-
Notifications
You must be signed in to change notification settings - Fork 12.9k
/
once.rs
489 lines (442 loc) · 17.6 KB
/
once.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! A "once initialization" primitive
//!
//! This primitive is meant to be used to run one-time initialization. An
//! example use case would be for initializing an FFI library.
// A "once" is a relatively simple primitive, and it's also typically provided
// by the OS as well (see `pthread_once` or `InitOnceExecuteOnce`). The OS
// primitives, however, tend to have surprising restrictions, such as the Unix
// one doesn't allow an argument to be passed to the function.
//
// As a result, we end up implementing it ourselves in the standard library.
// This also gives us the opportunity to optimize the implementation a bit which
// should help the fast path on call sites. Consequently, let's explain how this
// primitive works now!
//
// So to recap, the guarantees of a Once are that it will call the
// initialization closure at most once, and it will never return until the one
// that's running has finished running. This means that we need some form of
// blocking here while the custom callback is running at the very least.
// Additionally, we add on the restriction of **poisoning**. Whenever an
// initialization closure panics, the Once enters a "poisoned" state which means
// that all future calls will immediately panic as well.
//
// So to implement this, one might first reach for a `StaticMutex`, but those
// unfortunately need to be deallocated (e.g. call `destroy()`) to free memory
// on all OSes (some of the BSDs allocate memory for mutexes). It also gets a
// lot harder with poisoning to figure out when the mutex needs to be
// deallocated because it's not after the closure finishes, but after the first
// successful closure finishes.
//
// All in all, this is instead implemented with atomics and lock-free
// operations! Whee! Each `Once` has one word of atomic state, and this state is
// CAS'd on to determine what to do. There are four possible state of a `Once`:
//
// * Incomplete - no initialization has run yet, and no thread is currently
// using the Once.
// * Poisoned - some thread has previously attempted to initialize the Once, but
// it panicked, so the Once is now poisoned. There are no other
// threads currently accessing this Once.
// * Running - some thread is currently attempting to run initialization. It may
// succeed, so all future threads need to wait for it to finish.
// Note that this state is accompanied with a payload, described
// below.
// * Complete - initialization has completed and all future calls should finish
// immediately.
//
// With 4 states we need 2 bits to encode this, and we use the remaining bits
// in the word we have allocated as a queue of threads waiting for the thread
// responsible for entering the RUNNING state. This queue is just a linked list
// of Waiter nodes which is monotonically increasing in size. Each node is
// allocated on the stack, and whenever the running closure finishes it will
// consume the entire queue and notify all waiters they should try again.
//
// You'll find a few more details in the implementation, but that's the gist of
// it!
use marker;
use sync::atomic::{AtomicUsize, AtomicBool, Ordering};
use thread::{self, Thread};
/// A synchronization primitive which can be used to run a one-time global
/// initialization. Useful for one-time initialization for FFI or related
/// functionality. This type can only be constructed with the `ONCE_INIT`
/// value.
///
/// # Examples
///
/// ```
/// use std::sync::{Once, ONCE_INIT};
///
/// static START: Once = ONCE_INIT;
///
/// START.call_once(|| {
/// // run initialization here
/// });
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Once {
// This `state` word is actually an encoded version of just a pointer to a
// `Waiter`, so we add the `PhantomData` appropriately.
state: AtomicUsize,
_marker: marker::PhantomData<*mut Waiter>,
}
// The `PhantomData` of a raw pointer removes these two auto traits, but we
// enforce both below in the implementation so this should be safe to add.
#[stable(feature = "rust1", since = "1.0.0")]
unsafe impl Sync for Once {}
#[stable(feature = "rust1", since = "1.0.0")]
unsafe impl Send for Once {}
/// State yielded to the `call_once_force` method which can be used to query
/// whether the `Once` was previously poisoned or not.
#[unstable(feature = "once_poison", issue = "31688")]
pub struct OnceState {
poisoned: bool,
}
/// Initialization value for static `Once` values.
#[stable(feature = "rust1", since = "1.0.0")]
pub const ONCE_INIT: Once = Once::new();
// Four states that a Once can be in, encoded into the lower bits of `state` in
// the Once structure.
const INCOMPLETE: usize = 0x0;
const POISONED: usize = 0x1;
const RUNNING: usize = 0x2;
const COMPLETE: usize = 0x3;
// Mask to learn about the state. All other bits are the queue of waiters if
// this is in the RUNNING state.
const STATE_MASK: usize = 0x3;
// Representation of a node in the linked list of waiters in the RUNNING state.
struct Waiter {
thread: Option<Thread>,
signaled: AtomicBool,
next: *mut Waiter,
}
// Helper struct used to clean up after a closure call with a `Drop`
// implementation to also run on panic.
struct Finish {
panicked: bool,
me: &'static Once,
}
impl Once {
/// Creates a new `Once` value.
