFINITY; + let neg_inf: f16 = f16::NEG_INFINITY; + assert_eq!(10.0f16.log(10.0), 1.0); + assert_approx_eq!(2.3f16.log(3.5), 0.664858, TOL_0); + assert_eq!(1.0f16.exp().log(1.0f16.exp()), 1.0); + assert!(1.0f16.log(1.0).is_nan()); + assert!(1.0f16.log(-13.9).is_nan()); + assert!(nan.log(2.3).is_nan()); + assert_eq!(inf.log(10.0), inf); + assert!(neg_inf.log(8.8).is_nan()); + assert!((-2.3f16).log(0.1).is_nan()); + assert_eq!((-0.0f16).log(2.0), neg_inf); + assert_eq!(0.0f16.log(7.0), neg_inf); +} + +#[test] +#[cfg(reliable_f16_math)] +fn test_log2() { + let nan: f16 = f16::NAN; + let inf: f16 = f16::INFINITY; + let neg_inf: f16 = f16::NEG_INFINITY; + assert_approx_eq!(10.0f16.log2(), 3.321928, TOL_0); + assert_approx_eq!(2.3f16.log2(), 1.201634, TOL_0); + assert_approx_eq!(1.0f16.exp().log2(), 1.442695, TOL_0); + assert!(nan.log2().is_nan()); + assert_eq!(inf.log2(), inf); + assert!(neg_inf.log2().is_nan()); + assert!((-2.3f16).log2().is_nan()); + assert_eq!((-0.0f16).log2(), neg_inf); + assert_eq!(0.0f16.log2(), neg_inf); +} + +#[test] +#[cfg(reliable_f16_math)] +fn test_log10() { + let nan: f16 = f16::NAN; + let inf: f16 = f16::INFINITY; + let neg_inf: f16 = f16::NEG_INFINITY; + assert_eq!(10.0f16.log10(), 1.0); + assert_approx_eq!(2.3f16.log10(), 0.361728, TOL_0); + assert_approx_eq!(1.0f16.exp().log10(), 0.434294, TOL_0); + assert_eq!(1.0f16.log10(), 0.0); + assert!(nan.log10().is_nan()); + assert_eq!(inf.log10(), inf); + assert!(neg_inf.log10().is_nan()); + assert!((-2.3f16).log10().is_nan()); + assert_eq!((-0.0f16).log10(), neg_inf); + assert_eq!(0.0f16.log10(), neg_inf); +} + #[test] fn test_to_degrees() { let pi: f16 = consts::PI; @@ -319,8 +610,8 @@ fn test_to_degrees() { let inf: f16 = f16::INFINITY; let neg_inf: f16 = f16::NEG_INFINITY; assert_eq!(0.0f16.to_degrees(), 0.0); - assert_approx_eq!((-5.8f16).to_degrees(), -332.315521); - assert_approx_eq!(pi.to_degrees(), 180.0, F16_APPROX_L4); + assert_approx_eq!((-5.8f16).to_degrees(), -332.315521, TOL_P2); + assert_approx_eq!(pi.to_degrees(), 180.0, TOL_P2); assert!(nan.to_degrees().is_nan()); assert_eq!(inf.to_degrees(), inf); assert_eq!(neg_inf.to_degrees(), neg_inf); @@ -334,14 +625,112 @@ fn test_to_radians() { let inf: f16 = f16::INFINITY; let neg_inf: f16 = f16::NEG_INFINITY; assert_eq!(0.0f16.to_radians(), 0.0); - assert_approx_eq!(154.6f16.to_radians(), 2.698279); - assert_approx_eq!((-332.31f16).to_radians(), -5.799903); - assert_approx_eq!(180.0f16.to_radians(), pi, F16_APPROX_L2); + assert_approx_eq!(154.6f16.to_radians(), 2.698279, TOL_0); + assert_approx_eq!((-332.31f16).to_radians(), -5.799903, TOL_0); + assert_approx_eq!(180.0f16.to_radians(), pi, TOL_0); assert!(nan.to_radians().is_nan()); assert_eq!(inf.to_radians(), inf); assert_eq!(neg_inf.to_radians(), neg_inf); } +#[test] +#[cfg(reliable_f16_math)] +fn test_asinh() { + assert_eq!(0.0f16.asinh(), 0.0f16); + assert_eq!((-0.0f16).asinh(), -0.0f16); + + let inf: f16 = f16::INFINITY; + let neg_inf: f16 = f16::NEG_INFINITY; + let nan: f16 = f16::NAN; + assert_eq!(inf.asinh(), inf); + assert_eq!(neg_inf.asinh(), neg_inf); + assert!(nan.asinh().is_nan()); + assert!((-0.0f16).asinh().is_sign_negative()); + // issue 63271 + assert_approx_eq!(2.0f16.asinh(), 1.443635475178810342493276740273105f16, TOL_0); + assert_approx_eq!((-2.0f16).asinh(), -1.443635475178810342493276740273105f16, TOL_0); + // regression test for the catastrophic cancellation fixed in 72486 + assert_approx_eq!((-200.0f16).asinh(), -5.991470797049389, TOL_0); + + // test for low accuracy from issue 104548 + assert_approx_eq!(10.0f16, 10.0f16.sinh().asinh(), TOL_0); + // mul needed for approximate comparison to be meaningful + assert_approx_eq!(1.0f16, 1e-3f16.sinh().asinh() * 1e3f16, TOL_0); +} + +#[test] +#[cfg(reliable_f16_math)] +fn test_acosh() { + assert_eq!(1.0f16.acosh(), 0.0f16); + assert!(0.999f16.acosh().is_nan()); + + let inf: f16 = f16::INFINITY; + let neg_inf: f16 = f16::NEG_INFINITY; + let nan: f16 = f16::NAN; + assert_eq!(inf.acosh(), inf); + assert!(neg_inf.acosh().is_nan()); + assert!(nan.acosh().is_nan()); + assert_approx_eq!(2.0f16.acosh(), 1.31695789692481670862504634730796844f16, TOL_0); + assert_approx_eq!(3.0f16.acosh(), 1.76274717403908605046521864995958461f16, TOL_0); + + // test for low accuracy from issue 104548 + assert_approx_eq!