-
Notifications
You must be signed in to change notification settings - Fork 12.9k
/
const_prop.rs
962 lines (872 loc) · 38 KB
/
const_prop.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
//! Propagates constants for early reporting of statically known
//! assertion failures
use std::borrow::Cow;
use std::cell::Cell;
use rustc::mir::interpret::{InterpResult, Scalar};
use rustc::mir::visit::{
MutVisitor, MutatingUseContext, NonMutatingUseContext, PlaceContext, Visitor,
};
use rustc::mir::{
read_only, AggregateKind, AssertKind, BasicBlock, BinOp, Body, BodyAndCache, ClearCrossCrate,
Constant, Local, LocalDecl, LocalKind, Location, Operand, Place, ReadOnlyBodyAndCache, Rvalue,
SourceInfo, SourceScope, SourceScopeData, Statement, StatementKind, Terminator, TerminatorKind,
UnOp, RETURN_PLACE,
};
use rustc::ty::layout::{
HasDataLayout, HasTyCtxt, LayoutError, LayoutOf, Size, TargetDataLayout, TyLayout,
};
use rustc::ty::subst::{InternalSubsts, Subst};
use rustc::ty::{self, ConstKind, Instance, ParamEnv, Ty, TyCtxt, TypeFoldable};
use rustc_ast::ast::Mutability;
use rustc_data_structures::fx::FxHashMap;
use rustc_hir::def::DefKind;
use rustc_hir::HirId;
use rustc_index::vec::IndexVec;
use rustc_session::lint;
use rustc_span::Span;
use rustc_trait_selection::traits;
use crate::const_eval::error_to_const_error;
use crate::interpret::{
self, intern_const_alloc_recursive, AllocId, Allocation, Frame, ImmTy, Immediate, InternKind,
InterpCx, LocalState, LocalValue, Memory, MemoryKind, OpTy, Operand as InterpOperand, PlaceTy,
Pointer, ScalarMaybeUndef, StackPopCleanup,
};
use crate::transform::{MirPass, MirSource};
/// The maximum number of bytes that we'll allocate space for a return value.
const MAX_ALLOC_LIMIT: u64 = 1024;
/// Macro for machine-specific `InterpError` without allocation.
/// (These will never be shown to the user, but they help diagnose ICEs.)
macro_rules! throw_machine_stop_str {
($($tt:tt)*) => {{
// We make a new local type for it. The type itself does not carry any information,
// but its vtable (for the `MachineStopType` trait) does.
struct Zst;
// Debug-printing this type shows the desired string.
impl std::fmt::Debug for Zst {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, $($tt)*)
}
}
impl rustc::mir::interpret::MachineStopType for Zst {}
throw_machine_stop!(Zst)
}};
}
pub struct ConstProp;
impl<'tcx> MirPass<'tcx> for ConstProp {
fn run_pass(&self, tcx: TyCtxt<'tcx>, source: MirSource<'tcx>, body: &mut BodyAndCache<'tcx>) {
// will be evaluated by miri and produce its errors there
if source.promoted.is_some() {
return;
}
use rustc::hir::map::blocks::FnLikeNode;
let hir_id = tcx
.hir()
.as_local_hir_id(source.def_id())
.expect("Non-local call to local provider is_const_fn");
let is_fn_like = FnLikeNode::from_node(tcx.hir().get(hir_id)).is_some();
let is_assoc_const = match tcx.def_kind(source.def_id()) {
Some(DefKind::AssocConst) => true,
_ => false,
};
// Only run const prop on functions, methods, closures and associated constants
if !is_fn_like && !is_assoc_const {
// skip anon_const/statics/consts because they'll be evaluated by miri anyway
trace!("ConstProp skipped for {:?}", source.def_id());
return;
}
let is_generator = tcx.type_of(source.def_id()).is_generator();
// FIXME(welseywiser) const prop doesn't work on generators because of query cycles
// computing their layout.
if is_generator {
trace!("ConstProp skipped for generator {:?}", source.def_id());
return;
}
// Check if it's even possible to satisfy the 'where' clauses
// for this item.
// This branch will never be taken for any normal function.
// However, it's possible to `#!feature(trivial_bounds)]` to write
// a function with impossible to satisfy clauses, e.g.:
// `fn foo() where String: Copy {}`
//
// We don't usually need to worry about this kind of case,
// since we would get a compilation error if the user tried
// to call it. However, since we can do const propagation
// even without any calls to the function, we need to make
// sure that it even makes sense to try to evaluate the body.
