-
Notifications
You must be signed in to change notification settings - Fork 12.9k
/
block.rs
1274 lines (1163 loc) · 49.9 KB
/
block.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
use super::operand::OperandRef;
use super::operand::OperandValue::{Immediate, Pair, Ref};
use super::place::PlaceRef;
use super::{FunctionCx, LocalRef};
use crate::base;
use crate::common::{self, IntPredicate};
use crate::meth;
use crate::traits::*;
use crate::MemFlags;
use rustc_hir::lang_items;
use rustc_index::vec::Idx;
use rustc_middle::mir;
use rustc_middle::mir::AssertKind;
use rustc_middle::ty::layout::{FnAbiExt, HasTyCtxt};
use rustc_middle::ty::{self, Instance, Ty, TypeFoldable};
use rustc_span::{source_map::Span, symbol::Symbol};
use rustc_target::abi::call::{ArgAbi, FnAbi, PassMode};
use rustc_target::abi::{self, LayoutOf};
use rustc_target::spec::abi::Abi;
use std::borrow::Cow;
/// Used by `FunctionCx::codegen_terminator` for emitting common patterns
/// e.g., creating a basic block, calling a function, etc.
struct TerminatorCodegenHelper<'tcx> {
bb: mir::BasicBlock,
terminator: &'tcx mir::Terminator<'tcx>,
funclet_bb: Option<mir::BasicBlock>,
}
impl<'a, 'tcx> TerminatorCodegenHelper<'tcx> {
/// Returns the associated funclet from `FunctionCx::funclets` for the
/// `funclet_bb` member if it is not `None`.
fn funclet<'b, Bx: BuilderMethods<'a, 'tcx>>(
&self,
fx: &'b mut FunctionCx<'a, 'tcx, Bx>,
) -> Option<&'b Bx::Funclet> {
match self.funclet_bb {
Some(funcl) => fx.funclets[funcl].as_ref(),
None => None,
}
}
fn lltarget<Bx: BuilderMethods<'a, 'tcx>>(
&self,
fx: &mut FunctionCx<'a, 'tcx, Bx>,
target: mir::BasicBlock,
) -> (Bx::BasicBlock, bool) {
let span = self.terminator.source_info.span;
let lltarget = fx.blocks[target];
let target_funclet = fx.cleanup_kinds[target].funclet_bb(target);
match (self.funclet_bb, target_funclet) {
(None, None) => (lltarget, false),
(Some(f), Some(t_f)) if f == t_f || !base::wants_msvc_seh(fx.cx.tcx().sess) => {
(lltarget, false)
}
// jump *into* cleanup - need a landing pad if GNU
(None, Some(_)) => (fx.landing_pad_to(target), false),
(Some(_), None) => span_bug!(span, "{:?} - jump out of cleanup?", self.terminator),
(Some(_), Some(_)) => (fx.landing_pad_to(target), true),
}
}
/// Create a basic block.
fn llblock<Bx: BuilderMethods<'a, 'tcx>>(
&self,
fx: &mut FunctionCx<'a, 'tcx, Bx>,
target: mir::BasicBlock,
) -> Bx::BasicBlock {
let (lltarget, is_cleanupret) = self.lltarget(fx, target);
if is_cleanupret {
// MSVC cross-funclet jump - need a trampoline
debug!("llblock: creating cleanup trampoline for {:?}", target);
let name = &format!("{:?}_cleanup_trampoline_{:?}", self.bb, target);
let mut trampoline = fx.new_block(name);
trampoline.cleanup_ret(self.funclet(fx).unwrap(), Some(lltarget));
trampoline.llbb()
} else {
lltarget
}
}
fn funclet_br<Bx: BuilderMethods<'a, 'tcx>>(
&self,
fx: &mut FunctionCx<'a, 'tcx, Bx>,
bx: &mut Bx,
target: mir::BasicBlock,
) {
let (lltarget, is_cleanupret) = self.lltarget(fx, target);
if is_cleanupret {
// micro-optimization: generate a `ret` rather than a jump
// to a trampoline.
bx.cleanup_ret(self.funclet(fx).unwrap(), Some(lltarget));
} else {
bx.br(lltarget);
}
}
/// Call `fn_ptr` of `fn_abi` with the arguments `llargs`, the optional
/// return destination `destination` and the cleanup function `cleanup`.
