-
Notifications
You must be signed in to change notification settings - Fork 12.9k
/
intrinsic.rs
2041 lines (1902 loc) · 78.9 KB
/
intrinsic.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
use crate::abi::{Abi, FnAbi, FnAbiLlvmExt, LlvmType, PassMode};
use crate::builder::Builder;
use crate::context::CodegenCx;
use crate::llvm;
use crate::type_::Type;
use crate::type_of::LayoutLlvmExt;
use crate::va_arg::emit_va_arg;
use crate::value::Value;
use rustc_codegen_ssa::base::{compare_simd_types, wants_msvc_seh};
use rustc_codegen_ssa::common::span_invalid_monomorphization_error;
use rustc_codegen_ssa::common::{IntPredicate, TypeKind};
use rustc_codegen_ssa::mir::operand::OperandRef;
use rustc_codegen_ssa::mir::place::PlaceRef;
use rustc_codegen_ssa::traits::*;
use rustc_hir as hir;
use rustc_middle::ty::layout::{FnAbiOf, HasTyCtxt, LayoutOf};
use rustc_middle::ty::{self, Ty};
use rustc_middle::{bug, span_bug};
use rustc_span::{sym, symbol::kw, Span, Symbol};
use rustc_target::abi::{self, Align, HasDataLayout, Primitive};
use rustc_target::spec::{HasTargetSpec, PanicStrategy};
use std::cmp::Ordering;
use std::iter;
fn get_simple_intrinsic<'ll>(
cx: &CodegenCx<'ll, '_>,
name: Symbol,
) -> Option<(&'ll Type, &'ll Value)> {
let llvm_name = match name {
sym::sqrtf32 => "llvm.sqrt.f32",
sym::sqrtf64 => "llvm.sqrt.f64",
sym::powif32 => "llvm.powi.f32",
sym::powif64 => "llvm.powi.f64",
sym::sinf32 => "llvm.sin.f32",
sym::sinf64 => "llvm.sin.f64",
sym::cosf32 => "llvm.cos.f32",
sym::cosf64 => "llvm.cos.f64",
sym::powf32 => "llvm.pow.f32",
sym::powf64 => "llvm.pow.f64",
sym::expf32 => "llvm.exp.f32",
sym::expf64 => "llvm.exp.f64",
sym::exp2f32 => "llvm.exp2.f32",
sym::exp2f64 => "llvm.exp2.f64",
sym::logf32 => "llvm.log.f32",
sym::logf64 => "llvm.log.f64",
sym::log10f32 => "llvm.log10.f32",
sym::log10f64 => "llvm.log10.f64",
sym::log2f32 => "llvm.log2.f32",
sym::log2f64 => "llvm.log2.f64",
sym::fmaf32 => "llvm.fma.f32",
sym::fmaf64 => "llvm.fma.f64",
sym::fabsf32 => "llvm.fabs.f32",
sym::fabsf64 => "llvm.fabs.f64",
sym::minnumf32 => "llvm.minnum.f32",
sym::minnumf64 => "llvm.minnum.f64",
sym::maxnumf32 => "llvm.maxnum.f32",
sym::maxnumf64 => "llvm.maxnum.f64",
sym::copysignf32 => "llvm.copysign.f32",
sym::copysignf64 => "llvm.copysign.f64",
sym::floorf32 => "llvm.floor.f32",
sym::floorf64 => "llvm.floor.f64",
sym::ceilf32 => "llvm.ceil.f32",
sym::ceilf64 => "llvm.ceil.f64",
sym::truncf32 => "llvm.trunc.f32",
sym::truncf64 => "llvm.trunc.f64",
sym::rintf32 => "llvm.rint.f32",
sym::rintf64 => "llvm.rint.f64",
sym::nearbyintf32 => "llvm.nearbyint.f32",
sym::nearbyintf64 => "llvm.nearbyint.f64",
sym::roundf32 => "llvm.round.f32",
sym::roundf64 => "llvm.round.f64",
sym::ptr_mask => "llvm.ptrmask",
_ => return None,
};
Some(cx.get_intrinsic(llvm_name))
}
impl<'ll, 'tcx> IntrinsicCallMethods<'tcx> for Builder<'_, 'll, 'tcx> {
fn codegen_intrinsic_call(
&mut self,
instance: ty::Instance<'tcx>,
fn_abi: &FnAbi<'tcx, Ty<'tcx>>,
args: &[OperandRef<'tcx, &'ll Value>],
llresult: &'ll Value,
span: Span,
) {
let tcx = self.tcx;
let callee_ty = instance.ty(tcx, ty::ParamEnv::reveal_all());
let ty::FnDef(def_id, substs) = *callee_ty.kind() else {
bug!("expected fn item type, found {}", callee_ty);
};
let sig = callee_ty.fn_sig(tcx);
let sig = tcx.normalize_erasing_late_bound_regions(ty::ParamEnv::reveal_all(), sig);
let arg_tys = sig.inputs();
let ret_ty = sig.output();
let name = tcx.item_name(def_id);
let llret_ty = self.layout_of(ret_ty).llvm_type(self);
let result = PlaceRef::new_sized(llresult, fn_abi.ret.layout);
let simple = get_simple_intrinsic(self, name);
