-
Notifications
You must be signed in to change notification settings - Fork 1.5k
/
mod.rs
1491 lines (1360 loc) · 46.6 KB
/
mod.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#[macro_use]
pub mod sym;
pub mod attrs;
pub mod author;
pub mod camel_case;
pub mod comparisons;
pub mod conf;
pub mod constants;
mod diagnostics;
pub mod higher;
mod hir_utils;
pub mod inspector;
pub mod internal_lints;
pub mod numeric_literal;
pub mod paths;
pub mod ptr;
pub mod sugg;
pub mod usage;
pub use self::attrs::*;
pub use self::diagnostics::*;
pub use self::hir_utils::{SpanlessEq, SpanlessHash};
use std::borrow::Cow;
use std::mem;
use if_chain::if_chain;
use rustc_ast::ast::{self, Attribute, LitKind};
use rustc_attr as attr;
use rustc_errors::Applicability;
use rustc_hir as hir;
use rustc_hir::def::{DefKind, Res};
use rustc_hir::def_id::{DefId, CRATE_DEF_INDEX, LOCAL_CRATE};
use rustc_hir::intravisit::{NestedVisitorMap, Visitor};
use rustc_hir::Node;
use rustc_hir::{
def, Arm, Block, Body, Constness, Crate, Expr, ExprKind, FnDecl, HirId, ImplItem, ImplItemKind, Item, ItemKind,
MatchSource, Param, Pat, PatKind, Path, PathSegment, QPath, TraitItem, TraitItemKind, TraitRef, TyKind, Unsafety,
};
use rustc_infer::infer::TyCtxtInferExt;
use rustc_lint::{LateContext, Level, Lint, LintContext};
use rustc_middle::hir::map::Map;
use rustc_middle::traits;
use rustc_middle::ty::{self, layout::IntegerExt, subst::GenericArg, Binder, Ty, TyCtxt, TypeFoldable};
use rustc_span::hygiene::{ExpnKind, MacroKind};
use rustc_span::source_map::original_sp;
use rustc_span::symbol::{self, kw, Symbol};
use rustc_span::{BytePos, Pos, Span, DUMMY_SP};
use rustc_target::abi::Integer;
use rustc_trait_selection::traits::predicate_for_trait_def;
use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt;
use rustc_trait_selection::traits::query::normalize::AtExt;
use smallvec::SmallVec;
use crate::consts::{constant, Constant};
use crate::reexport::Name;
/// Returns `true` if the two spans come from differing expansions (i.e., one is
/// from a macro and one isn't).
#[must_use]
pub fn differing_macro_contexts(lhs: Span, rhs: Span) -> bool {
rhs.ctxt() != lhs.ctxt()
}
/// Returns `true` if the given `NodeId` is inside a constant context
///
/// # Example
///
/// ```rust,ignore
/// if in_constant(cx, expr.hir_id) {
/// // Do something
/// }
/// ```
pub fn in_constant(cx: &LateContext<'_, '_>, id: HirId) -> bool {
let parent_id = cx.tcx.hir().get_parent_item(id);
match cx.tcx.hir().get(parent_id) {
Node::Item(&Item {
kind: ItemKind::Const(..),
..
})
| Node::TraitItem(&TraitItem {
kind: TraitItemKind::Const(..),
..
})
| Node::ImplItem(&ImplItem {
kind: ImplItemKind::Const(..),
..
})
| Node::AnonConst(_)
| Node::Item(&Item {
kind: ItemKind::Static(..),
..
}) => true,
Node::Item(&Item {
kind: ItemKind::Fn(ref sig, ..),
..
})
| Node::ImplItem(&ImplItem {
kind: ImplItemKind::Fn(ref sig, _),
..
}) => sig.header.constness == Constness::Const,
_ => false,
}
}
/// Returns `true` if this `span` was expanded by any macro.
#[must_use]
pub fn in_macro(span: Span) -> bool {
if span.from_expansion() {
if let ExpnKind::Desugaring(..) = span.ctxt().outer_expn_data().kind {
false
} else {
true
}
} else {
false
}
}
// If the snippet is empty, it's an attribute that was inserted during macro
// expansion and we want to ignore those, because they could come from external
// sources that the user has no control over.