fn do_call<Bx: BuilderMethods<'a, 'tcx>>(
&self,
fx: &mut FunctionCx<'a, 'tcx, Bx>,
bx: &mut Bx,
fn_abi: FnAbi<'tcx, Ty<'tcx>>,
fn_ptr: Bx::Value,
llargs: &[Bx::Value],
destination: Option<(ReturnDest<'tcx, Bx::Value>, mir::BasicBlock)>,
cleanup: Option<mir::BasicBlock>,
) {
if let Some(cleanup) = cleanup {
let ret_bx = if let Some((_, target)) = destination {
fx.blocks[target]
} else {
fx.unreachable_block()
};
let invokeret =
bx.invoke(fn_ptr, &llargs, ret_bx, self.llblock(fx, cleanup), self.funclet(fx));
bx.apply_attrs_callsite(&fn_abi, invokeret);
if let Some((ret_dest, target)) = destination {
let mut ret_bx = fx.build_block(target);
fx.set_debug_loc(&mut ret_bx, self.terminator.source_info);
fx.store_return(&mut ret_bx, ret_dest, &fn_abi.ret, invokeret);
}
} else {
let llret = bx.call(fn_ptr, &llargs, self.funclet(fx));
bx.apply_attrs_callsite(&fn_abi, llret);
if fx.mir[self.bb].is_cleanup {
// Cleanup is always the cold path. Don't inline
// drop glue. Also, when there is a deeply-nested
// struct, there are "symmetry" issues that cause
// exponential inlining - see issue #41696.
bx.do_not_inline(llret);
}
if let Some((ret_dest, target)) = destination {
fx.store_return(bx, ret_dest, &fn_abi.ret, llret);
self.funclet_br(fx, bx, target);
} else {
bx.unreachable();
}
}
}
// Generate sideeffect intrinsic if jumping to any of the targets can form
// a loop.
fn maybe_sideeffect<Bx: BuilderMethods<'a, 'tcx>>(
&self,
mir: mir::ReadOnlyBodyAndCache<'tcx, 'tcx>,
bx: &mut Bx,
targets: &[mir::BasicBlock],
) {
if bx.tcx().sess.opts.debugging_opts.insert_sideeffect {
if targets.iter().any(|&target| {
target <= self.bb
&& target.start_location().is_predecessor_of(self.bb.start_location(), mir)
}) {
bx.sideeffect();
}
}
}
}
/// Codegen implementations for some terminator variants.
impl<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> {
/// Generates code for a `Resume` terminator.
fn codegen_resume_terminator(&mut self, helper: TerminatorCodegenHelper<'tcx>, mut bx: Bx) {
if let Some(funclet) = helper.funclet(self) {
bx.cleanup_ret(funclet, None);
} else {
let slot = self.get_personality_slot(&mut bx);
let lp0 = slot.project_field(&mut bx, 0);
let lp0 = bx.load_operand(lp0).immediate();
let lp1 = slot.project_field(&mut bx, 1);
let lp1 = bx.load_operand(lp1).immediate();
slot.storage_dead(&mut bx);
let mut lp = bx.const_undef(self.landing_pad_type());
lp = bx.insert_value(lp, lp0, 0);
lp = bx.insert_value(lp, lp1, 1);
bx.resume(lp);
}
}
fn codegen_switchint_terminator(
&mut self,
helper: TerminatorCodegenHelper<'tcx>,
mut bx: Bx,
discr: &mir::Operand<'tcx>,
switch_ty: Ty<'tcx>,
values: &Cow<'tcx, [u128]>,
targets: &Vec<mir::BasicBlock>,
) {
let discr = self.codegen_operand(&mut bx, &discr);
if targets.len() == 2 {
// If there are two targets, emit br instead of switch
let lltrue = helper.llblock(self, targets[0]);
let llfalse = helper.llblock(self, targets[1]);
if switch_ty == bx.tcx().types.bool {
helper.maybe_sideeffect(self.mir, &mut bx, targets.as_slice());
// Don't generate trivial icmps when switching on bool
if let [0] = values[..] {
bx.cond_br(discr.immediate(), llfalse, lltrue);
} else {
assert_eq!(&values[..], &[1]);
bx.cond_br(discr.immediate(), lltrue, llfalse);
}
} else {
let switch_llty = bx.immediate_backend_type(bx.layout_of(switch_ty));
let llval = bx.const_uint_big(switch_llty, values[0]);
let cmp = bx.icmp(IntPredicate::IntEQ, discr.immediate(), llval);
helper.maybe_sideeffect(self.mir, &mut bx, targets.as_slice());
bx.cond_br(cmp, lltrue, llfalse);
}
} else {
helper.maybe_sideeffect(self.mir, &mut bx, targets.as_slice());
let (otherwise, targets) = targets.split_last().unwrap();
bx.switch(
discr.immediate(),
helper.llblock(self, *otherwise),
values
.iter()
.zip(targets)
.map(|(&value, target)| (value, helper.llblock(self, *target))),
);
}
}
fn codegen_return_terminator(&mut self, mut bx: Bx) {
// Call `va_end` if this is the definition of a C-variadic function.