// If there are unsatisfiable where clauses, then all bets are
// off, and we just give up.
//
// We manually filter the predicates, skipping anything that's not
// "global". We are in a potentially generic context
// (e.g. we are evaluating a function without substituting generic
// parameters, so this filtering serves two purposes:
//
// 1. We skip evaluating any predicates that we would
// never be able prove are unsatisfiable (e.g. `<T as Foo>`
// 2. We avoid trying to normalize predicates involving generic
// parameters (e.g. `<T as Foo>::MyItem`). This can confuse
// the normalization code (leading to cycle errors), since
// it's usually never invoked in this way.
let predicates = tcx
.predicates_of(source.def_id())
.predicates
.iter()
.filter_map(|(p, _)| if p.is_global() { Some(*p) } else { None })
.collect();
if !traits::normalize_and_test_predicates(
tcx,
traits::elaborate_predicates(tcx, predicates).collect(),
) {
trace!("ConstProp skipped for {:?}: found unsatisfiable predicates", source.def_id());
return;
}
trace!("ConstProp starting for {:?}", source.def_id());
let dummy_body = &Body::new(
body.basic_blocks().clone(),
body.source_scopes.clone(),
body.local_decls.clone(),
Default::default(),
body.arg_count,
Default::default(),
tcx.def_span(source.def_id()),
Default::default(),
body.generator_kind,
);
// FIXME(oli-obk, eddyb) Optimize locals (or even local paths) to hold
// constants, instead of just checking for const-folding succeeding.
// That would require an uniform one-def no-mutation analysis
// and RPO (or recursing when needing the value of a local).
let mut optimization_finder =
ConstPropagator::new(read_only!(body), dummy_body, tcx, source);
optimization_finder.visit_body(body);
trace!("ConstProp done for {:?}", source.def_id());
}
}
struct ConstPropMachine;
impl<'mir, 'tcx> interpret::Machine<'mir, 'tcx> for ConstPropMachine {
type MemoryKinds = !;
type PointerTag = ();
type ExtraFnVal = !;
type FrameExtra = ();
type MemoryExtra = ();
type AllocExtra = ();
type MemoryMap = FxHashMap<AllocId, (MemoryKind<!>, Allocation)>;
const STATIC_KIND: Option<!> = None;
const CHECK_ALIGN: bool = false;
#[inline(always)]
fn enforce_validity(_ecx: &InterpCx<'mir, 'tcx, Self>) -> bool {
false
}
fn find_mir_or_eval_fn(
_ecx: &mut InterpCx<'mir, 'tcx, Self>,
_span: Span,
_instance: ty::Instance<'tcx>,
_args: &[OpTy<'tcx>],
_ret: Option<(PlaceTy<'tcx>, BasicBlock)>,
_unwind: Option<BasicBlock>,
) -> InterpResult<'tcx, Option<&'mir Body<'tcx>>> {
Ok(None)
}
fn call_extra_fn(
_ecx: &mut InterpCx<'mir, 'tcx, Self>,
fn_val: !,
_args: &[OpTy<'tcx>],
_ret: Option<(PlaceTy<'tcx>, BasicBlock)>,
_unwind: Option<BasicBlock>,
) -> InterpResult<'tcx> {
match fn_val {}
}
fn call_intrinsic(
_ecx: &mut InterpCx<'mir, 'tcx, Self>,
_span: Span,
_instance: ty::Instance<'tcx>,
_args: &[OpTy<'tcx>],
_ret: Option<(PlaceTy<'tcx>, BasicBlock)>,
_unwind: Option<BasicBlock>,
) -> InterpResult<'tcx> {
throw_machine_stop_str!("calling intrinsics isn't supported in ConstProp")
}
fn assert_panic(
_ecx: &mut InterpCx<'mir, 'tcx, Self>,
_msg: &rustc::mir::AssertMessage<'tcx>,
_unwind: Option<rustc::mir::BasicBlock>,
) -> InterpResult<'tcx> {
bug!("panics terminators are not evaluated in ConstProp")
}
fn ptr_to_int(_mem: &Memory<'mir, 'tcx, Self>, _ptr: Pointer) -> InterpResult<'tcx, u64> {
throw_unsup!(ReadPointerAsBytes)
}
fn binary_ptr_op(
_ecx: &InterpCx<'mir, 'tcx, Self>,
_bin_op: BinOp,
_left: ImmTy<'tcx>,
_right: ImmTy<'tcx>,
) -> InterpResult<'tcx, (Scalar, bool, Ty<'tcx>)> {
