diff --git a/crates/core_simd/examples/README.md b/crates/core_simd/examples/README.md new file mode 100644 index 00000000000..82747f1b5a6 --- /dev/null +++ b/crates/core_simd/examples/README.md @@ -0,0 +1,13 @@ +### `stdsimd` examples + +This crate is a port of example uses of `stdsimd`, mostly taken from the `packed_simd` crate. + +The examples contain, as in the case of `dot_product.rs`, multiple ways of solving the problem, in order to show idiomatic uses of SIMD and iteration of performance designs. + +Run the tests with the command + +``` +cargo run --example dot_product +``` + +and verify the code for `dot_product.rs` on your machine. diff --git a/crates/core_simd/examples/dot_product.rs b/crates/core_simd/examples/dot_product.rs new file mode 100644 index 00000000000..391f08f55a0 --- /dev/null +++ b/crates/core_simd/examples/dot_product.rs @@ -0,0 +1,169 @@ +// Code taken from the `packed_simd` crate +// Run this code with `cargo test --example dot_product` +//use std::iter::zip; + +#![feature(array_chunks)] +#![feature(slice_as_chunks)] +// Add these imports to use the stdsimd library +#![feature(portable_simd)] +use core_simd::simd::*; + +// This is your barebones dot product implementation: +// Take 2 vectors, multiply them element wise and *then* +// go along the resulting array and add up the result. +// In the next example we will see if there +// is any difference to adding and multiplying in tandem. +pub fn dot_prod_scalar_0(a: &[f32], b: &[f32]) -> f32 { + assert_eq!(a.len(), b.len()); + + a.iter().zip(b.iter()).map(|(a, b)| a * b).sum() +} + +// When dealing with SIMD, it is very important to think about the amount +// of data movement and when it happens. We're going over simple computation examples here, and yet +// it is not trivial to understand what may or may not contribute to performance +// changes. Eventually, you will need tools to inspect the generated assembly and confirm your +// hypothesis and benchmarks - we will mention them later on. +// With the use of `fold`, we're doing a multiplication, +// and then adding it to the sum, one element from both vectors at a time. +pub fn dot_prod_scalar_1(a: &[f32], b: &[f32]) -> f32 { + assert_eq!(a.len(), b.len()); + a.iter() + .zip(b.iter()) + .fold(0.0, |a, zipped| a + zipped.0 * zipped.1) +} + +// We now move on to the SIMD implementations: notice the following constructs: +// `array_chunks::<4>`: mapping this over the vector will let use construct SIMD vectors +// `f32x4::from_array`: construct the SIMD vector from a slice +// `(a * b).reduce_sum()`: Multiply both f32x4 vectors together, and then reduce them. +// This approach essentially uses SIMD to produce a vector of length N/4 of all the products, +// and then add those with `sum()`. This is suboptimal. +// TODO: ASCII diagrams +pub fn dot_prod_simd_0(a: &[f32], b: &[f32]) -> f32 { + assert_eq!(a.len(), b.len()); + // TODO handle remainder when a.len() % 4 != 0 + a.array_chunks::<4>() + .map(|&a| f32x4::from_array(a)) + .zip(b.array_chunks::<4>().map(|&b| f32x4::from_array(b))) + .map(|(a, b)| (a * b).reduce_sum()) + .sum() +} + +// There's some simple ways to improve the previous code: +// 1. Make a `zero` `f32x4` SIMD vector that we will be accumulating into +// So that there is only one `sum()` reduction when the last `f32x4` has been processed +// 2. Exploit Fused Multiply Add so that the multiplication, addition and sinking into the reduciton +// happen in the same step. +// If the arrays are large, minimizing the data shuffling will lead to great perf. +// If the arrays are small, handling the remainder elements when the length isn't a multiple of 4 +// Can become a problem. +pub fn dot_prod_simd_1(a: &[f32], b: &[f32]) -> f32 { + assert_eq!