if self.fn_abi.c_variadic {
// The `VaList` "spoofed" argument is just after all the real arguments.
let va_list_arg_idx = self.fn_abi.args.len();
match self.locals[mir::Local::new(1 + va_list_arg_idx)] {
LocalRef::Place(va_list) => {
bx.va_end(va_list.llval);
}
_ => bug!("C-variadic function must have a `VaList` place"),
}
}
if self.fn_abi.ret.layout.abi.is_uninhabited() {
// Functions with uninhabited return values are marked `noreturn`,
// so we should make sure that we never actually do.
// We play it safe by using a well-defined `abort`, but we could go for immediate UB
// if that turns out to be helpful.
bx.abort();
// `abort` does not terminate the block, so we still need to generate
// an `unreachable` terminator after it.
bx.unreachable();
return;
}
let llval = match self.fn_abi.ret.mode {
PassMode::Ignore | PassMode::Indirect(..) => {
bx.ret_void();
return;
}
PassMode::Direct(_) | PassMode::Pair(..) => {
let op = self.codegen_consume(&mut bx, mir::Place::return_place().as_ref());
if let Ref(llval, _, align) = op.val {
bx.load(llval, align)
} else {
op.immediate_or_packed_pair(&mut bx)
}
}
PassMode::Cast(cast_ty) => {
let op = match self.locals[mir::RETURN_PLACE] {
LocalRef::Operand(Some(op)) => op,
LocalRef::Operand(None) => bug!("use of return before def"),
LocalRef::Place(cg_place) => OperandRef {
val: Ref(cg_place.llval, None, cg_place.align),
layout: cg_place.layout,
},
LocalRef::UnsizedPlace(_) => bug!("return type must be sized"),
};
let llslot = match op.val {
Immediate(_) | Pair(..) => {
let scratch = PlaceRef::alloca(&mut bx, self.fn_abi.ret.layout);
op.val.store(&mut bx, scratch);
scratch.llval
}
Ref(llval, _, align) => {
assert_eq!(align, op.layout.align.abi, "return place is unaligned!");
llval
}
};
let addr = bx.pointercast(llslot, bx.type_ptr_to(bx.cast_backend_type(&cast_ty)));
bx.load(addr, self.fn_abi.ret.layout.align.abi)
}
};
bx.ret(llval);
}
fn codegen_drop_terminator(
&mut self,
helper: TerminatorCodegenHelper<'tcx>,
mut bx: Bx,
location: mir::Place<'tcx>,
target: mir::BasicBlock,
unwind: Option<mir::BasicBlock>,
) {
let ty = location.ty(*self.mir, bx.tcx()).ty;
let ty = self.monomorphize(&ty);
let drop_fn = Instance::resolve_drop_in_place(bx.tcx(), ty);
if let ty::InstanceDef::DropGlue(_, None) = drop_fn.def {
// we don't actually need to drop anything.
helper.maybe_sideeffect(self.mir, &mut bx, &[target]);
helper.funclet_br(self, &mut bx, target);
return;
}
let place = self.codegen_place(&mut bx, location.as_ref());
let (args1, args2);
let mut args = if let Some(llextra) = place.llextra {
args2 = [place.llval, llextra];
&args2[..]
} else {
args1 = [place.llval];
&args1[..]
};
let (drop_fn, fn_abi) = match ty.kind {
// FIXME(eddyb) perhaps move some of this logic into
// `Instance::resolve_drop_in_place`?