#[stable(feature = "once_new", since = "1.2.0")]
pub const fn new() -> Once {
Once {
state: AtomicUsize::new(INCOMPLETE),
_marker: marker::PhantomData,
}
}
/// Performs an initialization routine once and only once. The given closure
/// will be executed if this is the first time `call_once` has been called,
/// and otherwise the routine will *not* be invoked.
///
/// This method will block the calling thread if another initialization
/// routine is currently running.
///
/// When this function returns, it is guaranteed that some initialization
/// has run and completed (it may not be the closure specified). It is also
/// guaranteed that any memory writes performed by the executed closure can
/// be reliably observed by other threads at this point (there is a
/// happens-before relation between the closure and code executing after the
/// return).
///
/// # Examples
///
/// ```
/// use std::sync::{Once, ONCE_INIT};
///
/// static mut VAL: usize = 0;
/// static INIT: Once = ONCE_INIT;
///
/// // Accessing a `static mut` is unsafe much of the time, but if we do so
/// // in a synchronized fashion (e.g. write once or read all) then we're
/// // good to go!
/// //
/// // This function will only call `expensive_computation` once, and will
/// // otherwise always return the value returned from the first invocation.
/// fn get_cached_val() -> usize {
/// unsafe {
/// INIT.call_once(|| {
/// VAL = expensive_computation();
/// });
/// VAL
/// }
/// }
///
/// fn expensive_computation() -> usize {
/// // ...
/// # 2
/// }
/// ```
///
/// # Panics
///
/// The closure `f` will only be executed once if this is called
/// concurrently amongst many threads. If that closure panics, however, then
/// it will *poison* this `Once` instance, causing all future invocations of
/// `call_once` to also panic.
///
/// This is similar to [poisoning with mutexes][poison].
///
/// [poison]: struct.Mutex.html#poisoning
#[stable(feature = "rust1", since = "1.0.0")]
pub fn call_once<F>(&'static self, f: F) where F: FnOnce() {
// Fast path, just see if we've completed initialization.
if self.state.load(Ordering::SeqCst) == COMPLETE {
return
}
let mut f = Some(f);
self.call_inner(false, &mut |_| f.take().unwrap()());
}
/// Performs the same function as `call_once` except ignores poisoning.
///
/// If this `Once` has been poisoned (some initialization panicked) then
/// this function will continue to attempt to call initialization functions
/// until one of them doesn't panic.
///
/// The closure `f` is yielded a structure which can be used to query the
/// state of this `Once` (whether initialization has previously panicked or
/// not).
/// poisoned or not.
#[unstable(feature = "once_poison", issue = "31688")]
pub fn call_once_force<F>(&'static self, f: F) where F: FnOnce(&OnceState) {
// same as above, just with a different parameter to `call_inner`.
if self.state.load(Ordering::SeqCst) == COMPLETE {
return
}
let mut f = Some(f);
self.call_inner(true, &mut |p| {
f.take().unwrap()(&OnceState { poisoned: p })
});
}
// This is a non-generic function to reduce the monomorphization cost of
// using `call_once` (this isn't exactly a trivial or small implementation).
//
// Additionally, this is tagged with `#[cold]` as it should indeed be cold
// and it helps let LLVM know that calls to this function should be off the
// fast path. Essentially, this should help generate more straight line code
// in LLVM.
//
// Finally, this takes an `FnMut` instead of a `FnOnce` because there's
// currently no way to take an `FnOnce` and call it via virtual dispatch
// without some allocation overhead.
#[cold]
fn call_inner(&'static self,
ignore_poisoning: bool,
mut init: &mut FnMut(bool)) {
let mut state = self.state.load(Ordering::SeqCst);
'outer: loop {
match state {
// If we're complete, then there's nothing to do, we just
// jettison out as we shouldn't run the closure.
COMPLETE => return,
// If we're poisoned and we're not in a mode to ignore
// poisoning, then we panic here to propagate the poison.
POISONED if !ignore_poisoning => {
panic!("Once instance has previously been poisoned");
}
// Otherwise if we see a poisoned or otherwise incomplete state
// we will attempt to move ourselves into the RUNNING state. If
// we succeed, then the queue of waiters starts at null (all 0
// bits).
POISONED |
INCOMPLETE => {
let old = self.state.compare_and_swap(state, RUNNING,
Ordering::SeqCst);
if old != state {
state = old;
continue
}
// Run the initialization routine, letting it know if we're
// poisoned or not. The `Finish` struct is then dropped, and
// the `Drop` implementation here is responsible for waking
// up other waiters both in the normal return and panicking
// case.
let mut complete = Finish {
panicked: true,
me: self,
};
init(state == POISONED);
complete.panicked = false;
return
}
// All other values we find should correspond to the RUNNING
// state with an encoded waiter list in the more significant
// bits. We attempt to enqueue ourselves by moving us to the
// head of the list and bail out if we ever see a state that's
// not RUNNING.