// For some reason these attributes don't have any expansion info on them, so
// we have to check it this way until there is a better way.
pub fn is_present_in_source<T: LintContext>(cx: &T, span: Span) -> bool {
if let Some(snippet) = snippet_opt(cx, span) {
if snippet.is_empty() {
return false;
}
}
true
}
/// Checks if given pattern is a wildcard (`_`)
pub fn is_wild<'tcx>(pat: &impl std::ops::Deref<Target = Pat<'tcx>>) -> bool {
match pat.kind {
PatKind::Wild => true,
_ => false,
}
}
/// Checks if type is struct, enum or union type with the given def path.
pub fn match_type(cx: &LateContext<'_, '_>, ty: Ty<'_>, path: &[&str]) -> bool {
match ty.kind {
ty::Adt(adt, _) => match_def_path(cx, adt.did, path),
_ => false,
}
}
/// Checks if the type is equal to a diagnostic item
pub fn is_type_diagnostic_item(cx: &LateContext<'_, '_>, ty: Ty<'_>, diag_item: Symbol) -> bool {
match ty.kind {
ty::Adt(adt, _) => cx.tcx.is_diagnostic_item(diag_item, adt.did),
_ => false,
}
}
/// Checks if the method call given in `expr` belongs to the given trait.
pub fn match_trait_method(cx: &LateContext<'_, '_>, expr: &Expr<'_>, path: &[&str]) -> bool {
let def_id = cx.tables.type_dependent_def_id(expr.hir_id).unwrap();
let trt_id = cx.tcx.trait_of_item(def_id);
if let Some(trt_id) = trt_id {
match_def_path(cx, trt_id, path)
} else {
false
}
}
/// Checks if an expression references a variable of the given name.
pub fn match_var(expr: &Expr<'_>, var: Name) -> bool {
if let ExprKind::Path(QPath::Resolved(None, ref path)) = expr.kind {
if path.segments.len() == 1 && path.segments[0].ident.name == var {
return true;
}
}
false
}
pub fn last_path_segment<'tcx>(path: &QPath<'tcx>) -> &'tcx PathSegment<'tcx> {
match *path {
QPath::Resolved(_, ref path) => path.segments.last().expect("A path must have at least one segment"),
QPath::TypeRelative(_, ref seg) => seg,
}
}
pub fn single_segment_path<'tcx>(path: &QPath<'tcx>) -> Option<&'tcx PathSegment<'tcx>> {
match *path {
QPath::Resolved(_, ref path) if path.segments.len() == 1 => Some(&path.segments[0]),
QPath::Resolved(..) => None,
QPath::TypeRelative(_, ref seg) => Some(seg),
}
}
/// Matches a `QPath` against a slice of segment string literals.
///
/// There is also `match_path` if you are dealing with a `rustc_hir::Path` instead of a
/// `rustc_hir::QPath`.
///
/// # Examples
/// ```rust,ignore
/// match_qpath(path, &["std", "rt", "begin_unwind"])
/// ```
pub fn match_qpath(path: &QPath<'_>, segments: &[&str]) -> bool {
match *path {
QPath::Resolved(_, ref path) => match_path(path, segments),
QPath::TypeRelative(ref ty, ref segment) => match ty.kind {
TyKind::Path(ref inner_path) => {
!segments.is_empty()
&& match_qpath(inner_path, &segments[..(segments.len() - 1)])
&& segment.ident.name.as_str() == segments[segments.len() - 1]
},
_ => false,
},
}
}
/// Matches a `Path` against a slice of segment string literals.
///
/// There is also `match_qpath` if you are dealing with a `rustc_hir::QPath` instead of a
/// `rustc_hir::Path`.
///
/// # Examples
///
/// ```rust,ignore
/// if match_path(&trait_ref.path, &paths::HASH) {
/// // This is the `std::hash::Hash` trait.
/// }
///
/// if match_path(ty_path, &["rustc", "lint", "Lint"]) {
/// // This is a `rustc_middle::lint::Lint`.
/// }
/// ```
pub fn match_path(path: &Path<'_>, segments: &[&str]) -> bool {
path.segments
.iter()
.rev()
.zip(segments.iter().rev())
.all(|(a, b)| a.ident.name.as_str() == *b)
}
/// Matches a `Path` against a slice of segment string literals, e.g.