ty::Dynamic(..) => {
let virtual_drop = Instance {
def: ty::InstanceDef::Virtual(drop_fn.def_id(), 0),
substs: drop_fn.substs,
};
let fn_abi = FnAbi::of_instance(&bx, virtual_drop, &[]);
let vtable = args[1];
args = &args[..1];
(meth::DESTRUCTOR.get_fn(&mut bx, vtable, &fn_abi), fn_abi)
}
_ => (bx.get_fn_addr(drop_fn), FnAbi::of_instance(&bx, drop_fn, &[])),
};
helper.maybe_sideeffect(self.mir, &mut bx, &[target]);
helper.do_call(
self,
&mut bx,
fn_abi,
drop_fn,
args,
Some((ReturnDest::Nothing, target)),
unwind,
);
}
fn codegen_assert_terminator(
&mut self,
helper: TerminatorCodegenHelper<'tcx>,
mut bx: Bx,
terminator: &mir::Terminator<'tcx>,
cond: &mir::Operand<'tcx>,
expected: bool,
msg: &mir::AssertMessage<'tcx>,
target: mir::BasicBlock,
cleanup: Option<mir::BasicBlock>,
) {
let span = terminator.source_info.span;
let cond = self.codegen_operand(&mut bx, cond).immediate();
let mut const_cond = bx.const_to_opt_u128(cond, false).map(|c| c == 1);
// This case can currently arise only from functions marked
// with #[rustc_inherit_overflow_checks] and inlined from
// another crate (mostly core::num generic/#[inline] fns),
// while the current crate doesn't use overflow checks.
// NOTE: Unlike binops, negation doesn't have its own
// checked operation, just a comparison with the minimum
// value, so we have to check for the assert message.
if !bx.check_overflow() {
if let AssertKind::OverflowNeg = *msg {
const_cond = Some(expected);
}
}
// Don't codegen the panic block if success if known.
if const_cond == Some(expected) {
helper.maybe_sideeffect(self.mir, &mut bx, &[target]);
helper.funclet_br(self, &mut bx, target);
return;
}
// Pass the condition through llvm.expect for branch hinting.
let cond = bx.expect(cond, expected);
// Create the failure block and the conditional branch to it.
let lltarget = helper.llblock(self, target);
let panic_block = self.new_block("panic");
helper.maybe_sideeffect(self.mir, &mut bx, &[target]);
if expected {
bx.cond_br(cond, lltarget, panic_block.llbb());
} else {
bx.cond_br(cond, panic_block.llbb(), lltarget);
}
// After this point, bx is the block for the call to panic.
bx = panic_block;
self.set_debug_loc(&mut bx, terminator.source_info);
// Get the location information.
let location = self.get_caller_location(&mut bx, span).immediate();
// Put together the arguments to the panic entry point.
let (lang_item, args) = match msg {
AssertKind::BoundsCheck { ref len, ref index } => {
let len = self.codegen_operand(&mut bx, len).immediate();
let index = self.codegen_operand(&mut bx, index).immediate();
// It's `fn panic_bounds_check(index: usize, len: usize)`,
// and `#[track_caller]` adds an implicit third argument.
(lang_items::PanicBoundsCheckFnLangItem, vec![index, len, location])
}
_ => {
let msg_str = Symbol::intern(msg.description());
let msg = bx.const_str(msg_str);
// It's `pub fn panic(expr: &str)`, with the wide reference being passed
// as two arguments, and `#[track_caller]` adds an implicit third argument.
(lang_items::PanicFnLangItem, vec![msg.0, msg.1, location])
}
};
// Obtain the panic entry point.
let def_id = common::langcall(bx.tcx(), Some(span), "", lang_item);
let instance = ty::Instance::mono(bx.tcx(), def_id);
let fn_abi = FnAbi::of_instance(&bx, instance, &[]);
let llfn = bx.get_fn_addr(instance);
// Codegen the actual panic invoke/call.
helper.do_call(self, &mut bx, fn_abi, llfn, &args, None, cleanup);
}
/// Returns `true` if this is indeed a panic intrinsic and codegen is done.
fn codegen_panic_intrinsic(
&mut self,
helper: &TerminatorCodegenHelper<'tcx>,
bx: &mut Bx,
intrinsic: Option<&str>,
instance: Option<Instance<'tcx>>,
span: Span,
destination: &Option<(mir::Place<'tcx>, mir::BasicBlock)>,
cleanup: Option<mir::BasicBlock>,
) -> bool {
// Emit a panic or a no-op for `assert_*` intrinsics.
// These are intrinsics that compile to panics so that we can get a message
// which mentions the offending type, even from a const context.
#[derive(Debug, PartialEq)]
enum AssertIntrinsic {
Inhabited,
ZeroValid,
UninitValid,
};
let panic_intrinsic = intrinsic.and_then(|i| match i {
// FIXME: Move to symbols instead of strings.