_ => {
assert!(state & STATE_MASK == RUNNING);
let mut node = Waiter {
thread: Some(thread::current()),
signaled: AtomicBool::new(false),
next: 0 as *mut Waiter,
};
let me = &mut node as *mut Waiter as usize;
assert!(me & STATE_MASK == 0);
while state & STATE_MASK == RUNNING {
node.next = (state & !STATE_MASK) as *mut Waiter;
let old = self.state.compare_and_swap(state,
me | RUNNING,
Ordering::SeqCst);
if old != state {
state = old;
continue
}
// Once we've enqueued ourselves, wait in a loop.
// Aftewards reload the state and continue with what we
// were doing from before.
while !node.signaled.load(Ordering::SeqCst) {
thread::park();
}
state = self.state.load(Ordering::SeqCst);
continue 'outer
}
}
}
}
}
}
impl Drop for Finish {
fn drop(&mut self) {
// Swap out our state with however we finished. We should only ever see
// an old state which was RUNNING.
let queue = if self.panicked {
self.me.state.swap(POISONED, Ordering::SeqCst)
} else {
self.me.state.swap(COMPLETE, Ordering::SeqCst)
};
assert_eq!(queue & STATE_MASK, RUNNING);
// Decode the RUNNING to a list of waiters, then walk that entire list
// and wake them up. Note that it is crucial that after we store `true`
// in the node it can be free'd! As a result we load the `thread` to
// signal ahead of time and then unpark it after the store.
unsafe {
let mut queue = (queue & !STATE_MASK) as *mut Waiter;
while !queue.is_null() {
let next = (*queue).next;
let thread = (*queue).thread.take().unwrap();
(*queue).signaled.store(true, Ordering::SeqCst);
thread.unpark();
queue = next;
}
}
}
}
impl OnceState {
/// Returns whether the associated `Once` has been poisoned.
///
/// Once an initalization routine for a `Once` has panicked it will forever
/// indicate to future forced initialization routines that it is poisoned.
#[unstable(feature = "once_poison", issue = "31688")]
pub fn poisoned(&self) -> bool {
self.poisoned
}
}
#[cfg(test)]
mod tests {
use prelude::v1::*;
use panic;
use sync::mpsc::channel;
use thread;
use super::Once;
#[test]
fn smoke_once() {
static O: Once = Once::new();
let mut a = 0;
O.call_once(|| a += 1);
assert_eq!(a, 1);
O.call_once(|| a += 1);
assert_eq!(a, 1);
}
#[test]
fn stampede_once() {
static O: Once = Once::new();
static mut run: bool = false;
let (tx, rx) = channel();
for _ in 0..10 {
let tx = tx.clone();
thread::spawn(move|| {
for _ in 0..4 { thread::yield_now() }
unsafe {
O.call_once(|| {
assert!(!run);
run = true;
});
assert!(run);
}
tx.send(()).unwrap();
});
}
unsafe {
O.call_once(|| {
assert!(!run);
run = true;
});
assert!(run);
}
for _ in 0..10 {
rx.recv().unwrap();
}
}
#[test]
fn poison_bad() {
static O: Once = Once::new();
// poison the once
let t = panic::catch_unwind(|| {
O.call_once(|| panic!());
});
assert!(t.is_err());
// poisoning propagates
let t = panic::catch_unwind(|| {
O.call_once(|| {});
});
assert!(t.is_err());
// we can subvert poisoning, however
let mut called = false;
O.call_once_force(|p| {
called = true;
assert!(p.poisoned())
});
assert!(called);
// once any success happens, we stop propagating the poison
O.call_once(|| {});
}
#[test]
fn wait_for_force_to_finish() {
static O: Once = Once::new();
// poison the once
let t = panic::catch_unwind(|| {
O.call_once(|| panic!());
});
assert!(t.is_err());
// make sure someone's waiting inside the once via a force
let (tx1, rx1) = channel();
let (tx2, rx2) = channel();
let t1 = thread::spawn(move || {
O.call_once_force(|p| {
assert!(p.poisoned());
tx1.send(()).unwrap();
rx2.recv().unwrap();
});
});
rx1.recv().unwrap();
// put another waiter on the once
let t2 = thread::spawn(|| {
let mut called = false;
O.call_once(|| {
called = true;
});
assert!(!called);
});
tx2.send(()).unwrap();
assert!(t1.join().is_ok());
assert!(t2.join().is_ok());
}
}