(10.0f16, 10.0f16.cosh().acosh(), TOL_P2); +} + +#[test] +#[cfg(reliable_f16_math)] +fn test_atanh() { + assert_eq!(0.0f16.atanh(), 0.0f16); + assert_eq!((-0.0f16).atanh(), -0.0f16); + + let inf: f16 = f16::INFINITY; + let neg_inf: f16 = f16::NEG_INFINITY; + let nan: f16 = f16::NAN; + assert_eq!(1.0f16.atanh(), inf); + assert_eq!((-1.0f16).atanh(), neg_inf); + assert!(2f16.atanh().atanh().is_nan()); + assert!((-2f16).atanh().atanh().is_nan()); + assert!(inf.atanh().is_nan()); + assert!(neg_inf.atanh().is_nan()); + assert!(nan.atanh().is_nan()); + assert_approx_eq!(0.5f16.atanh(), 0.54930614433405484569762261846126285f16, TOL_0); + assert_approx_eq!((-0.5f16).atanh(), -0.54930614433405484569762261846126285f16, TOL_0); +} + +#[test] +#[cfg(reliable_f16_math)] +fn test_gamma() { + // precision can differ among platforms + assert_approx_eq!(1.0f16.gamma(), 1.0f16, TOL_0); + assert_approx_eq!(2.0f16.gamma(), 1.0f16, TOL_0); + assert_approx_eq!(3.0f16.gamma(), 2.0f16, TOL_0); + assert_approx_eq!(4.0f16.gamma(), 6.0f16, TOL_0); + assert_approx_eq!(5.0f16.gamma(), 24.0f16, TOL_0); + assert_approx_eq!(0.5f16.gamma(), consts::PI.sqrt(), TOL_0); + assert_approx_eq!((-0.5f16).gamma(), -2.0 * consts::PI.sqrt(), TOL_0); + assert_eq!(0.0f16.gamma(), f16::INFINITY); + assert_eq!((-0.0f16).gamma(), f16::NEG_INFINITY); + assert!((-1.0f16).gamma().is_nan()); + assert!((-2.0f16).gamma().is_nan()); + assert!(f16::NAN.gamma().is_nan()); + assert!(f16::NEG_INFINITY.gamma().is_nan()); + assert_eq!(f16::INFINITY.gamma(), f16::INFINITY); + assert_eq!(171.71f16.gamma(), f16::INFINITY); +} + +#[test] +#[cfg(reliable_f16_math)] +fn test_ln_gamma() { + assert_approx_eq!(1.0f16.ln_gamma().0, 0.0f16, TOL_0); + assert_eq!(1.0f16.ln_gamma().1, 1); + assert_approx_eq!(2.0f16.ln_gamma().0, 0.0f16, TOL_0); + assert_eq!(2.0f16.ln_gamma().1, 1); + assert_approx_eq!(3.0f16.ln_gamma().0, 2.0f16.ln(), TOL_0); + assert_eq!(3.0f16.ln_gamma().1, 1); + assert_approx_eq!((-0.5f16).ln_gamma().0, (2.0 * consts::PI.sqrt()).ln(), TOL_0); + assert_eq!((-0.5f16).ln_gamma().1, -1); +} + #[test] fn test_real_consts() { // FIXME(f16_f128): add math tests when available @@ -355,29 +744,34 @@ fn test_real_consts() { let frac_pi_8: f16 = consts::FRAC_PI_8; let frac_1_pi: f16 = consts::FRAC_1_PI; let frac_2_pi: f16 = consts::FRAC_2_PI; - // let frac_2_sqrtpi: f16 = consts::FRAC_2_SQRT_PI; - // let sqrt2: f16 = consts::SQRT_2; - // let frac_1_sqrt2: f16 = consts::FRAC_1_SQRT_2; - // let e: f16 = consts::E; - // let log2_e: f16 = consts::LOG2_E; - // let log10_e: f16 = consts::LOG10_E; - // let ln_2: f16 = consts::LN_2; - // let ln_10: f16 = consts::LN_10; - - assert_approx_eq!(frac_pi_2, pi / 2f16); - assert_approx_eq!(frac_pi_3, pi / 3f16); - assert_approx_eq!(frac_pi_4, pi / 4f16); - assert_approx_eq!(frac_pi_6, pi / 6f16); - assert_approx_eq!(frac_pi_8, pi / 8f16); - assert_approx_eq!(frac_1_pi, 1f16 / pi); - assert_approx_eq!(frac_2_pi, 2f16 / pi); - // assert_approx_eq!(frac_2_sqrtpi, 2f16 / pi.sqrt()); - // assert_approx_eq!(sqrt2, 2f16.sqrt()); - // assert_approx_eq!(frac_1_sqrt2, 1f16 / 2f16.sqrt()); - // assert_approx_eq!(log2_e, e.log2()); - // assert_approx_eq!(log10_e, e.log10()); - // assert_approx_eq!(ln_2, 2f16.ln()); - // assert_approx_eq!(ln_10, 10f16.ln()); + + assert_approx_eq!(frac_pi_2, pi / 2f16, TOL_0); + assert_approx_eq!(frac_pi_3, pi / 3f16, TOL_0); + assert_approx_eq!(frac_pi_4, pi / 4f16, TOL_0); + assert_approx_eq!(frac_pi_6, pi / 6f16, TOL_0); + assert_approx_eq!(frac_pi_8, pi / 8f16, TOL_0); + assert_approx_eq!(frac_1_pi, 1f16 / pi, TOL_0); + assert_approx_eq!(frac_2_pi, 2f16 / pi, TOL_0); + + #[cfg(reliable_f16_math)] + { + let frac_2_sqrtpi: f16 = consts::FRAC_2_SQRT_PI; + let sqrt2: f16 = consts::SQRT_2; + let frac_1_sqrt2: f16 = consts::FRAC_1_SQRT_2; + let e: f16 = consts::E; + let log2_e: f16 = consts::LOG2_E; + let log10_e: f16 = consts::LOG10_E; + let ln_2: f16 = consts::LN_2; + let ln_10: f16 = consts::LN_10; + + assert_approx_eq!(frac_2_sqrtpi, 2f16 / pi.sqrt(), TOL_0); + assert_approx_eq!(sqrt2, 2f16.sqrt(), TOL_0); + assert_approx_eq!(frac_1_sqrt2, 1f16 / 2f16.sqrt(), TOL_0); + assert_approx_eq!(log2_e, e.log2(), TOL_0); + assert_approx_eq!(log10_e, e.log10(), TOL_0); + assert_approx_eq!(ln_2, 2f16.ln(), TOL_0); + assert_approx_eq!(ln_10, 10f16.ln(), TOL_0); + } } #[test] @@ -386,10 +780,10 @@ fn test_float_bits_conv() { assert_eq!((12.5f16).to_bits(), 0x4a40); assert_eq!