"assert_inhabited" => Some(AssertIntrinsic::Inhabited),
"assert_zero_valid" => Some(AssertIntrinsic::ZeroValid),
"assert_uninit_valid" => Some(AssertIntrinsic::UninitValid),
_ => None,
});
if let Some(intrinsic) = panic_intrinsic {
use AssertIntrinsic::*;
let ty = instance.unwrap().substs.type_at(0);
let layout = bx.layout_of(ty);
let do_panic = match intrinsic {
Inhabited => layout.abi.is_uninhabited(),
// We unwrap as the error type is `!`.
ZeroValid => !layout.might_permit_raw_init(bx, /*zero:*/ true).unwrap(),
// We unwrap as the error type is `!`.
UninitValid => !layout.might_permit_raw_init(bx, /*zero:*/ false).unwrap(),
};
if do_panic {
let msg_str = if layout.abi.is_uninhabited() {
// Use this error even for the other intrinsics as it is more precise.
format!("attempted to instantiate uninhabited type `{}`", ty)
} else if intrinsic == ZeroValid {
format!("attempted to zero-initialize type `{}`, which is invalid", ty)
} else {
format!("attempted to leave type `{}` uninitialized, which is invalid", ty)
};
let msg = bx.const_str(Symbol::intern(&msg_str));
let location = self.get_caller_location(bx, span).immediate();
// Obtain the panic entry point.
// FIXME: dedup this with `codegen_assert_terminator` above.
let def_id =
common::langcall(bx.tcx(), Some(span), "", lang_items::PanicFnLangItem);
let instance = ty::Instance::mono(bx.tcx(), def_id);
let fn_abi = FnAbi::of_instance(bx, instance, &[]);
let llfn = bx.get_fn_addr(instance);
if let Some((_, target)) = destination.as_ref() {
helper.maybe_sideeffect(self.mir, bx, &[*target]);
}
// Codegen the actual panic invoke/call.
helper.do_call(
self,
bx,
fn_abi,
llfn,
&[msg.0, msg.1, location],
destination.as_ref().map(|(_, bb)| (ReturnDest::Nothing, *bb)),
cleanup,
);
} else {
// a NOP
let target = destination.as_ref().unwrap().1;
helper.maybe_sideeffect(self.mir, bx, &[target]);
helper.funclet_br(self, bx, target)
}
true
} else {
false
}
}
fn codegen_call_terminator(
&mut self,
helper: TerminatorCodegenHelper<'tcx>,
mut bx: Bx,
terminator: &mir::Terminator<'tcx>,
func: &mir::Operand<'tcx>,
args: &Vec<mir::Operand<'tcx>>,
destination: &Option<(mir::Place<'tcx>, mir::BasicBlock)>,
cleanup: Option<mir::BasicBlock>,
) {
let span = terminator.source_info.span;
// Create the callee. This is a fn ptr or zero-sized and hence a kind of scalar.
let callee = self.codegen_operand(&mut bx, func);
let (instance, mut llfn) = match callee.layout.ty.kind {
ty::FnDef(def_id, substs) => (
Some(
ty::Instance::resolve(bx.tcx(), ty::ParamEnv::reveal_all(), def_id, substs)
.unwrap(),
),
None,
),
ty::FnPtr(_) => (None, Some(callee.immediate())),
_ => bug!("{} is not callable", callee.layout.ty),
};
let def = instance.map(|i| i.def);
if let Some(ty::InstanceDef::DropGlue(_, None)) = def {
// Empty drop glue; a no-op.
let &(_, target) = destination.as_ref().unwrap();
helper.maybe_sideeffect(self.mir, &mut bx, &[target]);
helper.funclet_br(self, &mut bx, target);
return;
}
// FIXME(eddyb) avoid computing this if possible, when `instance` is
// available - right now `sig` is only needed for getting the `abi`
// and figuring out how many extra args were passed to a C-variadic `fn`.
let sig = callee.layout.ty.fn_sig(bx.tcx());
let abi = sig.abi();
// Handle intrinsics old codegen wants Expr's for, ourselves.
let intrinsic = match def {
Some(ty::InstanceDef::Intrinsic(def_id)) => Some(bx.tcx().item_name(def_id).as_str()),
_ => None,
};
let intrinsic = intrinsic.as_ref().map(|s| &s[..]);
let extra_args = &args[sig.inputs().skip_binder().len()..];
let extra_args = extra_args
.iter()
.map(|op_arg| {
let op_ty = op_arg.ty(*self.mir, bx.tcx());
self.monomorphize(&op_ty)
})
.collect::<Vec<_>>();
let fn_abi = match instance {
Some(instance) => FnAbi::of_instance(&bx, instance, &extra_args),
None => FnAbi::of_fn_ptr(&bx, sig, &extra_args),
};
if intrinsic == Some("transmute") {
if let Some(destination_ref) = destination.as_ref() {
let &(dest, target) = destination_ref;
self.codegen_transmute(&mut bx, &args[0], dest);
helper.maybe_sideeffect(self.mir, &mut bx, &[target]);
helper.funclet_br(self, &mut bx, target);
} else {
// If we are trying to transmute to an uninhabited type,
// it is likely there is no allotted destination. In fact,
// transmuting to an uninhabited type is UB, which means
// we can do what we like. Here, we declare that transmuting
// into an uninhabited type is impossible, so anything following
// it must be unreachable.