let llval = match name {
_ if simple.is_some() => {
let (simple_ty, simple_fn) = simple.unwrap();
self.call(
simple_ty,
None,
simple_fn,
&args.iter().map(|arg| arg.immediate()).collect::<Vec<_>>(),
None,
)
}
sym::likely => {
self.call_intrinsic("llvm.expect.i1", &[args[0].immediate(), self.const_bool(true)])
}
sym::unlikely => self
.call_intrinsic("llvm.expect.i1", &[args[0].immediate(), self.const_bool(false)]),
kw::Try => {
try_intrinsic(
self,
args[0].immediate(),
args[1].immediate(),
args[2].immediate(),
llresult,
);
return;
}
sym::breakpoint => self.call_intrinsic("llvm.debugtrap", &[]),
sym::va_copy => {
self.call_intrinsic("llvm.va_copy", &[args[0].immediate(), args[1].immediate()])
}
sym::va_arg => {
match fn_abi.ret.layout.abi {
abi::Abi::Scalar(scalar) => {
match scalar.primitive() {
Primitive::Int(..) => {
if self.cx().size_of(ret_ty).bytes() < 4 {
// `va_arg` should not be called on an integer type
// less than 4 bytes in length. If it is, promote
// the integer to an `i32` and truncate the result
// back to the smaller type.
let promoted_result = emit_va_arg(self, args[0], tcx.types.i32);
self.trunc(promoted_result, llret_ty)
} else {
emit_va_arg(self, args[0], ret_ty)
}
}
Primitive::F64 | Primitive::Pointer => {
emit_va_arg(self, args[0], ret_ty)
}
// `va_arg` should never be used with the return type f32.
Primitive::F32 => bug!("the va_arg intrinsic does not work with `f32`"),
}
}
_ => bug!("the va_arg intrinsic does not work with non-scalar types"),
}
}
sym::volatile_load | sym::unaligned_volatile_load => {
let tp_ty = substs.type_at(0);
let ptr = args[0].immediate();
let load = if let PassMode::Cast(ty, _) = &fn_abi.ret.mode {
let llty = ty.llvm_type(self);
let ptr = self.pointercast(ptr, self.type_ptr_to(llty));
self.volatile_load(llty, ptr)
} else {
self.volatile_load(self.layout_of(tp_ty).llvm_type(self), ptr)
};
let align = if name == sym::unaligned_volatile_load {
1
} else {
self.align_of(tp_ty).bytes() as u32
};
unsafe {
llvm::LLVMSetAlignment(load, align);
}
self.to_immediate(load, self.layout_of(tp_ty))
}
sym::volatile_store => {
let dst = args[0].deref(self.cx());
args[1].val.volatile_store(self, dst);
return;
}
sym::unaligned_volatile_store => {
let dst = args[0].deref(self.cx());
args[1].val.unaligned_volatile_store(self, dst);
return;
}
sym::prefetch_read_data
| sym::prefetch_write_data
| sym::prefetch_read_instruction
| sym::prefetch_write_instruction => {
let (rw, cache_type) = match name {
sym::prefetch_read_data => (0, 1),
sym::prefetch_write_data => (1, 1),
sym::prefetch_read_instruction => (0, 0),
sym::prefetch_write_instruction => (1, 0),
_ => bug!(),
};
self.call_intrinsic(
"llvm.prefetch",
&[
args[0].immediate(),
self.const_i32(rw),
args[1].immediate(),
self.const_i32(cache_type),
],
)
}
sym::ctlz
| sym::ctlz_nonzero
| sym::cttz
| sym::cttz_nonzero
| sym::ctpop
| sym::bswap
| sym::bitreverse
| sym::rotate_left
| sym::rotate_right
| sym::saturating_add
| sym::saturating_sub => {
let ty = arg_tys[0];
match int_type_width_signed(ty, self) {
Some((width, signed)) => match name {
sym::ctlz | sym::cttz => {
let y = self.const_bool(false);
self.call_intrinsic(
&format!("llvm.{}.i{}", name, width),
&[args[0].immediate(), y],
)
}
sym::ctlz_nonzero => {
let y = self.const_bool(true);
let llvm_name = &format!("llvm.ctlz.i{}", width);
self.call_intrinsic(llvm_name, &[args[0].immediate(), y])
}
sym::cttz_nonzero => {
let y = self.const_bool(true);
let llvm_name = &format!("llvm.cttz.i{}", width);
self.call_intrinsic(llvm_name, &[args[0].immediate(), y])
}
sym::ctpop => self.call_intrinsic(