((1337f16).to_bits(), 0x6539); assert_eq!((-14.25f16).to_bits(), 0xcb20); - assert_approx_eq!(f16::from_bits(0x3c00), 1.0); - assert_approx_eq!(f16::from_bits(0x4a40), 12.5); - assert_approx_eq!(f16::from_bits(0x6539), 1337.0); - assert_approx_eq!(f16::from_bits(0xcb20), -14.25); + assert_approx_eq!(f16::from_bits(0x3c00), 1.0, TOL_0); + assert_approx_eq!(f16::from_bits(0x4a40), 12.5, TOL_0); + assert_approx_eq!(f16::from_bits(0x6539), 1337.0, TOL_P4); + assert_approx_eq!(f16::from_bits(0xcb20), -14.25, TOL_0); // Check that NaNs roundtrip their bits regardless of signaling-ness let masked_nan1 = f16::NAN.to_bits() ^ NAN_MASK1; diff --git a/library/std/src/keyword_docs.rs b/library/std/src/keyword_docs.rs index c82228fca4bcf..9f4d244b5479e 100644 --- a/library/std/src/keyword_docs.rs +++ b/library/std/src/keyword_docs.rs @@ -155,7 +155,7 @@ mod break_keyword {} /// const WORDS: &str = "hello convenience!"; /// ``` /// -/// `const` items looks remarkably similar to `static` items, which introduces some confusion as +/// `const` items look remarkably similar to `static` items, which introduces some confusion as /// to which one should be used at which times. To put it simply, constants are inlined wherever /// they're used, making using them identical to simply replacing the name of the `const` with its /// value. Static variables, on the other hand, point to a single location in memory, which all diff --git a/library/std/src/macros.rs b/library/std/src/macros.rs index ba519afc62b07..1b0d7f3dbf2c9 100644 --- a/library/std/src/macros.rs +++ b/library/std/src/macros.rs @@ -382,7 +382,7 @@ macro_rules! assert_approx_eq { let diff = (*a - *b).abs(); assert!( diff < $lim, - "{a:?} is not approximately equal to {b:?} (threshold {lim:?}, actual {diff:?})", + "{a:?} is not approximately equal to {b:?} (threshold {lim:?}, difference {diff:?})", lim = $lim ); }}; diff --git a/library/std/src/sys/cmath.rs b/library/std/src/sys/cmath.rs index 99df503b82de2..2997e908fa1b2 100644 --- a/library/std/src/sys/cmath.rs +++ b/library/std/src/sys/cmath.rs @@ -28,6 +28,21 @@ extern "C" { pub fn lgamma_r(n: f64, s: &mut i32) -> f64; pub fn lgammaf_r(n: f32, s: &mut i32) -> f32; + pub fn acosf128(n: f128) -> f128; + pub fn asinf128(n: f128) -> f128; + pub fn atanf128(n: f128) -> f128; + pub fn atan2f128(a: f128, b: f128) -> f128; + pub fn cbrtf128(n: f128) -> f128; + pub fn coshf128(n: f128) -> f128; + pub fn expm1f128(n: f128) -> f128; + pub fn hypotf128(x: f128, y: f128) -> f128; + pub fn log1pf128(n: f128) -> f128; + pub fn sinhf128(n: f128) -> f128; + pub fn tanf128(n: f128) -> f128; + pub fn tanhf128(n: f128) -> f128; + pub fn tgammaf128(n: f128) -> f128; + pub fn lgammaf128_r(n: f128, s: &mut i32) -> f128; + cfg_if::cfg_if! { if #[cfg(not(all(target_os = "windows", target_env = "msvc", target_arch = "x86")))] { pub fn acosf(n: f32) -> f32; diff --git a/src/tools/run-make-support/src/external_deps/c_build.rs b/src/tools/run-make-support/src/external_deps/c_build.rs index fb22780eaa0cf..f8d1666adda45 100644 --- a/src/tools/run-make-support/src/external_deps/c_build.rs +++ b/src/tools/run-make-support/src/external_deps/c_build.rs @@ -12,14 +12,31 @@ use crate::targets::{is_darwin, is_msvc, is_windows}; /// Built from a C file. #[track_caller] pub fn build_native_static_lib(lib_name: &str) -> PathBuf { + build_native_static_lib_internal(lib_name, false) +} + +/// Builds an optimized static lib (`.lib` on Windows MSVC and `.a` for the rest) with the given name. +/// Built from a C file. +#[track_caller] +pub fn build_native_static_lib_optimized(lib_name: &str) -> PathBuf { + build_native_static_lib_internal(lib_name, true) +} + +#[track_caller] +fn build_native_static_lib_internal(lib_name: &str, optimzed: bool) -> PathBuf { let obj_file = if is_msvc() { format!("{lib_name}") } else { format!("{lib_name}.o") }; let src = format!("{lib_name}.c"); let lib_path = static_lib_name(lib_name); - if is_msvc() { - cc().arg("-c").out_exe(&obj_file).input(src).run(); - } else { - cc().arg("-v").arg("-c").out_exe(&obj_file).input(src).run(); - }; + + let mut cc = cc(); + if !is_msvc() { + cc.arg("-v"); + } + if optimzed { + cc.optimize(); + } + cc.arg("-c").out_exe(&obj_file).input(src).optimize().run(); + let obj_file = if is_msvc() { PathBuf::from(format!