-
Notifications
You must be signed in to change notification settings - Fork 12.9k
/
const_eval.rs
812 lines (742 loc) · 30 KB
/
const_eval.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
// Not in interpret to make sure we do not use private implementation details
use std::fmt;
use std::error::Error;
use std::borrow::{Borrow, Cow};
use std::hash::Hash;
use std::collections::hash_map::Entry;
use std::convert::TryInto;
use rustc::hir::def::DefKind;
use rustc::hir::def_id::DefId;
use rustc::mir::interpret::{ConstEvalErr, ErrorHandled, ScalarMaybeUndef};
use rustc::mir;
use rustc::ty::{self, Ty, TyCtxt, subst::Subst};
use rustc::ty::layout::{self, HasTyCtxt, LayoutOf, VariantIdx};
use rustc::traits::Reveal;
use rustc_data_structures::fx::FxHashMap;
use crate::interpret::eval_nullary_intrinsic;
use syntax::{source_map::{Span, DUMMY_SP}, symbol::Symbol};
use crate::interpret::{self,
PlaceTy, MPlaceTy, OpTy, ImmTy, Immediate, Scalar, Pointer,
RawConst, ConstValue, Machine,
InterpResult, InterpErrorInfo, GlobalId, InterpCx, StackPopCleanup, AssertMessage,
Allocation, AllocId, MemoryKind, Memory,
snapshot, RefTracking, intern_const_alloc_recursive,
};
/// Number of steps until the detector even starts doing anything.
/// Also, a warning is shown to the user when this number is reached.
const STEPS_UNTIL_DETECTOR_ENABLED: isize = 1_000_000;
/// The number of steps between loop detector snapshots.
/// Should be a power of two for performance reasons.
const DETECTOR_SNAPSHOT_PERIOD: isize = 256;
/// The `InterpCx` is only meant to be used to do field and index projections into constants for
/// `simd_shuffle` and const patterns in match arms.
///
/// The function containing the `match` that is currently being analyzed may have generic bounds
/// that inform us about the generic bounds of the constant. E.g., using an associated constant
/// of a function's generic parameter will require knowledge about the bounds on the generic
/// parameter. These bounds are passed to `mk_eval_cx` via the `ParamEnv` argument.
fn mk_eval_cx<'mir, 'tcx>(
tcx: TyCtxt<'tcx>,
span: Span,
param_env: ty::ParamEnv<'tcx>,
) -> CompileTimeEvalContext<'mir, 'tcx> {
debug!("mk_eval_cx: {:?}", param_env);
InterpCx::new(tcx.at(span), param_env, CompileTimeInterpreter::new(), Default::default())
}
fn op_to_const<'tcx>(
ecx: &CompileTimeEvalContext<'_, 'tcx>,
op: OpTy<'tcx>,
) -> &'tcx ty::Const<'tcx> {
// We do not have value optimizations for everything.
// Only scalars and slices, since they are very common.
// Note that further down we turn scalars of undefined bits back to `ByRef`. These can result
// from scalar unions that are initialized with one of their zero sized variants. We could
// instead allow `ConstValue::Scalar` to store `ScalarMaybeUndef`, but that would affect all
// the usual cases of extracting e.g. a `usize`, without there being a real use case for the
// `Undef` situation.
let try_as_immediate = match op.layout.abi {
layout::Abi::Scalar(..) => true,
layout::Abi::ScalarPair(..) => match op.layout.ty.kind {
ty::Ref(_, inner, _) => match inner.kind {
ty::Slice(elem) => elem == ecx.tcx.types.u8,
ty::Str => true,
_ => false,
},
_ => false,
},
_ => false,
};
let immediate = if try_as_immediate {
Err(ecx.read_immediate(op).expect("normalization works on validated constants"))
} else {
// It is guaranteed that any non-slice scalar pair is actually ByRef here.