&format!("llvm.ctpop.i{}", width),
&[args[0].immediate()],
),
sym::bswap => {
if width == 8 {
args[0].immediate() // byte swap a u8/i8 is just a no-op
} else {
self.call_intrinsic(
&format!("llvm.bswap.i{}", width),
&[args[0].immediate()],
)
}
}
sym::bitreverse => self.call_intrinsic(
&format!("llvm.bitreverse.i{}", width),
&[args[0].immediate()],
),
sym::rotate_left | sym::rotate_right => {
let is_left = name == sym::rotate_left;
let val = args[0].immediate();
let raw_shift = args[1].immediate();
// rotate = funnel shift with first two args the same
let llvm_name =
&format!("llvm.fsh{}.i{}", if is_left { 'l' } else { 'r' }, width);
self.call_intrinsic(llvm_name, &[val, val, raw_shift])
}
sym::saturating_add | sym::saturating_sub => {
let is_add = name == sym::saturating_add;
let lhs = args[0].immediate();
let rhs = args[1].immediate();
let llvm_name = &format!(
"llvm.{}{}.sat.i{}",
if signed { 's' } else { 'u' },
if is_add { "add" } else { "sub" },
width
);
self.call_intrinsic(llvm_name, &[lhs, rhs])
}
_ => bug!(),
},
None => {
span_invalid_monomorphization_error(
tcx.sess,
span,
&format!(
"invalid monomorphization of `{}` intrinsic: \
expected basic integer type, found `{}`",
name, ty
),
);
return;
}
}
}
sym::raw_eq => {
use abi::Abi::*;
let tp_ty = substs.type_at(0);
let layout = self.layout_of(tp_ty).layout;
let use_integer_compare = match layout.abi() {
Scalar(_) | ScalarPair(_, _) => true,
Uninhabited | Vector { .. } => false,
Aggregate { .. } => {
// For rusty ABIs, small aggregates are actually passed
// as `RegKind::Integer` (see `FnAbi::adjust_for_abi`),
// so we re-use that same threshold here.
layout.size() <= self.data_layout().pointer_size * 2
}
};
let a = args[0].immediate();
let b = args[1].immediate();
if layout.size().bytes() == 0 {
self.const_bool(true)
} else if use_integer_compare {
let integer_ty = self.type_ix(layout.size().bits());
let ptr_ty = self.type_ptr_to(integer_ty);
let a_ptr = self.bitcast(a, ptr_ty);
let a_val = self.load(integer_ty, a_ptr, layout.align().abi);
let b_ptr = self.bitcast(b, ptr_ty);
let b_val = self.load(integer_ty, b_ptr, layout.align().abi);
self.icmp(IntPredicate::IntEQ, a_val, b_val)
} else {
let i8p_ty = self.type_i8p();
let a_ptr = self.bitcast(a, i8p_ty);
let b_ptr = self.bitcast(b, i8p_ty);
let n = self.const_usize(layout.size().bytes());
let cmp = self.call_intrinsic("memcmp", &[a_ptr, b_ptr, n]);
match self.cx.sess().target.arch.as_ref() {
"avr" | "msp430" => self.icmp(IntPredicate::IntEQ, cmp, self.const_i16(0)),
_ => self.icmp(IntPredicate::IntEQ, cmp, self.const_i32(0)),
}
}
}
sym::black_box => {
args[0].val.store(self, result);
let result_val_span = [result.llval];
// We need to "use" the argument in some way LLVM can't introspect, and on
// targets that support it we can typically leverage inline assembly to do
// this. LLVM's interpretation of inline assembly is that it's, well, a black
// box. This isn't the greatest implementation since it probably deoptimizes
// more than we want, but it's so far good enough.
//
// For zero-sized types, the location pointed to by the result may be
// uninitialized. Do not "use" the result in this case; instead just clobber
// the memory.
let (constraint, inputs): (&str, &[_]) = if result.layout.is_zst() {
("~{memory}", &[])
} else {
("r,~{memory}", &result_val_span)
};
crate::asm::inline_asm_call(
self,
"",
constraint,
inputs,
self.type_void(),
true,
false,
llvm::AsmDialect::Att,
&[span],
false,
None,
)
.unwrap_or_else(|| bug!("failed to generate inline asm call for `black_box`"));
// We have copied the value to `result` already.