// We can't do this because aliasing of memory can differ between const eval and llvm
throw_machine_stop_str!("pointer arithmetic or comparisons aren't supported in ConstProp")
}
#[inline(always)]
fn init_allocation_extra<'b>(
_memory_extra: &(),
_id: AllocId,
alloc: Cow<'b, Allocation>,
_kind: Option<MemoryKind<!>>,
) -> (Cow<'b, Allocation<Self::PointerTag>>, Self::PointerTag) {
// We do not use a tag so we can just cheaply forward the allocation
(alloc, ())
}
#[inline(always)]
fn tag_static_base_pointer(_memory_extra: &(), _id: AllocId) -> Self::PointerTag {}
fn box_alloc(
_ecx: &mut InterpCx<'mir, 'tcx, Self>,
_dest: PlaceTy<'tcx>,
) -> InterpResult<'tcx> {
throw_machine_stop_str!("can't const prop heap allocations")
}
fn access_local(
_ecx: &InterpCx<'mir, 'tcx, Self>,
frame: &Frame<'mir, 'tcx, Self::PointerTag, Self::FrameExtra>,
local: Local,
) -> InterpResult<'tcx, InterpOperand<Self::PointerTag>> {
let l = &frame.locals[local];
if l.value == LocalValue::Uninitialized {
throw_machine_stop_str!("tried to access an uninitialized local")
}
l.access()
}
fn before_access_static(
_memory_extra: &(),
allocation: &Allocation<Self::PointerTag, Self::AllocExtra>,
) -> InterpResult<'tcx> {
// if the static allocation is mutable or if it has relocations (it may be legal to mutate
// the memory behind that in the future), then we can't const prop it
if allocation.mutability == Mutability::Mut || allocation.relocations().len() > 0 {
throw_machine_stop_str!("can't eval mutable statics in ConstProp")
}
Ok(())
}
#[inline(always)]
fn stack_push(_ecx: &mut InterpCx<'mir, 'tcx, Self>) -> InterpResult<'tcx> {
Ok(())
}
}
/// Finds optimization opportunities on the MIR.
struct ConstPropagator<'mir, 'tcx> {
ecx: InterpCx<'mir, 'tcx, ConstPropMachine>,
tcx: TyCtxt<'tcx>,
can_const_prop: IndexVec<Local, ConstPropMode>,
param_env: ParamEnv<'tcx>,
// FIXME(eddyb) avoid cloning these two fields more than once,
// by accessing them through `ecx` instead.
source_scopes: IndexVec<SourceScope, SourceScopeData>,
local_decls: IndexVec<Local, LocalDecl<'tcx>>,
ret: Option<OpTy<'tcx, ()>>,
// Because we have `MutVisitor` we can't obtain the `SourceInfo` from a `Location`. So we store
// the last known `SourceInfo` here and just keep revisiting it.
source_info: Option<SourceInfo>,
}
impl<'mir, 'tcx> LayoutOf for ConstPropagator<'mir, 'tcx> {
type Ty = Ty<'tcx>;
type TyLayout = Result<TyLayout<'tcx>, LayoutError<'tcx>>;
fn layout_of(&self, ty: Ty<'tcx>) -> Self::TyLayout {
self.tcx.layout_of(self.param_env.and(ty))
}
}
impl<'mir, 'tcx> HasDataLayout for ConstPropagator<'mir, 'tcx> {
#[inline]
fn data_layout(&self) -> &TargetDataLayout {
&self.tcx.data_layout
}
}
impl<'mir, 'tcx> HasTyCtxt<'tcx> for ConstPropagator<'mir, 'tcx> {
#[inline]
fn tcx(&self) -> TyCtxt<'tcx> {
self.tcx
}
}
impl<'mir, 'tcx> ConstPropagator<'mir, 'tcx> {
fn new(
body: ReadOnlyBodyAndCache<'_, 'tcx>,
dummy_body: &'mir Body<'tcx>,
tcx: TyCtxt<'tcx>,
source: MirSource<'tcx>,
) -> ConstPropagator<'mir, 'tcx> {
let def_id = source.def_id();
let substs = &InternalSubsts::identity_for_item(tcx, def_id);
let param_env = tcx.param_env(def_id).with_reveal_all();
let span = tcx.def_span(def_id);
let mut ecx = InterpCx::new(tcx.at(span), param_env, ConstPropMachine, ());
let can_const_prop = CanConstProp::check(body);
let ret = ecx
.layout_of(body.return_ty().subst(tcx, substs))
.ok()
// Don't bother allocating memory for ZST types which have no values
// or for large values.