("{lib_name}.obj")) } else { diff --git a/src/tools/run-make-support/src/external_deps/cc.rs b/src/tools/run-make-support/src/external_deps/cc.rs index 36cef15781f13..011ad89e170a6 100644 --- a/src/tools/run-make-support/src/external_deps/cc.rs +++ b/src/tools/run-make-support/src/external_deps/cc.rs @@ -115,6 +115,17 @@ impl Cc { self.cmd.arg(path.as_ref()); self } + + /// Optimize the output. + /// Equivalent to `-O3` for GNU-compatible linkers or `-O2` for MSVC linkers. + pub fn optimize(&mut self) -> &mut Self { + if is_msvc() { + self.cmd.arg("-O2"); + } else { + self.cmd.arg("-O3"); + } + self + } } /// `EXTRACFLAGS` diff --git a/src/tools/run-make-support/src/lib.rs b/src/tools/run-make-support/src/lib.rs index fc7e5ceae4006..a44dd00ad7986 100644 --- a/src/tools/run-make-support/src/lib.rs +++ b/src/tools/run-make-support/src/lib.rs @@ -45,7 +45,7 @@ pub use external_deps::{c_build, cc, clang, htmldocck, llvm, python, rustc, rust // These rely on external dependencies. pub use cc::{cc, cxx, extra_c_flags, extra_cxx_flags, Cc}; -pub use c_build::{build_native_dynamic_lib, build_native_static_lib, build_native_static_lib_cxx}; +pub use c_build::{build_native_dynamic_lib, build_native_static_lib, build_native_static_lib_optimized, build_native_static_lib_cxx}; pub use clang::{clang, Clang}; pub use htmldocck::htmldocck; pub use llvm::{ diff --git a/src/tools/tidy/src/allowed_run_make_makefiles.txt b/src/tools/tidy/src/allowed_run_make_makefiles.txt index a2cfdea712e7c..014bc5954949d 100644 --- a/src/tools/tidy/src/allowed_run_make_makefiles.txt +++ b/src/tools/tidy/src/allowed_run_make_makefiles.txt @@ -22,9 +22,6 @@ run-make/no-alloc-shim/Makefile run-make/pdb-buildinfo-cl-cmd/Makefile run-make/pgo-gen-lto/Makefile run-make/pgo-indirect-call-promotion/Makefile -run-make/raw-dylib-alt-calling-convention/Makefile -run-make/raw-dylib-c/Makefile -run-make/redundant-libs/Makefile run-make/remap-path-prefix-dwarf/Makefile run-make/reproducible-build/Makefile run-make/rlib-format-packed-bundled-libs/Makefile diff --git a/tests/run-make/link-args-order/rmake.rs b/tests/run-make/link-args-order/rmake.rs index d238ad23f27c7..b7ef8333267f2 100644 --- a/tests/run-make/link-args-order/rmake.rs +++ b/tests/run-make/link-args-order/rmake.rs @@ -3,15 +3,14 @@ // checks that linker arguments remain intact and in the order they were originally passed in. // See https://github.com/rust-lang/rust/pull/70665 -//@ ignore-msvc -// Reason: the ld linker does not exist on Windows. - -use run_make_support::rustc; +use run_make_support::{is_msvc, rustc}; fn main() { + let linker = if is_msvc() { "msvc" } else { "ld" }; + rustc() .input("empty.rs") - .linker_flavor("ld") + .linker_flavor(linker) .link_arg("a") .link_args("b c") .link_args("d e") @@ -20,7 +19,7 @@ fn main() { .assert_stderr_contains(r#""a" "b" "c" "d" "e" "f""#); rustc() .input("empty.rs") - .linker_flavor("ld") + .linker_flavor(linker) .arg("-Zpre-link-arg=a") .arg("-Zpre-link-args=b c") .arg("-Zpre-link-args=d e") diff --git a/tests/run-make/link-dedup/rmake.rs b/tests/run-make/link-dedup/rmake.rs index 9bff3a4b44c7d..6075f31095424 100644 --- a/tests/run-make/link-dedup/rmake.rs +++ b/tests/run-make/link-dedup/rmake.rs @@ -5,20 +5,37 @@ // Without the --cfg flag, there should be a single -ltesta, no more, no less. // See https://github.com/rust-lang/rust/pull/84794 -//@ ignore-msvc +use std::fmt::Write; -use run_make_support::rustc; +use run_make_support::{is_msvc, rustc}; fn main() { rustc().input("depa.rs").run(); rustc().input("depb.rs").run(); rustc().input("depc.rs").run(); + let output = rustc().input("empty.rs").cfg("bar").run_fail(); - output.assert_stderr_contains(r#""-ltesta" "-ltestb" "-ltesta""#); - let output = rustc().input("empty.rs").run_fail(); - output.assert_stderr_contains(r#""-ltesta""#); - let output = rustc().input("empty.rs").run_fail(); - output.assert_stderr_not_contains(r#""-ltestb""#); + output.assert_stderr_contains(needle_from_libs(&["testa", "testb", "testa"])); + let output = rustc().input("empty.rs").run_fail(); - output.assert_stderr_not_contains(r#""-ltesta" "-ltesta" "-ltesta""#); + output.assert_stderr_contains(needle_from_libs(&["testa"])); + output.assert_stderr_not_contains(needle_from_libs(&["testb"])); + output.assert_stderr_not_contains(needle_from_libs(&["testa", "testa", "testa"])); + // Adjacent identical native libraries are no longer deduplicated if + // they come from different crates (https://github.com/rust-lang/rust/pull/103311) + // so the following will fail: + //output.assert_stderr_not_contains(needle_from_libs(&["testa", "testa"])); +} + +fn needle_from_libs(libs: &[&str]) -> String { + let mut needle = String::new(); + for lib in libs { + if is_msvc() { + let _ = needle.write_fmt(format_args!