///
/// # Examples
/// ```rust,ignore
/// match_path_ast(path, &["std", "rt", "begin_unwind"])
/// ```
pub fn match_path_ast(path: &ast::Path, segments: &[&str]) -> bool {
path.segments
.iter()
.rev()
.zip(segments.iter().rev())
.all(|(a, b)| a.ident.name.as_str() == *b)
}
/// Gets the definition associated to a path.
pub fn path_to_res(cx: &LateContext<'_, '_>, path: &[&str]) -> Option<def::Res> {
let crates = cx.tcx.crates();
let krate = crates
.iter()
.find(|&&krate| cx.tcx.crate_name(krate).as_str() == path[0]);
if let Some(krate) = krate {
let krate = DefId {
krate: *krate,
index: CRATE_DEF_INDEX,
};
let mut items = cx.tcx.item_children(krate);
let mut path_it = path.iter().skip(1).peekable();
loop {
let segment = match path_it.next() {
Some(segment) => segment,
None => return None,
};
let result = SmallVec::<[_; 8]>::new();
for item in mem::replace(&mut items, cx.tcx.arena.alloc_slice(&result)).iter() {
if item.ident.name.as_str() == *segment {
if path_it.peek().is_none() {
return Some(item.res);
}
items = cx.tcx.item_children(item.res.def_id());
break;
}
}
}
} else {
None
}
}
pub fn qpath_res(cx: &LateContext<'_, '_>, qpath: &hir::QPath<'_>, id: hir::HirId) -> Res {
match qpath {
hir::QPath::Resolved(_, path) => path.res,
hir::QPath::TypeRelative(..) => {
if cx.tcx.has_typeck_tables(id.owner.to_def_id()) {
cx.tcx
.typeck_tables_of(id.owner.to_def_id().expect_local())
.qpath_res(qpath, id)
} else {
Res::Err
}
},
}
}
/// Convenience function to get the `DefId` of a trait by path.
/// It could be a trait or trait alias.
pub fn get_trait_def_id(cx: &LateContext<'_, '_>, path: &[&str]) -> Option<DefId> {
let res = match path_to_res(cx, path) {
Some(res) => res,
None => return None,
};
match res {
Res::Def(DefKind::Trait | DefKind::TraitAlias, trait_id) => Some(trait_id),
Res::Err => unreachable!("this trait resolution is impossible: {:?}", &path),
_ => None,
}
}
/// Checks whether a type implements a trait.
/// See also `get_trait_def_id`.
pub fn implements_trait<'a, 'tcx>(
cx: &LateContext<'a, 'tcx>,
ty: Ty<'tcx>,
trait_id: DefId,
ty_params: &[GenericArg<'tcx>],
) -> bool {
let ty = cx.tcx.erase_regions(&ty);
let obligation = predicate_for_trait_def(
cx.tcx,
cx.param_env,
traits::ObligationCause::dummy(),
trait_id,
0,
ty,
ty_params,
);
cx.tcx
.infer_ctxt()
.enter(|infcx| infcx.predicate_must_hold_modulo_regions(&obligation))
}
/// Gets the `hir::TraitRef` of the trait the given method is implemented for.
///
/// Use this if you want to find the `TraitRef` of the `Add` trait in this example:
///
/// ```rust
/// struct Point(isize, isize);
///
/// impl std::ops::Add for Point {
/// type Output = Self;
///
/// fn add(self, other: Self) -> Self {
/// Point(0, 0)
/// }
/// }
/// ```
pub fn trait_ref_of_method<'tcx>(cx: &LateContext<'_, 'tcx>, hir_id: HirId) -> Option<&'tcx TraitRef<'tcx>> {
// Get the implemented trait for the current function
let parent_impl = cx.tcx.hir().get_parent_item(hir_id);
if_chain! {
if parent_impl != hir::CRATE_HIR_ID;
if let hir::Node::Item(item) = cx.tcx.hir().get(parent_impl);
if let hir::ItemKind::Impl{ of_trait: trait_ref, .. } = &item.kind;
then { return trait_ref.as_ref(); }
}
None
}
/// Checks whether this type implements `Drop`.
pub fn has_drop<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, ty: Ty<'tcx>) -> bool {
match ty.ty_adt_def() {
Some(def) => def.has_dtor(cx.tcx),
_ => false,
}
}
/// Returns the method names and argument list of nested method call expressions that make up
/// `expr`. method/span lists are sorted with the most recent call first.