return;
}
_ if name.as_str().starts_with("simd_") => {
match generic_simd_intrinsic(self, name, callee_ty, args, ret_ty, llret_ty, span) {
Ok(llval) => llval,
Err(()) => return,
}
}
_ => bug!("unknown intrinsic '{}'", name),
};
if !fn_abi.ret.is_ignore() {
if let PassMode::Cast(ty, _) = &fn_abi.ret.mode {
let ptr_llty = self.type_ptr_to(ty.llvm_type(self));
let ptr = self.pointercast(result.llval, ptr_llty);
self.store(llval, ptr, result.align);
} else {
OperandRef::from_immediate_or_packed_pair(self, llval, result.layout)
.val
.store(self, result);
}
}
}
fn abort(&mut self) {
self.call_intrinsic("llvm.trap", &[]);
}
fn assume(&mut self, val: Self::Value) {
self.call_intrinsic("llvm.assume", &[val]);
}
fn expect(&mut self, cond: Self::Value, expected: bool) -> Self::Value {
self.call_intrinsic("llvm.expect.i1", &[cond, self.const_bool(expected)])
}
fn type_test(&mut self, pointer: Self::Value, typeid: Self::Value) -> Self::Value {
// Test the called operand using llvm.type.test intrinsic. The LowerTypeTests link-time
// optimization pass replaces calls to this intrinsic with code to test type membership.
let i8p_ty = self.type_i8p();
let bitcast = self.bitcast(pointer, i8p_ty);
self.call_intrinsic("llvm.type.test", &[bitcast, typeid])
}
fn type_checked_load(
&mut self,
llvtable: &'ll Value,
vtable_byte_offset: u64,
typeid: &'ll Value,
) -> Self::Value {
let vtable_byte_offset = self.const_i32(vtable_byte_offset as i32);
self.call_intrinsic("llvm.type.checked.load", &[llvtable, vtable_byte_offset, typeid])
}
fn va_start(&mut self, va_list: &'ll Value) -> &'ll Value {
self.call_intrinsic("llvm.va_start", &[va_list])
}
fn va_end(&mut self, va_list: &'ll Value) -> &'ll Value {
self.call_intrinsic("llvm.va_end", &[va_list])
}
}
fn try_intrinsic<'ll>(
bx: &mut Builder<'_, 'll, '_>,
try_func: &'ll Value,
data: &'ll Value,
catch_func: &'ll Value,
dest: &'ll Value,
) {
if bx.sess().panic_strategy() == PanicStrategy::Abort {
let try_func_ty = bx.type_func(&[bx.type_i8p()], bx.type_void());
bx.call(try_func_ty, None, try_func, &[data], None);
// Return 0 unconditionally from the intrinsic call;
// we can never unwind.
let ret_align = bx.tcx().data_layout.i32_align.abi;
bx.store(bx.const_i32(0), dest, ret_align);
} else if wants_msvc_seh(bx.sess()) {
codegen_msvc_try(bx, try_func, data, catch_func, dest);
} else if bx.sess().target.os == "emscripten" {
codegen_emcc_try(bx, try_func, data, catch_func, dest);
} else {
codegen_gnu_try(bx, try_func, data, catch_func, dest);
}
}
// MSVC's definition of the `rust_try` function.
//
// This implementation uses the new exception handling instructions in LLVM
// which have support in LLVM for SEH on MSVC targets. Although these
// instructions are meant to work for all targets, as of the time of this
// writing, however, LLVM does not recommend the usage of these new instructions
// as the old ones are still more optimized.
fn codegen_msvc_try<'ll>(
bx: &mut Builder<'_, 'll, '_>,
try_func: &'ll Value,
data: &'ll Value,
catch_func: &'ll Value,
dest: &'ll Value,
) {
let (llty, llfn) = get_rust_try_fn(bx, &mut |mut bx| {
bx.set_personality_fn(bx.eh_personality());
let normal = bx.append_sibling_block("normal");
let catchswitch = bx.append_sibling_block("catchswitch");
let catchpad_rust = bx.append_sibling_block("catchpad_rust");
let catchpad_foreign = bx.append_sibling_block("catchpad_foreign");
let caught = bx.append_sibling_block("caught");
let try_func = llvm::get_param(bx.llfn(), 0);
let data = llvm::get_param(bx.llfn(), 1);
let catch_func = llvm::get_param(bx.llfn(), 2);
// We're generating an IR snippet that looks like:
//
// declare i32 @rust_try(%try_func, %data, %catch_func) {
// %slot = alloca i8*
// invoke %try_func(%data) to label %normal unwind label %catchswitch
//
// normal:
// ret i32 0
//
// catchswitch:
// %cs = catchswitch within none [%catchpad_rust, %catchpad_foreign] unwind to caller
//
// catchpad_rust:
// %tok = catchpad within %cs [%type_descriptor, 8, %slot]
// %ptr = load %slot
// call %catch_func(%data, %ptr)
// catchret from %tok to label %caught
//
// catchpad_foreign:
// %tok = catchpad within %cs [null, 64, null]
// call %catch_func(%data, null)
// catchret from %tok to label %caught
//
// caught:
// ret i32 1
// }
//
// This structure follows the basic usage of throw/try/catch in LLVM.