(a.len(), b.len()); + // TODO handle remainder when a.len() % 4 != 0 + a.array_chunks::<4>() + .map(|&a| f32x4::from_array(a)) + .zip(b.array_chunks::<4>().map(|&b| f32x4::from_array(b))) + .fold(f32x4::splat(0.0), |acc, zipped| acc + zipped.0 * zipped.1) + .reduce_sum() +} + +// A lot of knowledgeable use of SIMD comes from knowing specific instructions that are +// available - let's try to use the `mul_add` instruction, which is the fused-multiply-add we were looking for. +use std_float::StdFloat; +pub fn dot_prod_simd_2(a: &[f32], b: &[f32]) -> f32 { + assert_eq!(a.len(), b.len()); + // TODO handle remainder when a.len() % 4 != 0 + let mut res = f32x4::splat(0.0); + a.array_chunks::<4>() + .map(|&a| f32x4::from_array(a)) + .zip(b.array_chunks::<4>().map(|&b| f32x4::from_array(b))) + .for_each(|(a, b)| { + res = a.mul_add(b, res); + }); + res.reduce_sum() +} + +// Finally, we will write the same operation but handling the loop remainder. +const LANES: usize = 4; +pub fn dot_prod_simd_3(a: &[f32], b: &[f32]) -> f32 { + assert_eq!(a.len(), b.len()); + + let (a_extra, a_chunks) = a.as_rchunks(); + let (b_extra, b_chunks) = b.as_rchunks(); + + // These are always true, but for emphasis: + assert_eq!(a_chunks.len(), b_chunks.len()); + assert_eq!(a_extra.len(), b_extra.len()); + + let mut sums = [0.0; LANES]; + for ((x, y), d) in std::iter::zip(a_extra, b_extra).zip(&mut sums) { + *d = x * y; + } + + let mut sums = f32x4::from_array(sums); + std::iter::zip(a_chunks, b_chunks).for_each(|(x, y)| { + sums += f32x4::from_array(*x) * f32x4::from_array(*y); + }); + + sums.reduce_sum() +} + +// Finally, we present an iterator version for handling remainders in a scalar fashion at the end of the loop. +// Unfortunately, this is allocating 1 `XMM` register on the order of `~len(a)` - we'll see how we can get around it in the +// next example. +pub fn dot_prod_simd_4(a: &[f32], b: &[f32]) -> f32 { + let mut sum = a + .array_chunks::<4>() + .map(|&a| f32x4::from_array(a)) + .zip(b.array_chunks::<4>().map(|&b| f32x4::from_array(b))) + .map(|(a, b)| a * b) + .fold(f32x4::splat(0.0), std::ops::Add::add) + .reduce_sum(); + let remain = a.len() - (a.len() % 4); + sum += a[remain..] + .iter() + .zip(&b[remain..]) + .map(|(a, b)| a * b) + .sum::(); + sum +} + +// This version allocates a single `XMM` register for accumulation, and the folds don't allocate on top of that. +// Notice the the use of `mul_add`, which can do a multiply and an add operation ber iteration. +pub fn dot_prod_simd_5(a: &[f32], b: &[f32]) -> f32 { + a.array_chunks::<4>() + .map(|&a| f32x4::from_array(a)) + .zip(b.array_chunks::<4>().map(|&b| f32x4::from_array(b))) + .fold(f32x4::splat(0.), |acc, (a, b)| a.mul_add(b, acc)) + .reduce_sum() +} + +fn main() { + // Empty main to make cargo happy +} + +#[cfg(test)] +mod tests { + #[test] + fn smoke_test() { + use super::*; + let a: Vec = vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]; + let b: Vec = vec![-8.0, -7.0, -6.0, -5.0, 4.0, 3.0, 2.0, 1.0]; + let x: Vec = [0.5; 1003].to_vec(); + let y: Vec = [2.0; 1003].to_vec(); + + // Basic check + assert_eq!(0.0, dot_prod_scalar_0(&a, &b)); + assert_eq!(0.0, dot_prod_scalar_1(&a, &b)); + assert_eq!(0.0, dot_prod_simd_0(&a, &b)); + assert_eq!(0.0, dot_prod_simd_1(&a, &b)); + assert_eq!(0.0, dot_prod_simd_2(&a, &b)); + assert_eq!(0.0, dot_prod_simd_3(&a, &b)); + assert_eq!(0.0, dot_prod_simd_4(&a, &b)); + assert_eq!(0.0, dot_prod_simd_5(&a, &b)); + + // We can handle vectors that are non-multiples of 4 + assert_eq!(1003.0, dot_prod_simd_3(&x, &y)); + } +}