pub fn method_calls<'tcx>(
expr: &'tcx Expr<'tcx>,
max_depth: usize,
) -> (Vec<Symbol>, Vec<&'tcx [Expr<'tcx>]>, Vec<Span>) {
let mut method_names = Vec::with_capacity(max_depth);
let mut arg_lists = Vec::with_capacity(max_depth);
let mut spans = Vec::with_capacity(max_depth);
let mut current = expr;
for _ in 0..max_depth {
if let ExprKind::MethodCall(path, span, args) = ¤t.kind {
if args.iter().any(|e| e.span.from_expansion()) {
break;
}
method_names.push(path.ident.name);
arg_lists.push(&**args);
spans.push(*span);
current = &args[0];
} else {
break;
}
}
(method_names, arg_lists, spans)
}
/// Matches an `Expr` against a chain of methods, and return the matched `Expr`s.
///
/// For example, if `expr` represents the `.baz()` in `foo.bar().baz()`,
/// `matched_method_chain(expr, &["bar", "baz"])` will return a `Vec`
/// containing the `Expr`s for
/// `.bar()` and `.baz()`
pub fn method_chain_args<'a>(expr: &'a Expr<'_>, methods: &[&str]) -> Option<Vec<&'a [Expr<'a>]>> {
let mut current = expr;
let mut matched = Vec::with_capacity(methods.len());
for method_name in methods.iter().rev() {
// method chains are stored last -> first
if let ExprKind::MethodCall(ref path, _, ref args) = current.kind {
if path.ident.name.as_str() == *method_name {
if args.iter().any(|e| e.span.from_expansion()) {
return None;
}
matched.push(&**args); // build up `matched` backwards
current = &args[0] // go to parent expression
} else {
return None;
}
} else {
return None;
}
}
// Reverse `matched` so that it is in the same order as `methods`.
matched.reverse();
Some(matched)
}
/// Returns `true` if the provided `def_id` is an entrypoint to a program.
pub fn is_entrypoint_fn(cx: &LateContext<'_, '_>, def_id: DefId) -> bool {
cx.tcx
.entry_fn(LOCAL_CRATE)
.map_or(false, |(entry_fn_def_id, _)| def_id == entry_fn_def_id.to_def_id())
}
/// Gets the name of the item the expression is in, if available.
pub fn get_item_name(cx: &LateContext<'_, '_>, expr: &Expr<'_>) -> Option<Name> {
let parent_id = cx.tcx.hir().get_parent_item(expr.hir_id);
match cx.tcx.hir().find(parent_id) {
Some(
Node::Item(Item { ident, .. })
| Node::TraitItem(TraitItem { ident, .. })
| Node::ImplItem(ImplItem { ident, .. }),
) => Some(ident.name),
_ => None,
}
}
/// Gets the name of a `Pat`, if any.
pub fn get_pat_name(pat: &Pat<'_>) -> Option<Name> {
match pat.kind {
PatKind::Binding(.., ref spname, _) => Some(spname.name),
PatKind::Path(ref qpath) => single_segment_path(qpath).map(|ps| ps.ident.name),
PatKind::Box(ref p) | PatKind::Ref(ref p, _) => get_pat_name(&*p),
_ => None,
}
}
struct ContainsName {
name: Name,
result: bool,
}
impl<'tcx> Visitor<'tcx> for ContainsName {
type Map = Map<'tcx>;
fn visit_name(&mut self, _: Span, name: Name) {
if self.name == name {
self.result = true;
}
}
fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
NestedVisitorMap::None
}
}
/// Checks if an `Expr` contains a certain name.
pub fn contains_name(name: Name, expr: &Expr<'_>) -> bool {
let mut cn = ContainsName { name, result: false };
cn.visit_expr(expr);
cn.result
}
/// Converts a span to a code snippet if available, otherwise use default.
///
/// This is useful if you want to provide suggestions for your lint or more generally, if you want
/// to convert a given `Span` to a `str`.
///
/// # Example
/// ```rust,ignore
/// snippet(cx, expr.span, "..")
/// ```
pub fn snippet<'a, T: LintContext>(cx: &T, span: Span, default: &'a str) -> Cow<'a, str> {
snippet_opt(cx, span).map_or_else(|| Cow::Borrowed(default), From::from)
}
/// Same as `snippet`, but it adapts the applicability level by following rules:
///
/// - Applicability level `Unspecified` will never be changed.