.filter(|ret_layout| {
!ret_layout.is_zst() && ret_layout.size < Size::from_bytes(MAX_ALLOC_LIMIT)
})
.map(|ret_layout| ecx.allocate(ret_layout, MemoryKind::Stack));
ecx.push_stack_frame(
Instance::new(def_id, substs),
span,
dummy_body,
ret.map(Into::into),
StackPopCleanup::None { cleanup: false },
)
.expect("failed to push initial stack frame");
ConstPropagator {
ecx,
tcx,
param_env,
can_const_prop,
// FIXME(eddyb) avoid cloning these two fields more than once,
// by accessing them through `ecx` instead.
source_scopes: body.source_scopes.clone(),
//FIXME(wesleywiser) we can't steal this because `Visitor::super_visit_body()` needs it
local_decls: body.local_decls.clone(),
ret: ret.map(Into::into),
source_info: None,
}
}
fn get_const(&self, local: Local) -> Option<OpTy<'tcx>> {
if local == RETURN_PLACE {
// Try to read the return place as an immediate so that if it is representable as a
// scalar, we can handle it as such, but otherwise, just return the value as is.
return match self.ret.map(|ret| self.ecx.try_read_immediate(ret)) {
Some(Ok(Ok(imm))) => Some(imm.into()),
_ => self.ret,
};
}
self.ecx.access_local(self.ecx.frame(), local, None).ok()
}
fn remove_const(&mut self, local: Local) {
self.ecx.frame_mut().locals[local] =
LocalState { value: LocalValue::Uninitialized, layout: Cell::new(None) };
}
fn lint_root(&self, source_info: SourceInfo) -> Option<HirId> {
match &self.source_scopes[source_info.scope].local_data {
ClearCrossCrate::Set(data) => Some(data.lint_root),
ClearCrossCrate::Clear => None,
}
}
fn use_ecx<F, T>(&mut self, f: F) -> Option<T>
where
F: FnOnce(&mut Self) -> InterpResult<'tcx, T>,
{
match f(self) {
Ok(val) => Some(val),
Err(error) => {
// Some errors shouldn't come up because creating them causes
// an allocation, which we should avoid. When that happens,
// dedicated error variants should be introduced instead.
assert!(
!error.kind.allocates(),
"const-prop encountered allocating error: {}",
error
);
None
}
}
}
fn eval_constant(&mut self, c: &Constant<'tcx>, source_info: SourceInfo) -> Option<OpTy<'tcx>> {
self.ecx.tcx.span = c.span;
// FIXME we need to revisit this for #67176
if c.needs_subst() {
return None;
}
match self.ecx.eval_const_to_op(c.literal, None) {
Ok(op) => Some(op),
Err(error) => {
let err = error_to_const_error(&self.ecx, error);
if let Some(lint_root) = self.lint_root(source_info) {
let lint_only = match c.literal.val {
// Promoteds must lint and not error as the user didn't ask for them
ConstKind::Unevaluated(_, _, Some(_)) => true,
// Out of backwards compatibility we cannot report hard errors in unused
// generic functions using associated constants of the generic parameters.