// When we come back from raw const eval, we are always by-ref. The only way our op here is
// by-val is if we are in const_field, i.e., if this is (a field of) something that we
// "tried to make immediate" before. We wouldn't do that for non-slice scalar pairs or
// structs containing such.
op.try_as_mplace()
};
let val = match immediate {
Ok(mplace) => {
let ptr = mplace.ptr.to_ptr().unwrap();
let alloc = ecx.tcx.alloc_map.lock().unwrap_memory(ptr.alloc_id);
ConstValue::ByRef { alloc, offset: ptr.offset }
},
// see comment on `let try_as_immediate` above
Err(ImmTy { imm: Immediate::Scalar(x), .. }) => match x {
ScalarMaybeUndef::Scalar(s) => ConstValue::Scalar(s),
ScalarMaybeUndef::Undef => {
// When coming out of "normal CTFE", we'll always have an `Indirect` operand as
// argument and we will not need this. The only way we can already have an
// `Immediate` is when we are called from `const_field`, and that `Immediate`
// comes from a constant so it can happen have `Undef`, because the indirect
// memory that was read had undefined bytes.
let mplace = op.assert_mem_place();
let ptr = mplace.ptr.to_ptr().unwrap();
let alloc = ecx.tcx.alloc_map.lock().unwrap_memory(ptr.alloc_id);
ConstValue::ByRef { alloc, offset: ptr.offset }
},
},
Err(ImmTy { imm: Immediate::ScalarPair(a, b), .. }) => {
let (data, start) = match a.not_undef().unwrap() {
Scalar::Ptr(ptr) => (
ecx.tcx.alloc_map.lock().unwrap_memory(ptr.alloc_id),
ptr.offset.bytes(),
),
Scalar::Raw { .. } => (
ecx.tcx.intern_const_alloc(Allocation::from_byte_aligned_bytes(
b"" as &[u8],
)),
0,
),
};
let len = b.to_machine_usize(&ecx.tcx.tcx).unwrap();
let start = start.try_into().unwrap();
let len: usize = len.try_into().unwrap();
ConstValue::Slice {
data,
start,
end: start + len,
}
},
};
ecx.tcx.mk_const(ty::Const { val: ty::ConstKind::Value(val), ty: op.layout.ty })
}
// Returns a pointer to where the result lives
fn eval_body_using_ecx<'mir, 'tcx>(
ecx: &mut CompileTimeEvalContext<'mir, 'tcx>,
cid: GlobalId<'tcx>,
body: &'mir mir::Body<'tcx>,
) -> InterpResult<'tcx, MPlaceTy<'tcx>> {
debug!("eval_body_using_ecx: {:?}, {:?}", cid, ecx.param_env);
let tcx = ecx.tcx.tcx;
let layout = ecx.layout_of(body.return_ty().subst(tcx, cid.instance.substs))?;
assert!(!layout.is_unsized());
let ret = ecx.allocate(layout, MemoryKind::Stack);
let name = ty::tls::with(|tcx| tcx.def_path_str(cid.instance.def_id()));
let prom = cid.promoted.map_or(String::new(), |p| format!("::promoted[{:?}]", p));
trace!("eval_body_using_ecx: pushing stack frame for global: {}{}", name, prom);
// Assert all args (if any) are zero-sized types; `eval_body_using_ecx` doesn't
// make sense if the body is expecting nontrivial arguments.
// (The alternative would be to use `eval_fn_call` with an args slice.)
for arg in body.args_iter() {
let decl = body.local_decls.get(arg).expect("arg missing from local_decls");
let layout = ecx.layout_of(decl.ty.subst(tcx, cid.instance.substs))?;
assert!(layout.is_zst())
};
ecx.push_stack_frame(
cid.instance,
body.span,
body,
Some(ret.into()),
StackPopCleanup::None { cleanup: false },
)?;
// The main interpreter loop.
ecx.run()?;
// Intern the result
intern_const_alloc_recursive(ecx, tcx.static_mutability(cid.instance.def_id()), ret)?;
debug!("eval_body_using_ecx done: {:?}", *ret);
Ok(ret)
}
#[derive(Clone, Debug)]
pub enum ConstEvalError {
NeedsRfc(String),
}
impl<'tcx> Into<InterpErrorInfo<'tcx>> for ConstEvalError {
fn into(self) -> InterpErrorInfo<'tcx> {
err_unsup!(Unsupported(self.to_string())).into()
}
}
impl fmt::Display for ConstEvalError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
use self::ConstEvalError::*;
match *self {
NeedsRfc(ref msg) => {
write!(
f,
"\"{}\" needs an rfc before being allowed inside constants",
msg
)
}
}
}
}
impl Error for ConstEvalError {
fn description(&self) -> &str {
use self::ConstEvalError::*;
match *self {
NeedsRfc(_) => "this feature needs an rfc before being allowed inside constants",
}
}
fn cause(&self) -> Option<&dyn Error> {
None
}
}
// Extra machine state for CTFE, and the Machine instance
pub struct CompileTimeInterpreter<'mir, 'tcx> {
/// When this value is negative, it indicates the number of interpreter
/// steps *until* the loop detector is enabled. When it is positive, it is
/// the number of steps after the detector has been enabled modulo the loop
/// detector period.