// For example, compile this C++ snippet to see what LLVM generates:
//
// struct rust_panic {
// rust_panic(const rust_panic&);
// ~rust_panic();
//
// void* x[2];
// };
//
// int __rust_try(
// void (*try_func)(void*),
// void *data,
// void (*catch_func)(void*, void*) noexcept
// ) {
// try {
// try_func(data);
// return 0;
// } catch(rust_panic& a) {
// catch_func(data, &a);
// return 1;
// } catch(...) {
// catch_func(data, NULL);
// return 1;
// }
// }
//
// More information can be found in libstd's seh.rs implementation.
let ptr_align = bx.tcx().data_layout.pointer_align.abi;
let slot = bx.alloca(bx.type_i8p(), ptr_align);
let try_func_ty = bx.type_func(&[bx.type_i8p()], bx.type_void());
bx.invoke(try_func_ty, None, try_func, &[data], normal, catchswitch, None);
bx.switch_to_block(normal);
bx.ret(bx.const_i32(0));
bx.switch_to_block(catchswitch);
let cs = bx.catch_switch(None, None, &[catchpad_rust, catchpad_foreign]);
// We can't use the TypeDescriptor defined in libpanic_unwind because it
// might be in another DLL and the SEH encoding only supports specifying
// a TypeDescriptor from the current module.
//
// However this isn't an issue since the MSVC runtime uses string
// comparison on the type name to match TypeDescriptors rather than
// pointer equality.
//
// So instead we generate a new TypeDescriptor in each module that uses
// `try` and let the linker merge duplicate definitions in the same
// module.
//
// When modifying, make sure that the type_name string exactly matches
// the one used in src/libpanic_unwind/seh.rs.
let type_info_vtable = bx.declare_global("??_7type_info@@6B@", bx.type_i8p());
let type_name = bx.const_bytes(b"rust_panic\0");
let type_info =
bx.const_struct(&[type_info_vtable, bx.const_null(bx.type_i8p()), type_name], false);
let tydesc = bx.declare_global("__rust_panic_type_info", bx.val_ty(type_info));
unsafe {
llvm::LLVMRustSetLinkage(tydesc, llvm::Linkage::LinkOnceODRLinkage);
llvm::SetUniqueComdat(bx.llmod, tydesc);
llvm::LLVMSetInitializer(tydesc, type_info);
}
// The flag value of 8 indicates that we are catching the exception by
// reference instead of by value. We can't use catch by value because
// that requires copying the exception object, which we don't support
// since our exception object effectively contains a Box.
//
// Source: MicrosoftCXXABI::getAddrOfCXXCatchHandlerType in clang
bx.switch_to_block(catchpad_rust);
let flags = bx.const_i32(8);
let funclet = bx.catch_pad(cs, &[tydesc, flags, slot]);
let ptr = bx.load(bx.type_i8p(), slot, ptr_align);
let catch_ty = bx.type_func(&[bx.type_i8p(), bx.type_i8p()], bx.type_void());
bx.call(catch_ty, None, catch_func, &[data, ptr], Some(&funclet));
bx.catch_ret(&funclet, caught);
// The flag value of 64 indicates a "catch-all".
bx.switch_to_block(catchpad_foreign);
let flags = bx.const_i32(64);
let null = bx.const_null(bx.type_i8p());
let funclet = bx.catch_pad(cs, &[null, flags, null]);
bx.call(catch_ty, None, catch_func, &[data, null], Some(&funclet));
bx.catch_ret(&funclet, caught);
bx.switch_to_block(caught);
bx.ret(bx.const_i32(1));
});
// Note that no invoke is used here because by definition this function
// can't panic (that's what it's catching).
let ret = bx.call(llty, None, llfn, &[try_func, data, catch_func], None);
let i32_align = bx.tcx().data_layout.i32_align.abi;
bx.store(ret, dest, i32_align);
}
// Definition of the standard `try` function for Rust using the GNU-like model
// of exceptions (e.g., the normal semantics of LLVM's `landingpad` and `invoke`
// instructions).
//
// This codegen is a little surprising because we always call a shim
// function instead of inlining the call to `invoke` manually here. This is done
// because in LLVM we're only allowed to have one personality per function
// definition. The call to the `try` intrinsic is being inlined into the
// function calling it, and that function may already have other personality
// functions in play. By calling a shim we're guaranteed that our shim will have
// the right personality function.
fn codegen_gnu_try<'ll>(
bx: &mut Builder<'_, 'll, '_>,
try_func: &'ll Value,
data: &'ll Value,
catch_func: &'ll Value,
dest: &'ll Value,
) {
let (llty, llfn) = get_rust_try_fn(bx, &mut |mut bx| {
// Codegens the shims described above:
//
// bx:
// invoke %try_func(%data) normal %normal unwind %catch
//
// normal:
// ret 0
//
// catch:
// (%ptr, _) = landingpad
// call %catch_func(%data, %ptr)
// ret 1
let then = bx.append_sibling_block("then");
let catch = bx.append_sibling_block("catch");
let try_func = llvm::get_param(bx.llfn(), 0);
let data = llvm::get_param(bx.llfn(), 1);
let catch_func = llvm::get_param(bx.llfn(), 2);
let try_func_ty = bx.type_func(&[bx.type_i8p()], bx.type_void());
bx.invoke(try_func_ty, None, try_func, &[data], then, catch, None);
bx.switch_to_block(then);
bx.ret(bx.const_i32(0));
// Type indicator for the exception being thrown.