(r#""{lib}.lib" "#)); + } else { + let _ = needle.write_fmt(format_args!(r#""-l{lib}" "#)); + } + } + needle.pop(); // remove trailing space + needle } diff --git a/tests/run-make/naked-symbol-visibility/a_rust_dylib.rs b/tests/run-make/naked-symbol-visibility/a_rust_dylib.rs new file mode 100644 index 0000000000000..f00123f006b24 --- /dev/null +++ b/tests/run-make/naked-symbol-visibility/a_rust_dylib.rs @@ -0,0 +1,89 @@ +#![feature(naked_functions, asm_const, linkage)] +#![crate_type = "dylib"] + +use std::arch::asm; + +pub trait TraitWithConst { + const COUNT: u32; +} + +struct Test; + +impl TraitWithConst for Test { + const COUNT: u32 = 1; +} + +#[no_mangle] +fn entry() { + private_vanilla(); + private_naked(); + + public_vanilla_generic::(); + public_naked_generic::(); +} + +extern "C" fn private_vanilla() -> u32 { + 42 +} + +#[naked] +extern "C" fn private_naked() -> u32 { + unsafe { asm!("mov rax, 42", "ret", options(noreturn)) } +} + +#[no_mangle] +pub extern "C" fn public_vanilla() -> u32 { + 42 +} + +#[naked] +#[no_mangle] +pub extern "C" fn public_naked() -> u32 { + unsafe { asm!("mov rax, 42", "ret", options(noreturn)) } +} + +pub extern "C" fn public_vanilla_generic() -> u32 { + T::COUNT +} + +#[naked] +pub extern "C" fn public_naked_generic() -> u32 { + unsafe { asm!("mov rax, {}", "ret", const T::COUNT, options(noreturn)) } +} + +#[linkage = "external"] +extern "C" fn vanilla_external_linkage() -> u32 { + 42 +} + +#[naked] +#[linkage = "external"] +extern "C" fn naked_external_linkage() -> u32 { + unsafe { asm!("mov rax, 42", "ret", options(noreturn)) } +} + +#[cfg(not(windows))] +#[linkage = "weak"] +extern "C" fn vanilla_weak_linkage() -> u32 { + 42 +} + +#[naked] +#[cfg(not(windows))] +#[linkage = "weak"] +extern "C" fn naked_weak_linkage() -> u32 { + unsafe { asm!("mov rax, 42", "ret", options(noreturn)) } +} + +// functions that are declared in an `extern "C"` block are currently not exported +// this maybe should change in the future, this is just tracking the current behavior +// reported in https://github.com/rust-lang/rust/issues/128071 +std::arch::global_asm! { + ".globl function_defined_in_global_asm", + "function_defined_in_global_asm:", + "ret", +} + +extern "C" { + pub fn function_defined_in_global_asm(); +} diff --git a/tests/run-make/naked-symbol-visibility/rmake.rs b/tests/run-make/naked-symbol-visibility/rmake.rs new file mode 100644 index 0000000000000..a32e62326eb32 --- /dev/null +++ b/tests/run-make/naked-symbol-visibility/rmake.rs @@ -0,0 +1,98 @@ +//@ ignore-windows +//@ only-x86_64 +use run_make_support::object::read::{File, Object, Symbol}; +use run_make_support::object::ObjectSymbol; +use run_make_support::targets::is_windows; +use run_make_support::{dynamic_lib_name, env_var, rfs, rustc}; + +fn main() { + let rdylib_name = dynamic_lib_name("a_rust_dylib"); + rustc().arg("-Zshare-generics=no").input("a_rust_dylib.rs").run(); + + let binary_data = rfs::read(&rdylib_name); + let rdylib = File::parse(&*binary_data).unwrap(); + + // naked should mirror vanilla + not_exported(&rdylib, "private_vanilla"); + not_exported(&rdylib, "private_naked"); + + global_function(&rdylib, "public_vanilla"); + global_function(&rdylib, "public_naked"); + + not_exported(&rdylib, "public_vanilla_generic"); + not_exported(&rdylib, "public_naked_generic"); + + global_function(&rdylib, "vanilla_external_linkage"); + global_function(&rdylib, "naked_external_linkage"); + + // FIXME: make this work on windows (gnu and msvc). See the PR + // https://github.com/rust-lang/rust/pull/128362 for some approaches + // that don't work + // + // #[linkage = "weak"] does not work well on windows, we get + // + // lib.def : error LNK2001: unresolved external symbol naked_weak_linkage␍ + // lib.def : error LNK2001: unresolved external symbol vanilla_weak_linkage + // + // so just skip weak symbols on windows (for now) + if !is_windows() { + weak_function(&rdylib, "vanilla_weak_linkage"); + weak_function(&rdylib, "naked_weak_linkage"); + } + + // functions that are declared in