pub(super) steps_since_detector_enabled: isize,
/// Extra state to detect loops.
pub(super) loop_detector: snapshot::InfiniteLoopDetector<'mir, 'tcx>,
}
impl<'mir, 'tcx> CompileTimeInterpreter<'mir, 'tcx> {
fn new() -> Self {
CompileTimeInterpreter {
loop_detector: Default::default(),
steps_since_detector_enabled: -STEPS_UNTIL_DETECTOR_ENABLED,
}
}
}
impl<K: Hash + Eq, V> interpret::AllocMap<K, V> for FxHashMap<K, V> {
#[inline(always)]
fn contains_key<Q: ?Sized + Hash + Eq>(&mut self, k: &Q) -> bool
where K: Borrow<Q>
{
FxHashMap::contains_key(self, k)
}
#[inline(always)]
fn insert(&mut self, k: K, v: V) -> Option<V>
{
FxHashMap::insert(self, k, v)
}
#[inline(always)]
fn remove<Q: ?Sized + Hash + Eq>(&mut self, k: &Q) -> Option<V>
where K: Borrow<Q>
{
FxHashMap::remove(self, k)
}
#[inline(always)]
fn filter_map_collect<T>(&self, mut f: impl FnMut(&K, &V) -> Option<T>) -> Vec<T> {
self.iter()
.filter_map(move |(k, v)| f(k, &*v))
.collect()
}
#[inline(always)]
fn get_or<E>(
&self,
k: K,
vacant: impl FnOnce() -> Result<V, E>
) -> Result<&V, E>
{
match self.get(&k) {
Some(v) => Ok(v),
None => {
vacant()?;
bug!("The CTFE machine shouldn't ever need to extend the alloc_map when reading")
}
}
}
#[inline(always)]
fn get_mut_or<E>(
&mut self,
k: K,
vacant: impl FnOnce() -> Result<V, E>
) -> Result<&mut V, E>
{
match self.entry(k) {
Entry::Occupied(e) => Ok(e.into_mut()),
Entry::Vacant(e) => {
let v = vacant()?;
Ok(e.insert(v))
}
}
}
}
crate type CompileTimeEvalContext<'mir, 'tcx> =
InterpCx<'mir, 'tcx, CompileTimeInterpreter<'mir, 'tcx>>;
impl interpret::MayLeak for ! {
#[inline(always)]
fn may_leak(self) -> bool {
// `self` is uninhabited
self
}
}
impl<'mir, 'tcx> interpret::Machine<'mir, 'tcx> for CompileTimeInterpreter<'mir, 'tcx> {
type MemoryKinds = !;
type PointerTag = ();
type ExtraFnVal = !;
type FrameExtra = ();
type MemoryExtra = ();
type AllocExtra = ();
type MemoryMap = FxHashMap<AllocId, (MemoryKind<!>, Allocation)>;
const STATIC_KIND: Option<!> = None; // no copying of statics allowed
// We do not check for alignment to avoid having to carry an `Align`
// in `ConstValue::ByRef`.
const CHECK_ALIGN: bool = false;
#[inline(always)]
fn enforce_validity(_ecx: &InterpCx<'mir, 'tcx, Self>) -> bool {
false // for now, we don't enforce validity
}
fn find_mir_or_eval_fn(
ecx: &mut InterpCx<'mir, 'tcx, Self>,
instance: ty::Instance<'tcx>,
args: &[OpTy<'tcx>],
ret: Option<(PlaceTy<'tcx>, mir::BasicBlock)>,
_unwind: Option<mir::BasicBlock> // unwinding is not supported in consts
) -> InterpResult<'tcx, Option<&'mir mir::Body<'tcx>>> {
debug!("find_mir_or_eval_fn: {:?}", instance);
// Only check non-glue functions
if let ty::InstanceDef::Item(def_id) = instance.def {
// Execution might have wandered off into other crates, so we cannot do a stability-
// sensitive check here. But we can at least rule out functions that are not const
// at all.
if ecx.tcx.is_const_fn_raw(def_id) {
// If this function is a `const fn` then as an optimization we can query this
// evaluation immediately.