assert_eq!(fn_abi.ret.layout.abi, abi::Abi::Uninhabited);
bx.unreachable();
}
return;
}
// For normal codegen, this Miri-specific intrinsic should never occur.
if intrinsic == Some("miri_start_panic") {
bug!("`miri_start_panic` should never end up in compiled code");
}
if self.codegen_panic_intrinsic(
&helper,
&mut bx,
intrinsic,
instance,
span,
destination,
cleanup,
) {
return;
}
// The arguments we'll be passing. Plus one to account for outptr, if used.
let arg_count = fn_abi.args.len() + fn_abi.ret.is_indirect() as usize;
let mut llargs = Vec::with_capacity(arg_count);
// Prepare the return value destination
let ret_dest = if let Some((dest, _)) = *destination {
let is_intrinsic = intrinsic.is_some();
self.make_return_dest(&mut bx, dest, &fn_abi.ret, &mut llargs, is_intrinsic)
} else {
ReturnDest::Nothing
};
if intrinsic == Some("caller_location") {
if let Some((_, target)) = destination.as_ref() {
let location = self.get_caller_location(&mut bx, span);
if let ReturnDest::IndirectOperand(tmp, _) = ret_dest {
location.val.store(&mut bx, tmp);
}
self.store_return(&mut bx, ret_dest, &fn_abi.ret, location.immediate());
helper.maybe_sideeffect(self.mir, &mut bx, &[*target]);
helper.funclet_br(self, &mut bx, *target);
}
return;
}
if intrinsic.is_some() && intrinsic != Some("drop_in_place") {
let dest = match ret_dest {
_ if fn_abi.ret.is_indirect() => llargs[0],
ReturnDest::Nothing => {
bx.const_undef(bx.type_ptr_to(bx.arg_memory_ty(&fn_abi.ret)))
}
ReturnDest::IndirectOperand(dst, _) | ReturnDest::Store(dst) => dst.llval,
ReturnDest::DirectOperand(_) => {
bug!("Cannot use direct operand with an intrinsic call")
}
};
let args: Vec<_> = args
.iter()
.enumerate()
.map(|(i, arg)| {
// The indices passed to simd_shuffle* in the
// third argument must be constant. This is
// checked by const-qualification, which also
// promotes any complex rvalues to constants.
if i == 2 && intrinsic.unwrap().starts_with("simd_shuffle") {
if let mir::Operand::Constant(constant) = arg {
let c = self.eval_mir_constant(constant);
let (llval, ty) = self.simd_shuffle_indices(
&bx,
constant.span,
constant.literal.ty,
c,
);
return OperandRef { val: Immediate(llval), layout: bx.layout_of(ty) };
} else {
span_bug!(span, "shuffle indices must be constant");
}
}
self.codegen_operand(&mut bx, arg)
})
.collect();
bx.codegen_intrinsic_call(
*instance.as_ref().unwrap(),
&fn_abi,
&args,
dest,
terminator.source_info.span,
);
if let ReturnDest::IndirectOperand(dst, _) = ret_dest {
self.store_return(&mut bx, ret_dest, &fn_abi.ret, dst.llval);
}
if let Some((_, target)) = *destination {
helper.maybe_sideeffect(self.mir, &mut bx, &[target]);
helper.funclet_br(self, &mut bx, target);
} else {
bx.unreachable();
}
return;
}
// Split the rust-call tupled arguments off.
let (first_args, untuple) = if abi == Abi::RustCall && !args.is_empty() {
let (tup, args) = args.split_last().unwrap();
(args, Some(tup))
} else {
(&args[..], None)
};
'make_args: for (i, arg) in first_args.iter().enumerate() {
let mut op = self.codegen_operand(&mut bx, arg);
if let (0, Some(ty::InstanceDef::Virtual(_, idx))) = (i, def) {
if let Pair(..) = op.val {
// In the case of Rc<Self>, we need to explicitly pass a
// *mut RcBox<Self> with a Scalar (not ScalarPair) ABI. This is a hack
// that is understood elsewhere in the compiler as a method on
// `dyn Trait`.