/// - If the span is inside a macro, change the applicability level to `MaybeIncorrect`.
/// - If the default value is used and the applicability level is `MachineApplicable`, change it to
/// `HasPlaceholders`
pub fn snippet_with_applicability<'a, T: LintContext>(
cx: &T,
span: Span,
default: &'a str,
applicability: &mut Applicability,
) -> Cow<'a, str> {
if *applicability != Applicability::Unspecified && span.from_expansion() {
*applicability = Applicability::MaybeIncorrect;
}
snippet_opt(cx, span).map_or_else(
|| {
if *applicability == Applicability::MachineApplicable {
*applicability = Applicability::HasPlaceholders;
}
Cow::Borrowed(default)
},
From::from,
)
}
/// Same as `snippet`, but should only be used when it's clear that the input span is
/// not a macro argument.
pub fn snippet_with_macro_callsite<'a, T: LintContext>(cx: &T, span: Span, default: &'a str) -> Cow<'a, str> {
snippet(cx, span.source_callsite(), default)
}
/// Converts a span to a code snippet. Returns `None` if not available.
pub fn snippet_opt<T: LintContext>(cx: &T, span: Span) -> Option<String> {
cx.sess().source_map().span_to_snippet(span).ok()
}
/// Converts a span (from a block) to a code snippet if available, otherwise use default.
///
/// This trims the code of indentation, except for the first line. Use it for blocks or block-like
/// things which need to be printed as such.
///
/// The `indent_relative_to` arg can be used, to provide a span, where the indentation of the
/// resulting snippet of the given span.
///
/// # Example
///
/// ```rust,ignore
/// snippet_block(cx, block.span, "..", None)
/// // where, `block` is the block of the if expr
/// if x {
/// y;
/// }
/// // will return the snippet
/// {
/// y;
/// }
/// ```
///
/// ```rust,ignore
/// snippet_block(cx, block.span, "..", Some(if_expr.span))
/// // where, `block` is the block of the if expr
/// if x {
/// y;
/// }
/// // will return the snippet
/// {
/// y;
/// } // aligned with `if`
/// ```
/// Note that the first line of the snippet always has 0 indentation.
pub fn snippet_block<'a, T: LintContext>(
cx: &T,
span: Span,
default: &'a str,
indent_relative_to: Option<Span>,
) -> Cow<'a, str> {
let snip = snippet(cx, span, default);
let indent = indent_relative_to.and_then(|s| indent_of(cx, s));
trim_multiline(snip, true, indent)
}
/// Same as `snippet_block`, but adapts the applicability level by the rules of
/// `snippet_with_applicabiliy`.
pub fn snippet_block_with_applicability<'a, T: LintContext>(
cx: &T,
span: Span,
default: &'a str,
indent_relative_to: Option<Span>,
applicability: &mut Applicability,
) -> Cow<'a, str> {
let snip = snippet_with_applicability(cx, span, default, applicability);
let indent = indent_relative_to.and_then(|s| indent_of(cx, s));
trim_multiline(snip, true, indent)
}
/// Returns a new Span that extends the original Span to the first non-whitespace char of the first
/// line.
///
/// ```rust,ignore
/// let x = ();
/// // ^^
/// // will be converted to
/// let x = ();
/// // ^^^^^^^^^^
/// ```
pub fn first_line_of_span<T: LintContext>(cx: &T, span: Span) -> Span {
if let Some(first_char_pos) = first_char_in_first_line(cx, span) {
span.with_lo(first_char_pos)
} else {
span
}
}
fn first_char_in_first_line<T: LintContext>(cx: &T, span: Span) -> Option<BytePos> {
let line_span = line_span(cx, span);
if let Some(snip) = snippet_opt(cx, line_span) {
snip.find(|c: char| !c.is_whitespace())
.map(|pos| line_span.lo() + BytePos::from_usize(pos))
} else {
None
}
}
/// Returns the indentation of the line of a span
///
/// ```rust,ignore
/// let x = ();
/// // ^^ -- will return 0
/// let x = ();
/// // ^^ -- will return 4
/// ```
pub fn indent_of<T: LintContext>(cx: &T, span: Span) -> Option<usize> {
if let Some(snip) = snippet_opt(cx, line_span(cx, span)) {
snip.find(|c: char| !c.is_whitespace())
} else {
None
}
}
/// Extends the span to the beginning of the spans line, incl. whitespaces.