//
// For the moment we only do this for functions which take no arguments
// (or all arguments are ZSTs) so that we don't memoize too much.
//
// Because `#[track_caller]` adds an implicit non-ZST argument, we also cannot
// perform this optimization on items tagged with it.
let no_implicit_args = !instance.def.requires_caller_location(ecx.tcx());
if args.iter().all(|a| a.layout.is_zst()) && no_implicit_args {
let gid = GlobalId { instance, promoted: None };
ecx.eval_const_fn_call(gid, ret)?;
return Ok(None);
}
} else {
// Some functions we support even if they are non-const -- but avoid testing
// that for const fn! We certainly do *not* want to actually call the fn
// though, so be sure we return here.
return if ecx.hook_panic_fn(instance, args, ret)? {
Ok(None)
} else {
throw_unsup_format!("calling non-const function `{}`", instance)
};
}
}
// This is a const fn. Call it.
Ok(Some(match ecx.load_mir(instance.def, None) {
Ok(body) => *body,
Err(err) => {
if let err_unsup!(NoMirFor(ref path)) = err.kind {
return Err(
ConstEvalError::NeedsRfc(format!("calling extern function `{}`", path))
.into(),
);
}
return Err(err);
}
}))
}
fn call_extra_fn(
_ecx: &mut InterpCx<'mir, 'tcx, Self>,
fn_val: !,
_args: &[OpTy<'tcx>],
_ret: Option<(PlaceTy<'tcx>, mir::BasicBlock)>,
_unwind: Option<mir::BasicBlock>
) -> InterpResult<'tcx> {
match fn_val {}
}
fn call_intrinsic(
ecx: &mut InterpCx<'mir, 'tcx, Self>,
span: Span,
instance: ty::Instance<'tcx>,
args: &[OpTy<'tcx>],
ret: Option<(PlaceTy<'tcx>, mir::BasicBlock)>,
_unwind: Option<mir::BasicBlock>
) -> InterpResult<'tcx> {
if ecx.emulate_intrinsic(span, instance, args, ret)? {
return Ok(());
}
// An intrinsic that we do not support
let intrinsic_name = ecx.tcx.item_name(instance.def_id());
Err(
ConstEvalError::NeedsRfc(format!("calling intrinsic `{}`", intrinsic_name)).into()
)
}
fn assert_panic(
ecx: &mut InterpCx<'mir, 'tcx, Self>,
_span: Span,
msg: &AssertMessage<'tcx>,
_unwind: Option<mir::BasicBlock>,
) -> InterpResult<'tcx> {
use rustc::mir::interpret::PanicInfo::*;
Err(match msg {
BoundsCheck { ref len, ref index } => {
let len = ecx
.read_immediate(ecx.eval_operand(len, None)?)
.expect("can't eval len")
.to_scalar()?
.to_machine_usize(&*ecx)?;
let index = ecx
.read_immediate(ecx.eval_operand(index, None)?)
.expect("can't eval index")
.to_scalar()?