// To get a `*mut RcBox<Self>`, we just keep unwrapping newtypes until
// we get a value of a built-in pointer type
'descend_newtypes: while !op.layout.ty.is_unsafe_ptr()
&& !op.layout.ty.is_region_ptr()
{
for i in 0..op.layout.fields.count() {
let field = op.extract_field(&mut bx, i);
if !field.layout.is_zst() {
// we found the one non-zero-sized field that is allowed
// now find *its* non-zero-sized field, or stop if it's a
// pointer
op = field;
continue 'descend_newtypes;
}
}
span_bug!(span, "receiver has no non-zero-sized fields {:?}", op);
}
// now that we have `*dyn Trait` or `&dyn Trait`, split it up into its
// data pointer and vtable. Look up the method in the vtable, and pass
// the data pointer as the first argument
match op.val {
Pair(data_ptr, meta) => {
llfn = Some(
meth::VirtualIndex::from_index(idx).get_fn(&mut bx, meta, &fn_abi),
);
llargs.push(data_ptr);
continue 'make_args;
}
other => bug!("expected a Pair, got {:?}", other),
}
} else if let Ref(data_ptr, Some(meta), _) = op.val {
// by-value dynamic dispatch
llfn = Some(meth::VirtualIndex::from_index(idx).get_fn(&mut bx, meta, &fn_abi));
llargs.push(data_ptr);
continue;
} else {
span_bug!(span, "can't codegen a virtual call on {:?}", op);
}
}
// The callee needs to own the argument memory if we pass it
// by-ref, so make a local copy of non-immediate constants.
match (arg, op.val) {
(&mir::Operand::Copy(_), Ref(_, None, _))
| (&mir::Operand::Constant(_), Ref(_, None, _)) => {
let tmp = PlaceRef::alloca(&mut bx, op.layout);
op.val.store(&mut bx, tmp);
op.val = Ref(tmp.llval, None, tmp.align);
}
_ => {}
}
self.codegen_argument(&mut bx, op, &mut llargs, &fn_abi.args[i]);
}
if let Some(tup) = untuple {
self.codegen_arguments_untupled(
&mut bx,
tup,
&mut llargs,
&fn_abi.args[first_args.len()..],
)
}
let needs_location =
instance.map_or(false, |i| i.def.requires_caller_location(self.cx.tcx()));
if needs_location {
assert_eq!(
fn_abi.args.len(),
args.len() + 1,
"#[track_caller] fn's must have 1 more argument in their ABI than in their MIR",
);
let location = self.get_caller_location(&mut bx, span);
let last_arg = fn_abi.args.last().unwrap();
self.codegen_argument(&mut bx, location, &mut llargs, last_arg);
}
let fn_ptr = match (llfn, instance) {
(Some(llfn), _) => llfn,
(None, Some(instance)) => bx.get_fn_addr(instance),
_ => span_bug!(span, "no llfn for call"),
};
if let Some((_, target)) = destination.as_ref() {
helper.maybe_sideeffect(self.mir, &mut bx, &[*target]);
}
helper.do_call(
self,
&mut bx,
fn_abi,
fn_ptr,
&llargs,
destination.as_ref().map(|&(_, target)| (ret_dest, target)),
cleanup,
);
}
}
impl<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> {
pub fn codegen_block(&mut self, bb: mir::BasicBlock) {
let mut bx = self.build_block(bb);
let mir = self.mir;
let data = &mir[bb];
debug!("codegen_block({:?}={:?})", bb, data);
for statement in &data.statements {
bx = self.codegen_statement(bx, statement);
}
self.codegen_terminator(bx, bb, data.terminator());
}
fn codegen_terminator(
&mut self,
mut bx: Bx,
bb: mir::BasicBlock,
terminator: &'tcx mir::Terminator<'tcx>,
) {
debug!("codegen_terminator: {:?}", terminator);
// Create the cleanup bundle, if needed.
let funclet_bb = self.cleanup_kinds[bb].funclet_bb(bb);
let helper = TerminatorCodegenHelper { bb, terminator, funclet_bb };
self.set_debug_loc(&mut bx, terminator.source_info);
match terminator.kind {
mir::TerminatorKind::Resume => self.codegen_resume_terminator(helper, bx),
mir::TerminatorKind::Abort => {
bx.abort();
// `abort` does not terminate the block, so we still need to generate
// an `unreachable` terminator after it.