_ => c.literal.needs_subst(),
};
if lint_only {
// Out of backwards compatibility we cannot report hard errors in unused
// generic functions using associated constants of the generic parameters.
err.report_as_lint(
self.ecx.tcx,
"erroneous constant used",
lint_root,
Some(c.span),
);
} else {
err.report_as_error(self.ecx.tcx, "erroneous constant used");
}
} else {
err.report_as_error(self.ecx.tcx, "erroneous constant used");
}
None
}
}
}
fn eval_place(&mut self, place: &Place<'tcx>) -> Option<OpTy<'tcx>> {
trace!("eval_place(place={:?})", place);
self.use_ecx(|this| this.ecx.eval_place_to_op(place, None))
}
fn eval_operand(&mut self, op: &Operand<'tcx>, source_info: SourceInfo) -> Option<OpTy<'tcx>> {
match *op {
Operand::Constant(ref c) => self.eval_constant(c, source_info),
Operand::Move(ref place) | Operand::Copy(ref place) => self.eval_place(place),
}
}
fn report_assert_as_lint(
&self,
lint: &'static lint::Lint,
source_info: SourceInfo,
message: &'static str,
panic: AssertKind<u64>,
) -> Option<()> {
let lint_root = self.lint_root(source_info)?;
self.tcx.struct_span_lint_hir(lint, lint_root, source_info.span, |lint| {
let mut err = lint.build(message);
err.span_label(source_info.span, format!("{:?}", panic));
err.emit()
});
None
}
fn check_unary_op(
&mut self,
op: UnOp,
arg: &Operand<'tcx>,
source_info: SourceInfo,
) -> Option<()> {
if self.use_ecx(|this| {
let val = this.ecx.read_immediate(this.ecx.eval_operand(arg, None)?)?;
let (_res, overflow, _ty) = this.ecx.overflowing_unary_op(op, val)?;
Ok(overflow)
})? {
// `AssertKind` only has an `OverflowNeg` variant, so make sure that is
// appropriate to use.
assert_eq!(op, UnOp::Neg, "Neg is the only UnOp that can overflow");
self.report_assert_as_lint(
lint::builtin::ARITHMETIC_OVERFLOW,
source_info,
"this arithmetic operation will overflow",
AssertKind::OverflowNeg,
)?;
}
Some(())
}
fn check_binary_op(
&mut self,
op: BinOp,
left: &Operand<'tcx>,
right: &Operand<'tcx>,
source_info: SourceInfo,
) -> Option<()> {
let r =
self.use_ecx(|this| this.ecx.read_immediate(this.ecx.eval_operand(right, None)?))?;
// Check for exceeding shifts *even if* we cannot evaluate the LHS.
if op == BinOp::Shr || op == BinOp::Shl {
// We need the type of the LHS. We cannot use `place_layout` as that is the type
// of the result, which for checked binops is not the same!
let left_ty = left.ty(&self.local_decls, self.tcx);
let left_size_bits = self.ecx.layout_of(left_ty).ok()?.size.bits();
let right_size = r.layout.size;
let r_bits = r.to_scalar().ok();
// This is basically `force_bits`.
let r_bits = r_bits.and_then(|r| r.to_bits_or_ptr(right_size, &self.tcx).ok());
if r_bits.map_or(false, |b| b >= left_size_bits as u128) {
self.report_assert_as_lint(
lint::builtin::ARITHMETIC_OVERFLOW,
source_info,
"this arithmetic operation will overflow",
AssertKind::Overflow(op),
)?;
}
}
// The remaining operators are handled through `overflowing_binary_op`.
if self.use_ecx(|this| {
let l = this.ecx.read_immediate(this.ecx.eval_operand(left, None)?)?;
let (_res, overflow, _ty) = this.ecx.overflowing_binary_op(op, l, r)?;
Ok(overflow)
})? {
self.report_assert_as_lint(
lint::builtin::ARITHMETIC_OVERFLOW,
source_info,
"this arithmetic operation will overflow",
AssertKind::Overflow(op),
)?;
}
Some(())
}
fn const_prop(
&mut self,
rvalue: &Rvalue<'tcx>,
place_layout: TyLayout<'tcx>,
source_info: SourceInfo,
place: &Place<'tcx>,
) -> Option<()> {
// #66397: Don't try to eval into large places as that can cause an OOM
if place_layout.size >= Size::from_bytes(MAX_ALLOC_LIMIT) {
return None;
}
// FIXME we need to revisit this for #67176
if rvalue.needs_subst() {
return None;
}
// Perform any special handling for specific Rvalue types.
// Generally, checks here fall into one of two categories:
// 1. Additional checking to provide useful lints to the user
// - In this case, we will do some validation and then fall through to the
// end of the function which evals the assignment.
// 2. Working around bugs in other parts of the compiler
// - In this case, we'll return `None` from this function to stop evaluation.
match rvalue {
// Additional checking: give lints to the user if an overflow would occur.