//
// The first value in this tuple is a pointer to the exception object
// being thrown. The second value is a "selector" indicating which of
// the landing pad clauses the exception's type had been matched to.
// rust_try ignores the selector.
bx.switch_to_block(catch);
let lpad_ty = bx.type_struct(&[bx.type_i8p(), bx.type_i32()], false);
let vals = bx.landing_pad(lpad_ty, bx.eh_personality(), 1);
let tydesc = bx.const_null(bx.type_i8p());
bx.add_clause(vals, tydesc);
let ptr = bx.extract_value(vals, 0);
let catch_ty = bx.type_func(&[bx.type_i8p(), bx.type_i8p()], bx.type_void());
bx.call(catch_ty, None, catch_func, &[data, ptr], None);
bx.ret(bx.const_i32(1));
});
// Note that no invoke is used here because by definition this function
// can't panic (that's what it's catching).
let ret = bx.call(llty, None, llfn, &[try_func, data, catch_func], None);
let i32_align = bx.tcx().data_layout.i32_align.abi;
bx.store(ret, dest, i32_align);
}
// Variant of codegen_gnu_try used for emscripten where Rust panics are
// implemented using C++ exceptions. Here we use exceptions of a specific type
// (`struct rust_panic`) to represent Rust panics.
fn codegen_emcc_try<'ll>(
bx: &mut Builder<'_, 'll, '_>,
try_func: &'ll Value,
data: &'ll Value,
catch_func: &'ll Value,
dest: &'ll Value,
) {
let (llty, llfn) = get_rust_try_fn(bx, &mut |mut bx| {
// Codegens the shims described above:
//
// bx:
// invoke %try_func(%data) normal %normal unwind %catch
//
// normal:
// ret 0
//
// catch:
// (%ptr, %selector) = landingpad
// %rust_typeid = @llvm.eh.typeid.for(@_ZTI10rust_panic)
// %is_rust_panic = %selector == %rust_typeid
// %catch_data = alloca { i8*, i8 }
// %catch_data[0] = %ptr
// %catch_data[1] = %is_rust_panic
// call %catch_func(%data, %catch_data)
// ret 1
let then = bx.append_sibling_block("then");
let catch = bx.append_sibling_block("catch");
let try_func = llvm::get_param(bx.llfn(), 0);
let data = llvm::get_param(bx.llfn(), 1);
let catch_func = llvm::get_param(bx.llfn(), 2);
let try_func_ty = bx.type_func(&[bx.type_i8p()], bx.type_void());
bx.invoke(try_func_ty, None, try_func, &[data], then, catch, None);
bx.switch_to_block(then);
bx.ret(bx.const_i32(0));
// Type indicator for the exception being thrown.
//
// The first value in this tuple is a pointer to the exception object
// being thrown. The second value is a "selector" indicating which of
// the landing pad clauses the exception's type had been matched to.
bx.switch_to_block(catch);
let tydesc = bx.eh_catch_typeinfo();
let lpad_ty = bx.type_struct(&[bx.type_i8p(), bx.type_i32()], false);
let vals = bx.landing_pad(lpad_ty, bx.eh_personality(), 2);
bx.add_clause(vals, tydesc);
bx.add_clause(vals, bx.const_null(bx.type_i8p()));
let ptr = bx.extract_value(vals, 0);
let selector = bx.extract_value(vals, 1);
// Check if the typeid we got is the one for a Rust panic.
let rust_typeid = bx.call_intrinsic("llvm.eh.typeid.for", &[tydesc]);
let is_rust_panic = bx.icmp(IntPredicate::IntEQ, selector, rust_typeid);
let is_rust_panic = bx.zext(is_rust_panic, bx.type_bool());
// We need to pass two values to catch_func (ptr and is_rust_panic), so
// create an alloca and pass a pointer to that.