///
/// ```rust,ignore
/// let x = ();
/// // ^^
/// // will be converted to
/// let x = ();
/// // ^^^^^^^^^^^^^^
/// ```
fn line_span<T: LintContext>(cx: &T, span: Span) -> Span {
let span = original_sp(span, DUMMY_SP);
let source_map_and_line = cx.sess().source_map().lookup_line(span.lo()).unwrap();
let line_no = source_map_and_line.line;
let line_start = source_map_and_line.sf.lines[line_no];
Span::new(line_start, span.hi(), span.ctxt())
}
/// Like `snippet_block`, but add braces if the expr is not an `ExprKind::Block`.
/// Also takes an `Option<String>` which can be put inside the braces.
pub fn expr_block<'a, T: LintContext>(
cx: &T,
expr: &Expr<'_>,
option: Option<String>,
default: &'a str,
indent_relative_to: Option<Span>,
) -> Cow<'a, str> {
let code = snippet_block(cx, expr.span, default, indent_relative_to);
let string = option.unwrap_or_default();
if expr.span.from_expansion() {
Cow::Owned(format!("{{ {} }}", snippet_with_macro_callsite(cx, expr.span, default)))
} else if let ExprKind::Block(_, _) = expr.kind {
Cow::Owned(format!("{}{}", code, string))
} else if string.is_empty() {
Cow::Owned(format!("{{ {} }}", code))
} else {
Cow::Owned(format!("{{\n{};\n{}\n}}", code, string))
}
}
/// Trim indentation from a multiline string with possibility of ignoring the
/// first line.
fn trim_multiline(s: Cow<'_, str>, ignore_first: bool, indent: Option<usize>) -> Cow<'_, str> {
let s_space = trim_multiline_inner(s, ignore_first, indent, ' ');
let s_tab = trim_multiline_inner(s_space, ignore_first, indent, '\t');
trim_multiline_inner(s_tab, ignore_first, indent, ' ')
}
fn trim_multiline_inner(s: Cow<'_, str>, ignore_first: bool, indent: Option<usize>, ch: char) -> Cow<'_, str> {
let mut x = s
.lines()
.skip(ignore_first as usize)
.filter_map(|l| {
if l.is_empty() {
None
} else {
// ignore empty lines
Some(l.char_indices().find(|&(_, x)| x != ch).unwrap_or((l.len(), ch)).0)
}
})
.min()
.unwrap_or(0);
if let Some(indent) = indent {
x = x.saturating_sub(indent);
}
if x > 0 {
Cow::Owned(
s.lines()
.enumerate()
.map(|(i, l)| {
if (ignore_first && i == 0) || l.is_empty() {
l
} else {
l.split_at(x).1
}
})
.collect::<Vec<_>>()
.join("\n"),
)
} else {
s
}
}
/// Gets the parent expression, if any –- this is useful to constrain a lint.
pub fn get_parent_expr<'c>(cx: &'c LateContext<'_, '_>, e: &Expr<'_>) -> Option<&'c Expr<'c>> {
let map = &cx.tcx.hir();
let hir_id = e.hir_id;
let parent_id = map.get_parent_node(hir_id);
if hir_id == parent_id {
return None;
}
map.find(parent_id).and_then(|node| {
if let Node::Expr(parent) = node {
Some(parent)
} else {
None
}
})
}
pub fn get_enclosing_block<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, hir_id: HirId) -> Option<&'tcx Block<'tcx>> {
let map = &cx.tcx.hir();
let enclosing_node = map
.get_enclosing_scope(hir_id)
.and_then(|enclosing_id| map.find(enclosing_id));
if let Some(node) = enclosing_node {
match node {
Node::Block(block) => Some(block),
Node::Item(&Item {
kind: ItemKind::Fn(_, _, eid),
..
})
| Node::ImplItem(&ImplItem {
kind: ImplItemKind::Fn(_, eid),
..