.to_machine_usize(&*ecx)?;
err_panic!(BoundsCheck { len, index })
}
Overflow(op) => err_panic!(Overflow(*op)),
OverflowNeg => err_panic!(OverflowNeg),
DivisionByZero => err_panic!(DivisionByZero),
RemainderByZero => err_panic!(RemainderByZero),
ResumedAfterReturn(generator_kind)
=> err_panic!(ResumedAfterReturn(*generator_kind)),
ResumedAfterPanic(generator_kind)
=> err_panic!(ResumedAfterPanic(*generator_kind)),
Panic { .. } => bug!("`Panic` variant cannot occur in MIR"),
}
.into())
}
fn ptr_to_int(
_mem: &Memory<'mir, 'tcx, Self>,
_ptr: Pointer,
) -> InterpResult<'tcx, u64> {
Err(
ConstEvalError::NeedsRfc("pointer-to-integer cast".to_string()).into(),
)
}
fn binary_ptr_op(
_ecx: &InterpCx<'mir, 'tcx, Self>,
_bin_op: mir::BinOp,
_left: ImmTy<'tcx>,
_right: ImmTy<'tcx>,
) -> InterpResult<'tcx, (Scalar, bool, Ty<'tcx>)> {
Err(
ConstEvalError::NeedsRfc("pointer arithmetic or comparison".to_string()).into(),
)
}
fn find_foreign_static(
_tcx: TyCtxt<'tcx>,
_def_id: DefId,
) -> InterpResult<'tcx, Cow<'tcx, Allocation<Self::PointerTag>>> {
throw_unsup!(ReadForeignStatic)
}
#[inline(always)]
fn init_allocation_extra<'b>(
_memory_extra: &(),
_id: AllocId,
alloc: Cow<'b, Allocation>,
_kind: Option<MemoryKind<!>>,
) -> (Cow<'b, Allocation<Self::PointerTag>>, Self::PointerTag) {
// We do not use a tag so we can just cheaply forward the allocation
(alloc, ())
}
#[inline(always)]
fn tag_static_base_pointer(
_memory_extra: &(),
_id: AllocId,
) -> Self::PointerTag {
()
}
fn box_alloc(
_ecx: &mut InterpCx<'mir, 'tcx, Self>,
_dest: PlaceTy<'tcx>,
) -> InterpResult<'tcx> {
Err(
ConstEvalError::NeedsRfc("heap allocations via `box` keyword".to_string()).into(),
)
}
fn before_terminator(ecx: &mut InterpCx<'mir, 'tcx, Self>) -> InterpResult<'tcx> {
{
let steps = &mut ecx.machine.steps_since_detector_enabled;
*steps += 1;
if *steps < 0 {
return Ok(());
}
*steps %= DETECTOR_SNAPSHOT_PERIOD;
if *steps != 0 {
return Ok(());
}
}
let span = ecx.frame().span;
ecx.machine.loop_detector.observe_and_analyze(
*ecx.tcx,
span,
&ecx.memory,
&ecx.stack[..],
)
}
#[inline(always)]
fn stack_push(_ecx: &mut InterpCx<'mir, 'tcx, Self>) -> InterpResult<'tcx> {
Ok(())
}
}
/// Extracts a field of a (variant of a) const.
// this function uses `unwrap` copiously, because an already validated constant must have valid
// fields and can thus never fail outside of compiler bugs
pub fn const_field<'tcx>(
tcx: TyCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
variant: Option<VariantIdx>,
field: mir::Field,
value: &'tcx ty::Const<'tcx>,
) -> &'tcx ty::Const<'tcx> {
trace!("const_field: {:?}, {:?}", field, value);
let ecx = mk_eval_cx(tcx, DUMMY_SP, param_env);
// get the operand again
let op = ecx.eval_const_to_op(value, None).unwrap();
// downcast
let down = match variant {
None => op,
Some(variant) => ecx.operand_downcast(op, variant).unwrap(),
};
// then project
let field = ecx.operand_field(down, field.index() as u64).unwrap();
// and finally move back to the const world, always normalizing because
// this is not called for statics.
op_to_const(&ecx, field)
}
pub fn const_caller_location<'tcx>(
tcx: TyCtxt<'tcx>,
(file, line, col): (Symbol, u32, u32),
) -> &'tcx ty::Const<'tcx> {
trace!("const_caller_location: {}:{}:{}", file, line, col);
let mut ecx = mk_eval_cx(tcx, DUMMY_SP, ty::ParamEnv::reveal_all());
let loc_ty = tcx.caller_location_ty();
let loc_place = ecx.alloc_caller_location(file, line, col);
intern_const_alloc_recursive(&mut ecx, None, loc_place).unwrap();
let loc_const = ty::Const {
ty: loc_ty,
val: ty::ConstKind::Value(ConstValue::Scalar(loc_place.ptr.into())),
};
tcx.mk_const(loc_const)
}
// this function uses `unwrap` copiously, because an already validated constant must have valid
// fields and can thus never fail outside of compiler bugs
pub fn const_variant_index<'tcx>(
tcx: TyCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
val: &'tcx ty::Const<'tcx>,
) -> VariantIdx {
trace!("const_variant_index: {:?}", val);
let ecx = mk_eval_cx(tcx, DUMMY_SP, param_env);
let op = ecx.eval_const_to_op(val, None).unwrap();
ecx.read_discriminant(op).unwrap().1
}
/// Turn an interpreter error into something to report to the user.