bx.unreachable();
}
mir::TerminatorKind::Goto { target } => {
helper.maybe_sideeffect(self.mir, &mut bx, &[target]);
helper.funclet_br(self, &mut bx, target);
}
mir::TerminatorKind::SwitchInt { ref discr, switch_ty, ref values, ref targets } => {
self.codegen_switchint_terminator(helper, bx, discr, switch_ty, values, targets);
}
mir::TerminatorKind::Return => {
self.codegen_return_terminator(bx);
}
mir::TerminatorKind::Unreachable => {
bx.unreachable();
}
mir::TerminatorKind::Drop { location, target, unwind } => {
self.codegen_drop_terminator(helper, bx, location, target, unwind);
}
mir::TerminatorKind::Assert { ref cond, expected, ref msg, target, cleanup } => {
self.codegen_assert_terminator(
helper, bx, terminator, cond, expected, msg, target, cleanup,
);
}
mir::TerminatorKind::DropAndReplace { .. } => {
bug!("undesugared DropAndReplace in codegen: {:?}", terminator);
}
mir::TerminatorKind::Call {
ref func,
ref args,
ref destination,
cleanup,
from_hir_call: _,
} => {
self.codegen_call_terminator(
helper,
bx,
terminator,
func,
args,
destination,
cleanup,
);
}
mir::TerminatorKind::GeneratorDrop | mir::TerminatorKind::Yield { .. } => {
bug!("generator ops in codegen")
}
mir::TerminatorKind::FalseEdges { .. } | mir::TerminatorKind::FalseUnwind { .. } => {
bug!("borrowck false edges in codegen")
}
}
}
fn codegen_argument(
&mut self,
bx: &mut Bx,
op: OperandRef<'tcx, Bx::Value>,
llargs: &mut Vec<Bx::Value>,
arg: &ArgAbi<'tcx, Ty<'tcx>>,
) {
// Fill padding with undef value, where applicable.
if let Some(ty) = arg.pad {
llargs.push(bx.const_undef(bx.reg_backend_type(&ty)))
}
if arg.is_ignore() {
return;
}
if let PassMode::Pair(..) = arg.mode {
match op.val {
Pair(a, b) => {
llargs.push(a);
llargs.push(b);
return;
}
_ => bug!("codegen_argument: {:?} invalid for pair argument", op),
}
} else if arg.is_unsized_indirect() {
match op.val {
Ref(a, Some(b), _) => {
llargs.push(a);
llargs.push(b);
return;
}
_ => bug!("codegen_argument: {:?} invalid for unsized indirect argument", op),
}
}
// Force by-ref if we have to load through a cast pointer.
let (mut llval, align, by_ref) = match op.val {
Immediate(_) | Pair(..) => match arg.mode {
PassMode::Indirect(..) | PassMode::Cast(_) => {
let scratch = PlaceRef::alloca(bx, arg.layout);
op.val.store(bx, scratch);
(scratch.llval, scratch.align, true)
}
_ => (op.immediate_or_packed_pair(bx), arg.layout.align.abi, false),
},
Ref(llval, _, align) => {
if arg.is_indirect() && align < arg.layout.align.abi {
// `foo(packed.large_field)`. We can't pass the (unaligned) field directly. I
// think that ATM (Rust 1.16) we only pass temporaries, but we shouldn't
// have scary latent bugs around.
let scratch = PlaceRef::alloca(bx, arg.layout);
base::memcpy_ty(
bx,
scratch.llval,
scratch.align,
llval,
align,
op.layout,
MemFlags::empty(),
);
(scratch.llval, scratch.align, true)
} else {
(llval, align, true)
}
}
};
if by_ref && !arg.is_indirect() {
// Have to load the argument, maybe while casting it.
if let PassMode::Cast(ty) = arg.mode {
let addr = bx.pointercast(llval, bx.type_ptr_to(bx.cast_backend_type(&ty)));
llval = bx.load(addr, align.min(arg.layout.align.abi));
} else {
// We can't use `PlaceRef::load` here because the argument
// may have a type we don't treat as immediate, but the ABI
// used for this call is passing it by-value. In that case,
// the load would just produce `OperandValue::Ref` instead
// of the `OperandValue::Immediate` we need for the call.
llval = bx.load(llval, align);
if let abi::Abi::Scalar(ref scalar) = arg.layout.abi {
if scalar.is_bool() {
bx.range_metadata(llval, 0..2);