}) => match cx.tcx.hir().body(eid).value.kind {
ExprKind::Block(ref block, _) => Some(block),
_ => None,
},
_ => None,
}
} else {
None
}
}
/// Returns the base type for HIR references and pointers.
pub fn walk_ptrs_hir_ty<'tcx>(ty: &'tcx hir::Ty<'tcx>) -> &'tcx hir::Ty<'tcx> {
match ty.kind {
TyKind::Ptr(ref mut_ty) | TyKind::Rptr(_, ref mut_ty) => walk_ptrs_hir_ty(&mut_ty.ty),
_ => ty,
}
}
/// Returns the base type for references and raw pointers.
pub fn walk_ptrs_ty(ty: Ty<'_>) -> Ty<'_> {
match ty.kind {
ty::Ref(_, ty, _) => walk_ptrs_ty(ty),
_ => ty,
}
}
/// Returns the base type for references and raw pointers, and count reference
/// depth.
pub fn walk_ptrs_ty_depth(ty: Ty<'_>) -> (Ty<'_>, usize) {
fn inner(ty: Ty<'_>, depth: usize) -> (Ty<'_>, usize) {
match ty.kind {
ty::Ref(_, ty, _) => inner(ty, depth + 1),
_ => (ty, depth),
}
}
inner(ty, 0)
}
/// Checks whether the given expression is a constant integer of the given value.
/// unlike `is_integer_literal`, this version does const folding
pub fn is_integer_const(cx: &LateContext<'_, '_>, e: &Expr<'_>, value: u128) -> bool {
if is_integer_literal(e, value) {
return true;
}
let map = cx.tcx.hir();
let parent_item = map.get_parent_item(e.hir_id);
if let Some((Constant::Int(v), _)) = map
.maybe_body_owned_by(parent_item)
.and_then(|body_id| constant(cx, cx.tcx.body_tables(body_id), e))
{
value == v
} else {
false
}
}
/// Checks whether the given expression is a constant literal of the given value.
pub fn is_integer_literal(expr: &Expr<'_>, value: u128) -> bool {
// FIXME: use constant folding
if let ExprKind::Lit(ref spanned) = expr.kind {
if let LitKind::Int(v, _) = spanned.node {
return v == value;
}
}
false
}
/// Returns `true` if the given `Expr` has been coerced before.
///
/// Examples of coercions can be found in the Nomicon at
/// <https://doc.rust-lang.org/nomicon/coercions.html>.
///
/// See `rustc_middle::ty::adjustment::Adjustment` and `rustc_typeck::check::coercion` for more
/// information on adjustments and coercions.
pub fn is_adjusted(cx: &LateContext<'_, '_>, e: &Expr<'_>) -> bool {
cx.tables.adjustments().get(e.hir_id).is_some()
}
/// Returns the pre-expansion span if is this comes from an expansion of the
/// macro `name`.
/// See also `is_direct_expn_of`.
#[must_use]
pub fn is_expn_of(mut span: Span, name: &str) -> Option<Span> {
loop {
if span.from_expansion() {
let data = span.ctxt().outer_expn_data();
let new_span = data.call_site;
if let ExpnKind::Macro(MacroKind::Bang, mac_name) = data.kind {
if mac_name.as_str() == name {
return Some(new_span);
}
}
span = new_span;
} else {
return None;
}
}
}
/// Returns the pre-expansion span if the span directly comes from an expansion
/// of the macro `name`.
/// The difference with `is_expn_of` is that in
/// ```rust,ignore
/// foo!(bar!(42));
/// ```
/// `42` is considered expanded from `foo!` and `bar!` by `is_expn_of` but only
/// `bar!` by
/// `is_direct_expn_of`.
#[must_use]
pub fn is_direct_expn_of(span: Span, name: &str) -> Option<Span> {
if span.from_expansion() {
let data = span.ctxt().outer_expn_data();
let new_span = data.call_site;
if let ExpnKind::Macro(MacroKind::Bang, mac_name) = data.kind {
if mac_name.as_str() == name {
return Some(new_span);
}
}
}
None
}
/// Convenience function to get the return type of a function.
pub fn return_ty<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, fn_item: hir::HirId) -> Ty<'tcx> {
let fn_def_id = cx.tcx.hir().local_def_id(fn_item);
let ret_ty = cx.tcx.fn_sig(fn_def_id).output();
cx.tcx.erase_late_bound_regions(&ret_ty)
}
/// Checks if two types are the same.
///
/// This discards any lifetime annotations, too.