// We do this here and not in the `Assert` terminator as that terminator is
// only sometimes emitted (overflow checks can be disabled), but we want to always
// lint.
Rvalue::UnaryOp(op, arg) => {
trace!("checking UnaryOp(op = {:?}, arg = {:?})", op, arg);
self.check_unary_op(*op, arg, source_info)?;
}
Rvalue::BinaryOp(op, left, right) => {
trace!("checking BinaryOp(op = {:?}, left = {:?}, right = {:?})", op, left, right);
self.check_binary_op(*op, left, right, source_info)?;
}
Rvalue::CheckedBinaryOp(op, left, right) => {
trace!(
"checking CheckedBinaryOp(op = {:?}, left = {:?}, right = {:?})",
op,
left,
right
);
self.check_binary_op(*op, left, right, source_info)?;
}
// Do not try creating references (#67862)
Rvalue::Ref(_, _, place_ref) => {
trace!("skipping Ref({:?})", place_ref);
return None;
}
_ => {}
}
self.use_ecx(|this| {
trace!("calling eval_rvalue_into_place(rvalue = {:?}, place = {:?})", rvalue, place);
this.ecx.eval_rvalue_into_place(rvalue, place)?;
Ok(())
})
}
fn operand_from_scalar(&self, scalar: Scalar, ty: Ty<'tcx>, span: Span) -> Operand<'tcx> {
Operand::Constant(Box::new(Constant {
span,
user_ty: None,
literal: self.tcx.mk_const(*ty::Const::from_scalar(self.tcx, scalar, ty)),
}))
}
fn replace_with_const(
&mut self,
rval: &mut Rvalue<'tcx>,
value: OpTy<'tcx>,
source_info: SourceInfo,
) {
trace!("attepting to replace {:?} with {:?}", rval, value);
if let Err(e) = self.ecx.const_validate_operand(
value,
vec![],
// FIXME: is ref tracking too expensive?
&mut interpret::RefTracking::empty(),
/*may_ref_to_static*/ true,
) {
trace!("validation error, attempt failed: {:?}", e);
return;
}
// FIXME> figure out what to do when try_read_immediate fails
let imm = self.use_ecx(|this| this.ecx.try_read_immediate(value));
if let Some(Ok(imm)) = imm {
match *imm {
interpret::Immediate::Scalar(ScalarMaybeUndef::Scalar(scalar)) => {
*rval = Rvalue::Use(self.operand_from_scalar(
scalar,
value.layout.ty,
source_info.span,
));
}
Immediate::ScalarPair(
ScalarMaybeUndef::Scalar(one),
ScalarMaybeUndef::Scalar(two),
) => {
// Found a value represented as a pair. For now only do cont-prop if type of
// Rvalue is also a pair with two scalars. The more general case is more
// complicated to implement so we'll do it later.
let ty = &value.layout.ty.kind;
// Only do it for tuples
if let ty::Tuple(substs) = ty {
// Only do it if tuple is also a pair with two scalars
if substs.len() == 2 {
let opt_ty1_ty2 = self.use_ecx(|this| {
let ty1 = substs[0].expect_ty();
let ty2 = substs[1].expect_ty();
let ty_is_scalar = |ty| {
this.ecx.layout_of(ty).ok().map(|ty| ty.details.abi.is_scalar())
== Some(true)
};
if ty_is_scalar(ty1) && ty_is_scalar(ty2) {
Ok(Some((ty1, ty2)))
} else {
Ok(None)
}
});
if let Some(Some((ty1, ty2))) = opt_ty1_ty2 {
*rval = Rvalue::Aggregate(
Box::new(AggregateKind::Tuple),
vec![
self.operand_from_scalar(one, ty1, source_info.span),
self.operand_from_scalar(two, ty2, source_info.span),
],
);
}
}
}
}
_ => {}
}
}
}
fn should_const_prop(&mut self, op: OpTy<'tcx>) -> bool {
let mir_opt_level = self.tcx.sess.opts.debugging_opts.mir_opt_level;
if mir_opt_level == 0 {
return false;
}
match *op {
interpret::Operand::Immediate(Immediate::Scalar(ScalarMaybeUndef::Scalar(s))) => {
s.is_bits()
}
interpret::Operand::Immediate(Immediate::ScalarPair(
ScalarMaybeUndef::Scalar(l),
ScalarMaybeUndef::Scalar(r),
)) => l.is_bits() && r.is_bits(),
interpret::Operand::Indirect(_) if mir_opt_level >= 2 => {
let mplace = op.assert_mem_place(&self.ecx);
intern_const_alloc_recursive(&mut self.ecx, InternKind::ConstProp, mplace, false)
.expect("failed to intern alloc");
true
}
_ => false,
}
}
}
/// The mode that `ConstProp` is allowed to run in for a given `Local`.