let ptr_align = bx.tcx().data_layout.pointer_align.abi;
let i8_align = bx.tcx().data_layout.i8_align.abi;
let catch_data_type = bx.type_struct(&[bx.type_i8p(), bx.type_bool()], false);
let catch_data = bx.alloca(catch_data_type, ptr_align);
let catch_data_0 =
bx.inbounds_gep(catch_data_type, catch_data, &[bx.const_usize(0), bx.const_usize(0)]);
bx.store(ptr, catch_data_0, ptr_align);
let catch_data_1 =
bx.inbounds_gep(catch_data_type, catch_data, &[bx.const_usize(0), bx.const_usize(1)]);
bx.store(is_rust_panic, catch_data_1, i8_align);
let catch_data = bx.bitcast(catch_data, bx.type_i8p());
let catch_ty = bx.type_func(&[bx.type_i8p(), bx.type_i8p()], bx.type_void());
bx.call(catch_ty, None, catch_func, &[data, catch_data], None);
bx.ret(bx.const_i32(1));
});
// Note that no invoke is used here because by definition this function
// can't panic (that's what it's catching).
let ret = bx.call(llty, None, llfn, &[try_func, data, catch_func], None);
let i32_align = bx.tcx().data_layout.i32_align.abi;
bx.store(ret, dest, i32_align);
}
// Helper function to give a Block to a closure to codegen a shim function.
// This is currently primarily used for the `try` intrinsic functions above.
fn gen_fn<'ll, 'tcx>(
cx: &CodegenCx<'ll, 'tcx>,
name: &str,
rust_fn_sig: ty::PolyFnSig<'tcx>,
codegen: &mut dyn FnMut(Builder<'_, 'll, 'tcx>),
) -> (&'ll Type, &'ll Value) {
let fn_abi = cx.fn_abi_of_fn_ptr(rust_fn_sig, ty::List::empty());
let llty = fn_abi.llvm_type(cx);
let llfn = cx.declare_fn(name, fn_abi);
cx.set_frame_pointer_type(llfn);
cx.apply_target_cpu_attr(llfn);
// FIXME(eddyb) find a nicer way to do this.
unsafe { llvm::LLVMRustSetLinkage(llfn, llvm::Linkage::InternalLinkage) };
let llbb = Builder::append_block(cx, llfn, "entry-block");
let bx = Builder::build(cx, llbb);
codegen(bx);
(llty, llfn)
}
// Helper function used to get a handle to the `__rust_try` function used to
// catch exceptions.
//
// This function is only generated once and is then cached.
fn get_rust_try_fn<'ll, 'tcx>(
cx: &CodegenCx<'ll, 'tcx>,
codegen: &mut dyn FnMut(Builder<'_, 'll, 'tcx>),
) -> (&'ll Type, &'ll Value) {
if let Some(llfn) = cx.rust_try_fn.get() {
return llfn;
}
// Define the type up front for the signature of the rust_try function.
let tcx = cx.tcx;
let i8p = tcx.mk_mut_ptr(tcx.types.i8);
// `unsafe fn(*mut i8) -> ()`
let try_fn_ty = tcx.mk_fn_ptr(ty::Binder::dummy(tcx.mk_fn_sig(
iter::once(i8p),
tcx.mk_unit(),
false,
hir::Unsafety::Unsafe,
Abi::Rust,
)));
// `unsafe fn(*mut i8, *mut i8) -> ()`
let catch_fn_ty = tcx.mk_fn_ptr(ty::Binder::dummy(tcx.mk_fn_sig(
[i8p, i8p].iter().cloned(),
tcx.mk_unit(),
false,
hir::Unsafety::Unsafe,
Abi::Rust,
)));
// `unsafe fn(unsafe fn(*mut i8) -> (), *mut i8, unsafe fn(*mut i8, *mut i8) -> ()) -> i32`
let rust_fn_sig = ty::Binder::dummy(cx.tcx.mk_fn_sig(
[try_fn_ty, i8p, catch_fn_ty].into_iter(),
tcx.types.i32,
false,
hir::Unsafety::Unsafe,
Abi::Rust,
));
let rust_try = gen_fn(cx, "__rust_try", rust_fn_sig, codegen);
cx.rust_try_fn.set(Some(rust_try));
rust_try
}
fn generic_simd_intrinsic<'ll, 'tcx>(
bx: &mut Builder<'_, 'll, 'tcx>,
name: Symbol,
callee_ty: Ty<'tcx>,
args: &[OperandRef<'tcx, &'ll Value>],
ret_ty: Ty<'tcx>,
llret_ty: &'ll Type,
span: Span,
) -> Result<&'ll Value, ()> {
// macros for error handling:
#[allow(unused_macro_rules)]
macro_rules! emit_error {
($msg: tt) => {
emit_error!($msg, )
};
($msg: tt, $($fmt: tt)*) => {
span_invalid_monomorphization_error(
bx.sess(), span,
&format!(concat!("invalid monomorphization of `{}` intrinsic: ", $msg),
name, $($fmt)*));
}
}
macro_rules! return_error {
($($fmt: tt)*) => {
{
emit_error!($($fmt)*);
return Err(());
}
}
}
macro_rules! require {
($cond: expr, $($fmt: tt)*) => {
if !$cond {
return_error!($($fmt)*);