/// As a side-effect, if RUSTC_CTFE_BACKTRACE is set, this prints the backtrace.
/// Should be called only if the error is actually going to to be reported!
pub fn error_to_const_error<'mir, 'tcx, M: Machine<'mir, 'tcx>>(
ecx: &InterpCx<'mir, 'tcx, M>,
mut error: InterpErrorInfo<'tcx>,
) -> ConstEvalErr<'tcx> {
error.print_backtrace();
let stacktrace = ecx.generate_stacktrace(None);
ConstEvalErr { error: error.kind, stacktrace, span: ecx.tcx.span }
}
pub fn note_on_undefined_behavior_error() -> &'static str {
"The rules on what exactly is undefined behavior aren't clear, \
so this check might be overzealous. Please open an issue on the rustc \
repository if you believe it should not be considered undefined behavior."
}
fn validate_and_turn_into_const<'tcx>(
tcx: TyCtxt<'tcx>,
constant: RawConst<'tcx>,
key: ty::ParamEnvAnd<'tcx, GlobalId<'tcx>>,
) -> ::rustc::mir::interpret::ConstEvalResult<'tcx> {
let cid = key.value;
let ecx = mk_eval_cx(tcx, tcx.def_span(key.value.instance.def_id()), key.param_env);
let val = (|| {
let mplace = ecx.raw_const_to_mplace(constant)?;
let mut ref_tracking = RefTracking::new(mplace);
while let Some((mplace, path)) = ref_tracking.todo.pop() {
ecx.validate_operand(
mplace.into(),
path,
Some(&mut ref_tracking),
)?;
}
// Now that we validated, turn this into a proper constant.
// Statics/promoteds are always `ByRef`, for the rest `op_to_const` decides
// whether they become immediates.
let def_id = cid.instance.def.def_id();
if tcx.is_static(def_id) || cid.promoted.is_some() {
let ptr = mplace.ptr.to_ptr()?;
Ok(tcx.mk_const(ty::Const {
val: ty::ConstKind::Value(ConstValue::ByRef {
alloc: ecx.tcx.alloc_map.lock().unwrap_memory(ptr.alloc_id),
offset: ptr.offset,
}),
ty: mplace.layout.ty,
}))
} else {
Ok(op_to_const(&ecx, mplace.into()))
}
})();
val.map_err(|error| {
let err = error_to_const_error(&ecx, error);
match err.struct_error(ecx.tcx, "it is undefined behavior to use this value") {
Ok(mut diag) => {
diag.note(note_on_undefined_behavior_error());
diag.emit();
ErrorHandled::Reported
}
Err(err) => err,
}
})
}
pub fn const_eval_provider<'tcx>(
tcx: TyCtxt<'tcx>,
key: ty::ParamEnvAnd<'tcx, GlobalId<'tcx>>,
) -> ::rustc::mir::interpret::ConstEvalResult<'tcx> {
// see comment in const_eval_raw_provider for what we're doing here
if key.param_env.reveal == Reveal::All {
let mut key = key.clone();
key.param_env.reveal = Reveal::UserFacing;
match tcx.const_eval(key) {
// try again with reveal all as requested
Err(ErrorHandled::TooGeneric) => {
// Promoteds should never be "too generic" when getting evaluated.
// They either don't get evaluated, or we are in a monomorphic context
assert!(key.value.promoted.is_none());
},
// dedupliate calls
other => return other,
}
}
// We call `const_eval` for zero arg intrinsics, too, in order to cache their value.
// Catch such calls and evaluate them instead of trying to load a constant's MIR.