#[derive(Clone, Copy, Debug, PartialEq)]
enum ConstPropMode {
/// The `Local` can be propagated into and reads of this `Local` can also be propagated.
FullConstProp,
/// The `Local` can be propagated into but reads cannot be propagated.
OnlyPropagateInto,
/// No propagation is allowed at all.
NoPropagation,
}
struct CanConstProp {
can_const_prop: IndexVec<Local, ConstPropMode>,
// false at the beginning, once set, there are not allowed to be any more assignments
found_assignment: IndexVec<Local, bool>,
}
impl CanConstProp {
/// returns true if `local` can be propagated
fn check(body: ReadOnlyBodyAndCache<'_, '_>) -> IndexVec<Local, ConstPropMode> {
let mut cpv = CanConstProp {
can_const_prop: IndexVec::from_elem(ConstPropMode::FullConstProp, &body.local_decls),
found_assignment: IndexVec::from_elem(false, &body.local_decls),
};
for (local, val) in cpv.can_const_prop.iter_enumerated_mut() {
// cannot use args at all
// cannot use locals because if x < y { y - x } else { x - y } would
// lint for x != y
// FIXME(oli-obk): lint variables until they are used in a condition
// FIXME(oli-obk): lint if return value is constant
let local_kind = body.local_kind(local);
if local_kind == LocalKind::Arg || local_kind == LocalKind::Var {
*val = ConstPropMode::OnlyPropagateInto;
trace!("local {:?} can't be const propagated because it's not a temporary", local);
}
}
cpv.visit_body(body);
cpv.can_const_prop
}
}
impl<'tcx> Visitor<'tcx> for CanConstProp {
fn visit_local(&mut self, &local: &Local, context: PlaceContext, _: Location) {
use rustc::mir::visit::PlaceContext::*;
match context {
// Constants must have at most one write
// FIXME(oli-obk): we could be more powerful here, if the multiple writes
// only occur in independent execution paths
MutatingUse(MutatingUseContext::Store) => {
if self.found_assignment[local] {
trace!("local {:?} can't be propagated because of multiple assignments", local);
self.can_const_prop[local] = ConstPropMode::NoPropagation;
} else {
self.found_assignment[local] = true
}
}
// Reading constants is allowed an arbitrary number of times
NonMutatingUse(NonMutatingUseContext::Copy)
| NonMutatingUse(NonMutatingUseContext::Move)
| NonMutatingUse(NonMutatingUseContext::Inspect)
| NonMutatingUse(NonMutatingUseContext::Projection)
| MutatingUse(MutatingUseContext::Projection)
| NonUse(_) => {}
_ => {
trace!("local {:?} can't be propagaged because it's used: {:?}", local, context);
self.can_const_prop[local] = ConstPropMode::NoPropagation;
}
}
}
}
impl<'mir, 'tcx> MutVisitor<'tcx> for ConstPropagator<'mir, 'tcx> {
fn tcx(&self) -> TyCtxt<'tcx> {
self.tcx
}
fn visit_constant(&mut self, constant: &mut Constant<'tcx>, location: Location) {
trace!("visit_constant: {:?}", constant);
self.super_constant(constant, location);
self.eval_constant(constant, self.source_info.unwrap());
}
fn visit_statement(&mut self, statement: &mut Statement<'tcx>, location: Location) {
trace!("visit_statement: {:?}", statement);
let source_info = statement.source_info;
self.source_info = Some(source_info);
if let StatementKind::Assign(box (ref place, ref mut rval)) = statement.kind {
let place_ty: Ty<'tcx> = place.ty(&self.local_decls, self.tcx).ty;
if let Ok(place_layout) = self.tcx.layout_of(self.param_env.and(place_ty)) {
if let Some(local) = place.as_local() {
let can_const_prop = self.can_const_prop[local];
if let Some(()) = self.const_prop(rval, place_layout, source_info, place) {
if can_const_prop == ConstPropMode::FullConstProp
|| can_const_prop == ConstPropMode::OnlyPropagateInto