//
// FIXME: this works correctly for lifetimes bounds (`for <'a> Foo<'a>` ==
// `for <'b> Foo<'b>`, but not for type parameters).
pub fn same_tys<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, a: Ty<'tcx>, b: Ty<'tcx>) -> bool {
let a = cx.tcx.erase_late_bound_regions(&Binder::bind(a));
let b = cx.tcx.erase_late_bound_regions(&Binder::bind(b));
cx.tcx
.infer_ctxt()
.enter(|infcx| infcx.can_eq(cx.param_env, a, b).is_ok())
}
/// Returns `true` if the given type is an `unsafe` function.
pub fn type_is_unsafe_function<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, ty: Ty<'tcx>) -> bool {
match ty.kind {
ty::FnDef(..) | ty::FnPtr(_) => ty.fn_sig(cx.tcx).unsafety() == Unsafety::Unsafe,
_ => false,
}
}
pub fn is_copy<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, ty: Ty<'tcx>) -> bool {
ty.is_copy_modulo_regions(cx.tcx, cx.param_env, DUMMY_SP)
}
/// Checks if an expression is constructing a tuple-like enum variant or struct
pub fn is_ctor_or_promotable_const_function(cx: &LateContext<'_, '_>, expr: &Expr<'_>) -> bool {
if let ExprKind::Call(ref fun, _) = expr.kind {
if let ExprKind::Path(ref qp) = fun.kind {
let res = cx.tables.qpath_res(qp, fun.hir_id);
return match res {
def::Res::Def(DefKind::Variant | DefKind::Ctor(..), ..) => true,
def::Res::Def(_, def_id) => cx.tcx.is_promotable_const_fn(def_id),
_ => false,
};
}
}
false
}
/// Returns `true` if a pattern is refutable.
pub fn is_refutable(cx: &LateContext<'_, '_>, pat: &Pat<'_>) -> bool {
fn is_enum_variant(cx: &LateContext<'_, '_>, qpath: &QPath<'_>, id: HirId) -> bool {
matches!(
cx.tables.qpath_res(qpath, id),
def::Res::Def(DefKind::Variant, ..) | Res::Def(DefKind::Ctor(def::CtorOf::Variant, _), _)
)
}
fn are_refutable<'a, I: Iterator<Item = &'a Pat<'a>>>(cx: &LateContext<'_, '_>, mut i: I) -> bool {
i.any(|pat| is_refutable(cx, pat))
}
match pat.kind {
PatKind::Binding(..) | PatKind::Wild => false,
PatKind::Box(ref pat) | PatKind::Ref(ref pat, _) => is_refutable(cx, pat),
PatKind::Lit(..) | PatKind::Range(..) => true,
PatKind::Path(ref qpath) => is_enum_variant(cx, qpath, pat.hir_id),
PatKind::Or(ref pats) | PatKind::Tuple(ref pats, _) => are_refutable(cx, pats.iter().map(|pat| &**pat)),
PatKind::Struct(ref qpath, ref fields, _) => {
if is_enum_variant(cx, qpath, pat.hir_id) {
true
} else {
are_refutable(cx, fields.iter().map(|field| &*field.pat))
}
},
PatKind::TupleStruct(ref qpath, ref pats, _) => {
if is_enum_variant(cx, qpath, pat.hir_id) {
true
} else {
are_refutable(cx, pats.iter().map(|pat| &**pat))
}
},
PatKind::Slice(ref head, ref middle, ref tail) => {
are_refutable(cx, head.iter().chain(middle).chain(tail.iter()).map(|pat| &**pat))
},
}
}
/// Checks for the `#[automatically_derived]` attribute all `#[derive]`d
/// implementations have.
pub fn is_automatically_derived(attrs: &[ast::Attribute]) -> bool {
attr::contains_name(attrs, sym!(automatically_derived))
}
/// Remove blocks around an expression.
///
/// Ie. `x`, `{ x }` and `{{{{ x }}}}` all give `x`. `{ x; y }` and `{}` return
/// themselves.
pub fn remove_blocks<'tcx>(mut expr: &'tcx Expr<'tcx>) -> &'tcx Expr<'tcx> {
while let ExprKind::Block(ref block, ..) = expr.kind {
match (block.stmts.is_empty(), block.expr.as_ref()) {
(true, Some(e)) => expr = e,
_ => break,
}
}
expr
}
pub fn is_self(slf: &Param<'_>) -> bool {
if let PatKind::Binding(.., name, _) = slf.pat.kind {
name.name == kw::SelfLower
} else {
false
}
}