}
};
}
macro_rules! require_simd {
($ty: expr, $position: expr) => {
require!($ty.is_simd(), "expected SIMD {} type, found non-SIMD `{}`", $position, $ty)
};
}
let tcx = bx.tcx();
let sig =
tcx.normalize_erasing_late_bound_regions(ty::ParamEnv::reveal_all(), callee_ty.fn_sig(tcx));
let arg_tys = sig.inputs();
if name == sym::simd_select_bitmask {
require_simd!(arg_tys[1], "argument");
let (len, _) = arg_tys[1].simd_size_and_type(bx.tcx());
let expected_int_bits = (len.max(8) - 1).next_power_of_two();
let expected_bytes = len / 8 + ((len % 8 > 0) as u64);
let mask_ty = arg_tys[0];
let mask = match mask_ty.kind() {
ty::Int(i) if i.bit_width() == Some(expected_int_bits) => args[0].immediate(),
ty::Uint(i) if i.bit_width() == Some(expected_int_bits) => args[0].immediate(),
ty::Array(elem, len)
if matches!(elem.kind(), ty::Uint(ty::UintTy::U8))
&& len.try_eval_usize(bx.tcx, ty::ParamEnv::reveal_all())
== Some(expected_bytes) =>
{
let place = PlaceRef::alloca(bx, args[0].layout);
args[0].val.store(bx, place);
let int_ty = bx.type_ix(expected_bytes * 8);
let ptr = bx.pointercast(place.llval, bx.cx.type_ptr_to(int_ty));
bx.load(int_ty, ptr, Align::ONE)
}
_ => return_error!(
"invalid bitmask `{}`, expected `u{}` or `[u8; {}]`",
mask_ty,
expected_int_bits,
expected_bytes
),
};
let i1 = bx.type_i1();
let im = bx.type_ix(len);
let i1xn = bx.type_vector(i1, len);
let m_im = bx.trunc(mask, im);
let m_i1s = bx.bitcast(m_im, i1xn);
return Ok(bx.select(m_i1s, args[1].immediate(), args[2].immediate()));
}
// every intrinsic below takes a SIMD vector as its first argument
require_simd!(arg_tys[0], "input");
let in_ty = arg_tys[0];
let comparison = match name {
sym::simd_eq => Some(hir::BinOpKind::Eq),
sym::simd_ne => Some(hir::BinOpKind::Ne),
sym::simd_lt => Some(hir::BinOpKind::Lt),
sym::simd_le => Some(hir::BinOpKind::Le),
sym::simd_gt => Some(hir::BinOpKind::Gt),
sym::simd_ge => Some(hir::BinOpKind::Ge),
_ => None,
};
let (in_len, in_elem) = arg_tys[0].simd_size_and_type(bx.tcx());
if let Some(cmp_op) = comparison {
require_simd!(ret_ty, "return");
let (out_len, out_ty) = ret_ty.simd_size_and_type(bx.tcx());
require!(
in_len == out_len,
"expected return type with length {} (same as input type `{}`), \
found `{}` with length {}",
in_len,
in_ty,
ret_ty,
out_len
);
require!(
bx.type_kind(bx.element_type(llret_ty)) == TypeKind::Integer,
"expected return type with integer elements, found `{}` with non-integer `{}`",
ret_ty,
out_ty
);
return Ok(compare_simd_types(
bx,
args[0].immediate(),
args[1].immediate(),
in_elem,
llret_ty,
cmp_op,
));
}
if let Some(stripped) = name.as_str().strip_prefix("simd_shuffle") {
// If this intrinsic is the older "simd_shuffleN" form, simply parse the integer.
// If there is no suffix, use the index array length.
let n: u64 = if stripped.is_empty() {
// Make sure this is actually an array, since typeck only checks the length-suffixed
// version of this intrinsic.
match args[2].layout.ty.kind() {
ty::Array(ty, len) if matches!(ty.kind(), ty::Uint(ty::UintTy::U32)) => {
len.try_eval_usize(bx.cx.tcx, ty::ParamEnv::reveal_all()).unwrap_or_else(|| {
span_bug!(span, "could not evaluate shuffle index array length")
})
}
_ => return_error!(
"simd_shuffle index must be an array of `u32`, got `{}`",
args[2].layout.ty
),
}
} else {
stripped.parse().unwrap_or_else(|_| {
span_bug!(span, "bad `simd_shuffle` instruction only caught in codegen?")
})
};
require_simd!(ret_ty, "return");
let (out_len, out_ty) = ret_ty.simd_size_and_type(bx.tcx());
require!(
out_len == n,
"expected return type of length {}, found `{}` with length {}",
n,
ret_ty,
out_len
);
require!(
in_elem == out_ty,
"expected return element type `{}` (element of input `{}`), \
found `{}` with element type `{}`",
in_elem,