an `extern "C"` block are currently not exported + // this maybe should change in the future, this is just tracking the current behavior + // reported in https://github.com/rust-lang/rust/issues/128071 + not_exported(&rdylib, "function_defined_in_global_asm"); + + // share generics should expose the generic functions + rustc().arg("-Zshare-generics=yes").input("a_rust_dylib.rs").run(); + let binary_data = rfs::read(&rdylib_name); + let rdylib = File::parse(&*binary_data).unwrap(); + + global_function(&rdylib, "public_vanilla_generic"); + global_function(&rdylib, "public_naked_generic"); +} + +#[track_caller] +fn global_function(file: &File, symbol_name: &str) { + let symbols = find_dynamic_symbol(file, symbol_name); + let [symbol] = symbols.as_slice() else { + panic!("symbol {symbol_name} occurs {} times", symbols.len()) + }; + + assert!(symbol.is_definition(), "`{symbol_name}` is not a function"); + assert!(symbol.is_global(), "`{symbol_name}` is not marked as global"); +} + +#[track_caller] +fn weak_function(file: &File, symbol_name: &str) { + let symbols = find_dynamic_symbol(file, symbol_name); + let [symbol] = symbols.as_slice() else { + panic!("symbol {symbol_name} occurs {} times", symbols.len()) + }; + + assert!(symbol.is_definition(), "`{symbol_name}` is not a function"); + assert!(symbol.is_weak(), "`{symbol_name}` is not marked as weak"); +} + +#[track_caller] +fn not_exported(file: &File, symbol_name: &str) { + assert_eq!(find_dynamic_symbol(file, symbol_name).len(), 0) +} + +fn find_subsequence(haystack: &[u8], needle: &[u8]) -> bool { + haystack.windows(needle.len()).any(|window| window == needle) +} + +fn find_dynamic_symbol<'file, 'data>( + file: &'file File<'data>, + expected: &str, +) -> Vec> { + file.exports() + .unwrap() + .into_iter() + .filter(|e| find_subsequence(e.name(), expected.as_bytes())) + .filter_map(|e| file.symbol_by_name_bytes(e.name())) + .collect() +} diff --git a/tests/run-make/no-duplicate-libs/main.rs b/tests/run-make/no-duplicate-libs/main.rs index b25ef35ada68e..d8d5d58bc477a 100644 --- a/tests/run-make/no-duplicate-libs/main.rs +++ b/tests/run-make/no-duplicate-libs/main.rs @@ -1,6 +1,6 @@ -#[link(name = "foo")] // linker should drop this library, no symbols used -#[link(name = "bar")] // symbol comes from this library -#[link(name = "foo")] // now linker picks up `foo` b/c `bar` library needs it +#[link(name = "foo", kind = "static")] // linker should drop this library, no symbols used +#[link(name = "bar", kind = "static")] // symbol comes from this library +#[link(name = "foo", kind = "static")] // now linker picks up `foo` b/c `bar` library needs it extern "C" { fn bar(); } diff --git a/tests/run-make/no-duplicate-libs/rmake.rs b/tests/run-make/no-duplicate-libs/rmake.rs index 469348e266cb8..b67067909b24b 100644 --- a/tests/run-make/no-duplicate-libs/rmake.rs +++ b/tests/run-make/no-duplicate-libs/rmake.rs @@ -9,9 +9,6 @@ //@ ignore-cross-compile // Reason: the compiled binary is executed -//@ ignore-msvc -// Reason: native compilation results in an unresolved external symbol - use run_make_support::{build_native_static_lib, run, rustc}; fn main() { diff --git a/tests/run-make/raw-dylib-alt-calling-convention/Makefile b/tests/run-make/raw-dylib-alt-calling-convention/Makefile deleted file mode 100644 index 14d23a5d20106..0000000000000 --- a/tests/run-make/raw-dylib-alt-calling-convention/Makefile +++ /dev/null @@ -1,24 +0,0 @@ -# Test the behavior of #[link(.., kind = "raw-dylib")] with alternative calling conventions. - -# only-x86 -# only-windows - -include ../tools.mk - -all: - $(RUSTC) --crate-type lib --crate-name raw_dylib_alt_calling_convention_test lib.rs - $(RUSTC) --crate-type bin driver.rs -L "$(TMPDIR)" - $(call COMPILE_OBJ,"$(TMPDIR)"/extern.obj,extern.c) -ifdef IS_MSVC - $(CC) "$(TMPDIR)"/extern.obj -link -dll -out:"$(TMPDIR)"/extern.dll -noimplib -else - $(CC) "$(TMPDIR)"/extern.obj -shared -o "$(TMPDIR)"/extern.dll -endif - - "$(TMPDIR)"/driver > "$(TMPDIR)"/output.txt - $(RUSTC_TEST_OP) "$(TMPDIR)"/output.txt output.txt - -ifdef IS_MSVC - "$(TMPDIR)"/driver true > "$(TMPDIR)"/output.msvc.txt - $(RUSTC_TEST_OP) "$(TMPDIR)"/output.msvc.txt output.msvc.txt -endif diff --git a/tests/run-make/raw-dylib-alt-calling-convention/rmake.rs b/tests/run-make/raw-dylib-alt-calling-convention/rmake.rs new file mode 100644 index 0000000000000..1a1622f275421 --- /dev/null +++ b/tests/run-make/raw-dylib-alt-calling-convention/rmake.rs @@ -0,0 +1,32 @@ +// `raw-dylib` is a Windows-specific attribute which emits idata sections for the items in the +// attached extern block, +// so they may be linked against without linking against an import library. +// To learn more, read https://github.com/rust-lang/rfcs/blob/master/text/2627-raw-dylib-kind.md +// This test uses this feature alongside alternative calling conventions, checking that both +// features are compatible and result in the expected output upon execution of the binary. +// See https://github.com/rust-lang/rust/pull/84171 + +//@ only-x86 +//@ only-windows + +use run_make_support::{build_native_dynamic_lib, diff, is_msvc, run, run_with_args, rustc}; + +fn main() { + rustc() + .crate_type("lib") + .crate_name("raw_dylib_alt_calling_convention_test") + .input("lib.rs") + .run(); + rustc().crate_type("bin").input("driver.rs").run(); + build_native_dynamic_lib("extern"); + let out = run("driver").stdout_utf8(); + diff().expected_file("output.txt").actual_text("actual", out).normalize(r#"\r"#, "").run(); + if is_msvc() { + let out_msvc = run_with_args("driver", &["true"]).stdout_utf8(); + diff() + .expected_file("output.msvc.txt") + .actual_text("actual", out_msvc) + .normalize(r#"\r"#, "") + .run(); + } +} diff --git a/tests/run-make/raw-dylib-c/Makefile b/tests/run-make/raw-dylib-c/Makefile deleted file mode 100644 index af5c4a6edd7ba..0000000000000 --- a/tests/run-make/raw-dylib-c/Makefile +++ /dev/null @@ -1,28 +0,0 @@ -# Test the behavior of #[link(.., kind = "raw-dylib")] on windows-msvc - -# only-windows - -include ../tools.mk - -all: - $(RUSTC) --crate-type lib --crate-name raw_dylib_test lib.rs - $(RUSTC) --crate-type bin driver.rs -L "$(TMPDIR)" - $(RUSTC) --crate-type bin --crate-name raw_dylib_test_bin lib.rs - $(call COMPILE_OBJ,"$(TMPDIR)"/extern_1.obj,extern_1.c) - $(call COMPILE_OBJ,"$(TMPDIR)"/extern_2.obj,extern_2.c) -ifdef IS_MSVC - $(CC) "$(TMPDIR)"/extern_1.obj -link -dll -out:"$(TMPDIR)"/extern_1.dll -noimplib - $(CC) "$(TMPDIR)"/extern_2.obj -link -dll -out:"$(TMPDIR)"/extern_2.dll -noimplib -else - $(CC) "$(TMPDIR)"/extern_1.obj -shared -o "$(TMPDIR)"/extern_1.dll - $(CC) "$(TMPDIR)"/extern_2.obj -shared -o "$(TMPDIR)"/extern_2.dll -endif - "$(TMPDIR)"/driver | tr -d '\r' > "$(TMPDIR)"/output.txt - "$(TMPDIR)"/raw_dylib_test_bin > "$(TMPDIR)"/output_bin.txt - -ifdef RUSTC_BLESS_TEST - cp "$(TMPDIR)"/output.txt output.txt -else - $(DIFF) output.txt "$(TMPDIR)"/output.txt - $(DIFF) output.txt "$(TMPDIR)"/output_bin.txt -endif diff --git a/tests/run-make/raw-dylib-c/rmake.rs b/tests/run-make/raw-dylib-c/rmake.rs new file mode 100644 index 0000000000000..3cfd8cb400bbf --- /dev/null +++ b/tests/run-make/raw-dylib-c/rmake.rs @@ -0,0 +1,29 @@ +// `raw-dylib` is a Windows-specific attribute which emits idata sections for the items in the +// attached extern block, +// so they may be linked against without linking against an import library. +// To learn more, read https://github.com/rust-lang/rfcs/blob/master/text/2627-raw-dylib-kind.md +// This test is the simplest of the raw-dylib tests, simply smoke-testing that the feature +// can be used to build an executable binary with an expected output with native C files +// compiling into dynamic libraries. +// See https://github.com/rust-lang/rust/pull/86419 + +//@ only-windows + +use run_make_support::{build_native_dynamic_lib, diff, run, rustc}; + +fn main() { + rustc().crate_type("lib").crate_name("raw_dylib_test").input("lib.rs").run(); + rustc().crate_type("bin").input("driver.rs").run(); + rustc().crate_type("bin").crate_name("raw_dylib_test_bin").input("lib.rs").run(); + build_native_dynamic_lib("extern_1"); + build_native_dynamic_lib("extern_2"); + let out_driver = run("driver").stdout_utf8(); + let out_raw = run("raw_dylib_test_bin").stdout_utf8(); + + diff() + .expected_file("output.txt") + .actual_text("actual", out_driver) + .normalize(r#"\r"#, "") + .run(); + diff().expected_file("output.txt").actual_text("actual", out_raw).normalize(r#"\r"#, "").run(); +} diff --git a/tests/run-make/redundant-libs/Makefile b/tests/run-make/redundant-libs/Makefile deleted file mode 100644 index 0a48b2b280136..0000000000000 --- a/tests/run-make/redundant-libs/Makefile +++ /dev/null @@ -1,24 +0,0 @@ -# ignore-cross-compile -include ../tools.mk - -# ignore-windows-msvc - -# rustc will remove one of the two redundant references to foo below. Depending -# on which one gets removed, we'll get a linker error on SOME platforms (like -# Linux). On these platforms, when a library is referenced, the linker will -# only pull in the symbols needed _at that point in time_. If a later library -# depends on additional symbols from the library, they will not have been pulled -# in, and you'll get undefined symbols errors. -# -# So in this example, we need to ensure that rustc keeps the _later_ reference -# to foo, and not the former one. -RUSTC_FLAGS = \ - -l static=bar \ - -l foo \ - -l static=baz \ - -l foo \ - --print link-args - -all: $(call DYLIB,foo) $(call STATICLIB,bar) $(call STATICLIB,baz) - $(RUSTC) $(RUSTC_FLAGS) main.rs - $(call RUN,main) diff --git a/tests/run-make/redundant-libs/rmake.rs b/tests/run-make/redundant-libs/rmake.rs new file mode 100644 index 0000000000000..fb1b3bca8ade3 --- /dev/null +++ b/tests/run-make/redundant-libs/rmake.rs @@ -0,0 +1,34 @@ +// rustc will remove one of the two redundant references to foo below. Depending +// on which one gets removed, we'll get a linker error on SOME platforms (like +// Linux). On these platforms, when a library is referenced, the linker will +// only pull in the symbols needed _at that point in time_. If a later library +// depends on additional symbols from the library, they will not have been pulled +// in, and you'll get undefined symbols errors. +// +// So in this example, we need to ensure that rustc keeps the _later_ reference +// to foo, and not the former one. + +//@ ignore-cross-compile +// Reason: the compiled binary is executed +//@ ignore-windows-msvc +// Reason: this test links libraries via link.exe, which only accepts the import library +// for the dynamic library, i.e. `foo.dll.lib`. However, build_native_dynamic_lib only +// produces `foo.dll` - the dynamic library itself. To make this test work on MSVC, one +// would need to derive the import library from the dynamic library. +// See https://stackoverflow.com/questions/9360280/ + +use run_make_support::{ + build_native_dynamic_lib, build_native_static_lib, cwd, is_msvc, rfs, run, rustc, +}; + +fn main() { + build_native_dynamic_lib("foo"); + build_native_static_lib("bar"); + build_native_static_lib("baz"); + rustc() + .args(&["-lstatic=bar", "-lfoo", "-lstatic=baz", "-lfoo"]) + .input("main.rs") + .print("link-args") + .run(); + run("main"); +} diff --git a/tests/run-make/zero-extend-abi-param-passing/param_passing.rs b/tests/run-make/zero-extend-abi-param-passing/param_passing.rs index c11f3cc72bdf2..addde6b8ee36f 100644 --- a/tests/run-make/zero-extend-abi-param-passing/param_passing.rs +++ b/tests/run-make/zero-extend-abi-param-passing/param_passing.rs @@ -2,7 +2,7 @@ // LLVM optimization choices. See additional note below for an // example. -#[link(name = "bad")] +#[link(name = "bad", kind = "static")] extern "C" { pub fn c_read_value(a: u32, b: u32, c: u32) -> u16; } diff --git a/tests/run-make/zero-extend-abi-param-passing/rmake.rs b/tests/run-make/zero-extend-abi-param-passing/rmake.rs index aed27f7f5ab8a..96dbbd0627c25 100644 --- a/tests/run-make/zero-extend-abi-param-passing/rmake.rs +++ b/tests/run-make/zero-extend-abi-param-passing/rmake.rs @@ -6,20 +6,13 @@ // while simultaneously interfacing with a C library and using the -O3 flag. // See https://github.com/rust-lang/rust/issues/97463 -//@ ignore-msvc -// Reason: the rustc compilation fails due to an unresolved external symbol - //@ ignore-cross-compile // Reason: The compiled binary is executed. - -use run_make_support::{cc, is_msvc, llvm_ar, run, rustc, static_lib_name}; +use run_make_support::{build_native_static_lib_optimized, run, rustc}; fn main() { - // The issue exercised by this test specifically needs needs `-O` - // flags (like `-O3`) to reproduce. Thus, we call `cc()` instead of - // the nicer `build_native_static_lib`. - cc().arg("-c").arg("-O3").out_exe("bad.o").input("bad.c").run(); - llvm_ar().obj_to_ar().output_input(static_lib_name("bad"), "bad.o").run(); - rustc().input("param_passing.rs").arg("-lbad").opt_level("3").run(); + // The issue exercised by this test specifically needs an optimized native static lib. + build_native_static_lib_optimized("bad"); + rustc().input("param_passing.rs").opt_level("3").run(); run("param_passing"); }