{
if let Some(value) = self.get_const(local) {
if self.should_const_prop(value) {
trace!("replacing {:?} with {:?}", rval, value);
self.replace_with_const(rval, value, statement.source_info);
if can_const_prop == ConstPropMode::FullConstProp {
trace!("propagated into {:?}", local);
}
}
}
}
}
if self.can_const_prop[local] != ConstPropMode::FullConstProp {
trace!("can't propagate into {:?}", local);
if local != RETURN_PLACE {
self.remove_const(local);
}
}
}
}
} else {
match statement.kind {
StatementKind::StorageLive(local) | StatementKind::StorageDead(local) => {
let frame = self.ecx.frame_mut();
frame.locals[local].value =
if let StatementKind::StorageLive(_) = statement.kind {
LocalValue::Uninitialized
} else {
LocalValue::Dead
};
}
_ => {}
}
}
self.super_statement(statement, location);
}
fn visit_terminator(&mut self, terminator: &mut Terminator<'tcx>, location: Location) {
let source_info = terminator.source_info;
self.source_info = Some(source_info);
self.super_terminator(terminator, location);
match &mut terminator.kind {
TerminatorKind::Assert { expected, ref msg, ref mut cond, .. } => {
if let Some(value) = self.eval_operand(&cond, source_info) {
trace!("assertion on {:?} should be {:?}", value, expected);
let expected = ScalarMaybeUndef::from(Scalar::from_bool(*expected));
let value_const = self.ecx.read_scalar(value).unwrap();
if expected != value_const {
// poison all places this operand references so that further code
// doesn't use the invalid value
match cond {
Operand::Move(ref place) | Operand::Copy(ref place) => {
self.remove_const(place.local);
}
Operand::Constant(_) => {}
}
let msg = match msg {
AssertKind::DivisionByZero => AssertKind::DivisionByZero,
AssertKind::RemainderByZero => AssertKind::RemainderByZero,
AssertKind::BoundsCheck { ref len, ref index } => {
let len =
self.eval_operand(len, source_info).expect("len must be const");
let len = self
.ecx
.read_scalar(len)
.unwrap()
.to_machine_usize(&self.tcx)
.unwrap();
let index = self
.eval_operand(index, source_info)
.expect("index must be const");
let index = self
.ecx
.read_scalar(index)
.unwrap()
.to_machine_usize(&self.tcx)
.unwrap();
AssertKind::BoundsCheck { len, index }
}
// Overflow is are already covered by checks on the binary operators.
AssertKind::Overflow(_) | AssertKind::OverflowNeg => return,
// Need proper const propagator for these.
_ => return,
};
self.report_assert_as_lint(
lint::builtin::UNCONDITIONAL_PANIC,
source_info,
"this operation will panic at runtime",
msg,
);
} else {
if self.should_const_prop(value) {
if let ScalarMaybeUndef::Scalar(scalar) = value_const {
*cond = self.operand_from_scalar(
scalar,
self.tcx.types.bool,
source_info.span,
);
}
}
}
}
}
TerminatorKind::SwitchInt { ref mut discr, switch_ty, .. } => {
if let Some(value) = self.eval_operand(&discr, source_info) {
if self.should_const_prop(value) {
if let ScalarMaybeUndef::Scalar(scalar) =
self.ecx.read_scalar(value).unwrap()
{
*discr = self.operand_from_scalar(scalar, switch_ty, source_info.span);
}
}
}
}
//none of these have Operands to const-propagate
TerminatorKind::Goto { .. }
| TerminatorKind::Resume
| TerminatorKind::Abort
| TerminatorKind::Return
| TerminatorKind::Unreachable
| TerminatorKind::Drop { .. }
| TerminatorKind::DropAndReplace { .. }
| TerminatorKind::Yield { .. }
| TerminatorKind::GeneratorDrop
| TerminatorKind::FalseEdges { .. }
| TerminatorKind::FalseUnwind { .. } => {}
//FIXME(wesleywiser) Call does have Operands that could be const-propagated
TerminatorKind::Call { .. } => {}
}
}
}