if let ty::InstanceDef::Intrinsic(def_id) = key.value.instance.def {
let ty = key.value.instance.ty(tcx);
let substs = match ty.kind {
ty::FnDef(_, substs) => substs,
_ => bug!("intrinsic with type {:?}", ty),
};
return eval_nullary_intrinsic(tcx, key.param_env, def_id, substs)
.map_err(|error| {
let span = tcx.def_span(def_id);
let error = ConstEvalErr { error: error.kind, stacktrace: vec![], span };
error.report_as_error(tcx.at(span), "could not evaluate nullary intrinsic")
})
}
tcx.const_eval_raw(key).and_then(|val| {
validate_and_turn_into_const(tcx, val, key)
})
}
pub fn const_eval_raw_provider<'tcx>(
tcx: TyCtxt<'tcx>,
key: ty::ParamEnvAnd<'tcx, GlobalId<'tcx>>,
) -> ::rustc::mir::interpret::ConstEvalRawResult<'tcx> {
// Because the constant is computed twice (once per value of `Reveal`), we are at risk of
// reporting the same error twice here. To resolve this, we check whether we can evaluate the
// constant in the more restrictive `Reveal::UserFacing`, which most likely already was
// computed. For a large percentage of constants that will already have succeeded. Only
// associated constants of generic functions will fail due to not enough monomorphization
// information being available.
// In case we fail in the `UserFacing` variant, we just do the real computation.
if key.param_env.reveal == Reveal::All {
let mut key = key.clone();
key.param_env.reveal = Reveal::UserFacing;
match tcx.const_eval_raw(key) {
// try again with reveal all as requested
Err(ErrorHandled::TooGeneric) => {},
// dedupliate calls
other => return other,
}
}
if cfg!(debug_assertions) {
// Make sure we format the instance even if we do not print it.
// This serves as a regression test against an ICE on printing.
// The next two lines concatenated contain some discussion:
// https://rust-lang.zulipchat.com/#narrow/stream/146212-t-compiler.2Fconst-eval/
// subject/anon_const_instance_printing/near/135980032
let instance = key.value.instance.to_string();
trace!("const eval: {:?} ({})", key, instance);
}
let cid = key.value;
let def_id = cid.instance.def.def_id();
if def_id.is_local() && tcx.typeck_tables_of(def_id).tainted_by_errors {
return Err(ErrorHandled::Reported);
}
let span = tcx.def_span(cid.instance.def_id());
let mut ecx = InterpCx::new(
tcx.at(span),
key.param_env,
CompileTimeInterpreter::new(),
Default::default()
);
let res = ecx.load_mir(cid.instance.def, cid.promoted);
res.and_then(
|body| eval_body_using_ecx(&mut ecx, cid, *body)
).and_then(|place| {
Ok(RawConst {
alloc_id: place.ptr.assert_ptr().alloc_id,
ty: place.layout.ty
})
}).map_err(|error| {
let err = error_to_const_error(&ecx, error);
// errors in statics are always emitted as fatal errors
if tcx.is_static(def_id) {
// Ensure that if the above error was either `TooGeneric` or `Reported`
// an error must be reported.
let v = err.report_as_error(ecx.tcx, "could not evaluate static initializer");
tcx.sess.delay_span_bug(
err.span,
&format!("static eval failure did not emit an error: {:#?}", v)
);
v
} else if def_id.is_local() {
// constant defined in this crate, we can figure out a lint level!
match tcx.def_kind(def_id) {
// constants never produce a hard error at the definition site. Anything else is
// a backwards compatibility hazard (and will break old versions of winapi for sure)
//
// note that validation may still cause a hard error on this very same constant,
// because any code that existed before validation could not have failed validation
// thus preventing such a hard error from being a backwards compatibility hazard
Some(DefKind::Const) | Some(DefKind::AssocConst) => {
let hir_id = tcx.hir().as_local_hir_id(def_id).unwrap();
err.report_as_lint(
tcx.at(tcx.def_span(def_id)),
"any use of this value will cause an error",
hir_id,
Some(err.span),
)
},
// promoting runtime code is only allowed to error if it references broken constants
// any other kind of error will be reported to the user as a deny-by-default lint
_ => if let Some(p) = cid.promoted {
let span = tcx.promoted_mir(def_id)[p].span;
if let err_inval!(ReferencedConstant) = err.error {
err.report_as_error(
tcx.at(span),
"evaluation of constant expression failed",
)
} else {
err.report_as_lint(
tcx.at(span),
"reaching this expression at runtime will panic or abort",
tcx.hir().as_local_hir_id(def_id).unwrap(),
Some(err.span),
)
}
// anything else (array lengths, enum initializers, constant patterns) are reported
// as hard errors
} else {
err.report_as_error(
ecx.tcx,
"evaluation of constant value failed",
)
},
}
} else {
// use of broken constant from other crate
err.report_as_error(ecx.tcx, "could not evaluate constant")
}
})
}